scispace - formally typeset
Search or ask a question

Showing papers in "European Journal of Applied Physiology in 2012"


Journal ArticleDOI
TL;DR: Compared SBP values using the PTT-based method and those measured by cuff resulted in a significant correlation, however, the Bland–Altman plot shows relevant differences between both methods, which is partly due to greater variability of the SBPPTT measurement during intensified exercise.
Abstract: Pulse transit time (PTT) and pulse wave velocity (PWV), respectively, were shown to have a correlation with systolic blood pressure (SBP) and have been reported to be suitable for indirect BP measurements. The aim of this study was to create a function between SBP and PWV, and to test its reliability for the determination of absolute SBP using a non-linear algorithm and a one-point calibration. 63 volunteers performed exercise to induce rises in BP. Arterial PTT was measured between the R-spike of the ECG and the plethysmographic curve of finger pulse-oximetry. The reference BP was measured using a cuff-based sphygmomanometric aneroid device. Data from 13 of the 63 volunteers served for the detection of the PWV–BP relationship. The created non-linear function was used to calculate BP values after individual correction for the BP offset in a group of 50 volunteers. Individual correlation coefficients for SBP measured by PTT (SBPPTT) and by cuff (SBPCUFF) varied between r = 0.69 and r = 0.99. Taking all data together, we found r = 0.83 (276 measurements in 50 volunteers). In the Bland–Altman plot, the limits of agreement were \( {\text{mean}}_{{{\text{SBP}}_{\text{PTT}} , {\text{SBP}}_{\text{CUFF}} }} \)± 19.8 mmHg. In conclusion, comparing SBP values using the PTT-based method and those measured by cuff resulted in a significant correlation. However, the Bland–Altman plot shows relevant differences between both methods, which are partly due to greater variability of the SBPPTT measurement during intensified exercise. Results suggest that PTT can be used for measuring absolute SBP when performing an individual correction for the offset of the BP–PWV relation.

409 citations


Journal ArticleDOI
TL;DR: The data suggest that muscle quantity and muscle quality assessed from EI measured using computer-aided gray-scale analysis independently contribute to muscle strength in middle-aged and elderly persons.
Abstract: Enhanced echo intensity (EI) on an ultrasound image of skeletal muscle indicates changes in muscle quality, including increases in intramuscular fibrous and adipose tissues. However, it is not known whether muscle quality assessed from the EI of computer-aided gray-scale analysis of an ultrasound image is associated with the muscle strength or body composition of a subject. The objectives of this study were to investigate whether muscle quality assessed from EI measured using gray-scale analysis is associated with muscle strength independently of age or muscle thickness (MT), and to examine the relationship between muscle EI and body composition. Ninety-two healthy women with a mean age of 70.4 ± 5.5 years (range, 51–87 years) dwelling in Kyoto, Japan, participated in the study. The MT, subcutaneous fat thickness (FT), and EI of the quadriceps femoris on the right extremity were assessed from transverse ultrasound images. Knee extensor isometric strength was used as a measure of the quadriceps femoris muscle strength. EI was significantly correlated with quadriceps strength independently of age or MT, and stepwise regression analysis revealed that MT and EI were independently associated with quadriceps strength. Importantly, EI showed no significant correlations with FT, percentage of body fat (%BF), or body mass index (BMI), while FT, BMI, and %BF did not significantly influence muscle strength. These data suggest that muscle quantity (i.e., MT) and muscle quality assessed from EI measured using computer-aided gray-scale analysis independently contribute to muscle strength in middle-aged and elderly persons.

367 citations


Journal ArticleDOI
TL;DR: The main mechanical determinants of 100-m performance were a “velocity-oriented” force–velocity profile, likely explained by a higher ability to apply the resultant GRF vector with a forward orientation over the acceleration, and a higher step frequency resulting from a shorter contact time.
Abstract: Sprint mechanics and field 100-m performances were tested in 13 subjects including 9 non-specialists, 3 French national-level sprinters and a world-class sprinter, to further study the mechanical factors associated with sprint performance. 6-s sprints performed on an instrumented treadmill allowed continuous recording of step kinematics, ground reaction forces (GRF), and belt velocity and computation of mechanical power output and linear force–velocity relationships. An index of the force application technique was computed as the slope of the linear relationship between the decrease in the ratio of horizontal-to-resultant GRF and the increase in velocity. Mechanical power output was positively correlated to mean 100-m speed (P 0.683; P 0.21). Last, anthropometric data of body mass index and lowerlimb- to-height ratio showed no significant correlation with 100-m performance. We concluded that the main mechanical determinants of 100-m performance were (1) a ‘‘velocity-oriented’’ force–velocity profile, likely explained by (2) a higher ability to apply the resultant GRF vector with a forward orientation over the acceleration, and (3) a higher step frequency resulting from a shorter contact time.

352 citations


Journal ArticleDOI
TL;DR: Blood flow restriction resulted in significantly greater gains in strength and hypertrophy when performed with resistance training than with walking, and performing LI-BFR 2–3 days per week resulted in the greatest ES compared to 4–5 days per week.
Abstract: The primary objective of this investigation was to quantitatively identify which training variables result in the greatest strength and hypertrophy outcomes with lower body low intensity training with blood flow restriction (LI-BFR). Searches were performed for published studies with certain criteria. First, the primary focus of the study must have compared the effects of low intensity endurance or resistance training alone to low intensity exercise with some form of blood flow restriction. Second, subject populations had to have similar baseline characteristics so that valid outcome measures could be made. Finally, outcome measures had to include at least one measure of muscle hypertrophy. All studies included in the analysis utilized MRI except for two which reported changes via ultrasound. The mean overall effect size (ES) for muscle strength for LI-BFR was 0.58 [95% CI: 0.40, 0.76], and 0.00 [95% CI: −0.18, 0.17] for low intensity training. The mean overall ES for muscle hypertrophy for LI-BFR training was 0.39 [95% CI: 0.35, 0.43], and −0.01 [95% CI: −0.05, 0.03] for low intensity training. Blood flow restriction resulted in significantly greater gains in strength and hypertrophy when performed with resistance training than with walking. In addition, performing LI-BFR 2–3 days per week resulted in the greatest ES compared to 4–5 days per week. Significant correlations were found between ES for strength development and weeks of duration, but not for muscle hypertrophy. This meta-analysis provides insight into the impact of different variables on muscular strength and hypertrophy to LI-BFR training.

348 citations


Journal ArticleDOI
TL;DR: Modelling models indicate that restrictive cuff pressures should be largely based on thigh circumference and not on pressures previously used in the literature, suggesting that future studies account for the width of the cuff used.
Abstract: The purpose of this study was to determine the difference in cuff pressure which occludes arterial blood flow for two different types of cuffs which are commonly used in blood flow restriction (BFR) research. Another purpose of the study was to determine what factors (i.e., leg size, blood pressure, and limb composition) should be accounted for when prescribing the restriction cuff pressure for this technique. One hundred and sixteen (53 males, 63 females) subjects visited the laboratory for one session of testing. Mid-thigh muscle (mCSA) and fat (fCSA) cross-sectional area of the right thigh were assessed using peripheral quantitative computed tomography. Following the mid-thigh scan, measurements of leg circumference, ankle brachial index, and brachial blood pressure were obtained. Finally, in a randomized order, arterial occlusion pressure was determined using both narrow and wide restriction cuffs applied to the most proximal portion of each leg. Significant differences were observed between cuff type and arterial occlusion (narrow: 235 (42) mmHg vs. wide: 144 (17) mmHg; p = 0.001, Cohen’s D = 2.52). Thigh circumference or mCSA/fCSA with ankle blood pressure, and diastolic blood pressure, explained the most variance in the cuff pressure required to occlude arterial flow. Wide BFR cuffs restrict arterial blood flow at a lower pressure than narrow BFR cuffs, suggesting that future studies account for the width of the cuff used. In addition, we have outlined models which indicate that restrictive cuff pressures should be largely based on thigh circumference and not on pressures previously used in the literature.

285 citations


Journal ArticleDOI
TL;DR: Age, height, and body mass related to strength in most muscle groups and gender-specific models with estimated prediction intervals were established for maximal strength of major muscle groups.
Abstract: The main objective of this study was to establish normative values for maximal concentric isokinetic strength and maximal isometric strength of all major muscle groups in healthy subjects applying sex, age, height, and body mass-adjusted statistical models. One hundred and seventy-eight (178) (93 male and 85 female) healthy non-athletic Danish volunteers aged 15–83 years were recruited. Eighteen test protocols for each sex were applied to determine isokinetic and isometric muscle strength at knee, ankle, hip, shoulder, elbow, and wrist using a dynamometer (Biodex System 3 PRO). Multiple linear regressions were performed with maximal muscle strength (peak torque) as dependent variable and age, height, and body mass as independent variables. Muscle strength significantly related to age in 24, to height in 13 and to body mass in 27 out of the 36 models. In gender-specific analyses, the variables age, height and body mass accounted for 25% (20–29) (95% confidence interval) of the variation (r 2) in strength for men and 31% (25–38) for women. The r 2 was similar for the isokinetic models and the isometric models [31% (22–40) vs. 28% (23–34)]. Age, height, and body mass related to strength in most muscle groups and gender-specific models with estimated prediction intervals were established for maximal strength of major muscle groups.

285 citations


Journal ArticleDOI
TL;DR: It is shown that a novel, feasible exercise intervention can improve metabolic health and aerobic capacity and REHIT may offer a genuinely time-efficient alternative to HIT and conventional cardiorespiratory exercise training for improving risk factors of T2D.
Abstract: High-intensity interval training (HIT) has been proposed as a time-efficient alternative to traditional cardiorespiratory exercise training, but is very fatiguing. In this study, we investigated the effects of a reduced-exertion HIT (REHIT) exercise intervention on insulin sensitivity and aerobic capacity. Twenty-nine healthy but sedentary young men and women were randomly assigned to the REHIT intervention (men, n = 7; women, n = 8) or a control group (men, n = 6; women, n = 8). Subjects assigned to the control groups maintained their normal sedentary lifestyle, whilst subjects in the training groups completed three exercise sessions per week for 6 weeks. The 10-min exercise sessions consisted of low-intensity cycling (60 W) and one (first session) or two (all other sessions) brief ‘all-out’ sprints (10 s in week 1, 15 s in weeks 2–3 and 20 s in the final 3 weeks). Aerobic capacity (\( \dot{V}{\text{O}}{}_{ 2}{\text{peak}} \)) and the glucose and insulin response to a 75-g glucose load (OGTT) were determined before and 3 days after the exercise program. Despite relatively low ratings of perceived exertion (RPE 13 ± 1), insulin sensitivity significantly increased by 28% in the male training group following the REHIT intervention (P < 0.05). \( \dot{V}{\text{O}}{}_{ 2}{\text{peak}} \) increased in the male training (+15%) and female training (+12%) groups (P < 0.01). In conclusion we show that a novel, feasible exercise intervention can improve metabolic health and aerobic capacity. REHIT may offer a genuinely time-efficient alternative to HIT and conventional cardiorespiratory exercise training for improving risk factors of T2D.

231 citations


Journal ArticleDOI
TL;DR: Trends in both absolute HRV values and day-to-day variations may be useful measurements indicative of the progression towards mal-adaptation or non-functional over-reaching.
Abstract: Measures of an athlete’s heart rate variability (HRV) have shown potential to be of use in the prescription of training. However, little data exists on elite athletes who are regularly exposed to high training loads. This case study monitored daily HRV in two elite triathletes (one male: 22 year, $$ \dot{V}$$ O2max 72.5 ml kg min−1; one female: 20 year, $$ \dot{V}$$ O2max 68.2 ml kg min−1) training 23 ± 2 h per week, over a 77-day period. During this period, one athlete performed poorly in a key triathlon event, was diagnosed as non-functionally over-reached (NFOR) and subsequently reactivated the dormant virus herpes zoster (shingles). The 7-day rolling average of the log-transformed square root of the mean sum of the squared differences between R–R intervals (Ln rMSSD), declined towards the day of triathlon event (slope = −0.17 ms/week; r 2 = −0.88) in the NFOR athlete, remaining stable in the control (slope = 0.01 ms/week; r 2 = 0.12). Furthermore, in the NFOR athlete, coefficient of variation of HRV (CV of Ln rMSSD 7-day rolling average) revealed large linear reductions towards NFOR (i.e., linear regression of HRV variables versus day number towards NFOR: −0.65%/week and r 2 = −0.48), while these variables remained stable for the control athlete (slope = 0.04%/week). These data suggest that trends in both absolute HRV values and day-to-day variations may be useful measurements indicative of the progression towards mal-adaptation or non-functional over-reaching.

225 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reported a significant correlation between the increased post-beverage plasma [NO2−] with BR and the reduction in TT completion time (r = −0.83, p = 0.01).
Abstract: Dietary nitrate supplementation has been reported to improve short distance time trial (TT) performance by 1–3 % in club-level cyclists. It is not known if these ergogenic effects persist in longer endurance events or if dietary nitrate supplementation can enhance performance to the same extent in better trained individuals. Eight well-trained male cyclists performed two laboratory-based 50 mile TTs: (1) 2.5 h after consuming 0.5 L of nitrate-rich beetroot juice (BR) and (2) 2.5 h after consuming 0.5 L of nitrate-depleted BR as a placebo (PL). BR significantly elevated plasma [NO2−] (BR: 472 ± 96 vs. PL: 379 ± 94 nM; P 0.05). There was a significant correlation between the increased post-beverage plasma [NO2−] with BR and the reduction in TT completion time (r = −0.83, P = 0.01). Power output (PO) was not different between the conditions at any point (P > 0.05) but oxygen uptake (\( \dot{V} \)O2) tended to be lower in BR (P = 0.06), resulting in a significantly greater PO/\( \dot{V} \)O2 ratio (BR: 67.4 ± 5.5 vs. PL: 65.3 ± 4.8 W L min−1; P < 0.05). In conclusion, acute dietary supplementation with beetroot juice did not significantly improve 50 mile TT performance in well-trained cyclists. It is possible that the better training status of the cyclists in this study might reduce the physiological and performance response to NO3− supplementation compared with the moderately trained cyclists tested in earlier studies.

204 citations


Journal ArticleDOI
TL;DR: Monitoring HRex, HRR and HRV was effective in tracking improvements in VVam-Eval, changes in HRR were moderately associated with changes in (repeated-)sprint performance, and the present data question the use of HRex andHRV as systematic markers of physical performance decrements in youth soccer players.
Abstract: The aim of the present study was to verify the validity of using exercise heart rate (HRex), HR recovery (HRR) and post-exercise HR variability (HRV) during and after a submaximal running test to predict changes in physical performance over an entire competitive season in highly trained young soccer players. Sixty-five complete data sets were analyzed comparing two consecutive testing sessions (3-4 months apart) collected on 46 players (age 15.1 ± 1.5 years). Physical performance tests included a 5-min run at 9 km h(-1) followed by a seated 5-min recovery period to measure HRex, HRR and HRV, a counter movement jump, acceleration and maximal sprinting speed obtained during a 40-m sprint with 10-m splits, repeated-sprint performance and an incremental running test to estimate maximal cardiorespiratory function (end test velocity V (Vam-Eval)). Possible changes in physical performance were examined for the players presenting a substantial change in HR measures over two consecutive testing sessions (greater than 3, 13 and 10% for HRex, HRR and HRV, respectively). A decrease in HRex or increase in HRV was associated with likely improvements in V (Vam-Eval); opposite changes led to unclear changes in V (Vam-Eval). Moderate relationships were also found between individual changes in HRR and sprint [r = 0.39, 90% CL (0.07;0.64)] and repeated-sprint performance [r = -0.38 (-0.05;-0.64)]. To conclude, while monitoring HRex and HRV was effective in tracking improvements in V (Vam-Eval), changes in HRR were moderately associated with changes in (repeated-)sprint performance. The present data also question the use of HRex and HRV as systematic markers of physical performance decrements in youth soccer players.

185 citations


Journal ArticleDOI
TL;DR: Training sessions should be directed mainly to the improvement of the anaerobic alactic system ( responsible by the high-intensity actions), and of the aerobic system (responsible by the recovery process between high- intensity actions) in combat situations.
Abstract: The purpose of this study was to investigate energy system contributions and energy costs in combat situations. The sample consisted of 10 male taekwondo athletes (age: 21 ± 6 years old; height: 176.2 ± 5.3 cm; body mass: 67.2 ± 8.9 kg) who compete at the national or international level. To estimate the energy contributions, and total energy cost of the fights, athletes performed a simulated competition consisting of three 2 min rounds with a 1 min recovery between each round. The combats were filmed to quantify the actual time spent fighting in each round. The contribution of the aerobic (W AER), anaerobic alactic (W PCR), and anaerobic lactic $$ (W_{ [{\rm La}^-]}) $$ energy systems was estimated through the measurement of oxygen consumption during the activity, the fast component of excess post-exercise oxygen consumption, and the change in blood lactate concentration in each round, respectively. The mean ratio of high intensity actions to moments of low intensity (steps and pauses) was ~1:7. The W AER, W PCR and $$ (W_{ [{\rm La}^-]}) $$ system contributions were estimated as 120 ± 22 kJ (66 ± 6%), 54 ± 21 kJ (30 ± 6%), 8.5 kJ (4 ± 2%), respectively. Thus, training sessions should be directed mainly to the improvement of the anaerobic alactic system (responsible by the high-intensity actions), and of the aerobic system (responsible by the recovery process between high-intensity actions).

Journal ArticleDOI
TL;DR: Fundamental evidence is provided that physical capacity (fatigability and recovery) is adversely affected by mental workload and it is critical to determine or evaluate occupational demands based on modified muscular capacity (due to mental workload) to reduce risk of WMSD development.
Abstract: Most occupational tasks involve some level of mental/cognitive processing in addition to physical work; however, the etiology of work-related musculoskeletal disorders (WMSDs) due to these demands remains unclear. The aim of this study was to quantify the interactive effects of physical and mental workload on muscle endurance, fatigue, and recovery during intermittent work. Twelve participants, balanced by gender, performed intermittent static shoulder abductions to exhaustion at 15, 35, and 55% of individual maximal voluntary contraction (MVC), in the absence (control) and presence (concurrent) of a mental arithmetic task. Changes in muscular capacity were determined using endurance time, strength decline, electromyographic (EMG) fatigue indicators, muscle oxygenation, and heart rate measures. Muscular recovery was quantified through changes in strength and physiological responses. Mental workload was associated with shorter endurance times, specifically at 35% MVC, and greater strength decline. EMG and oxygenation measures showed similar changes during fatigue manifestation during concurrent conditions compared to the control, despite shorter endurance times. Moreover, decreased heart rate variability during concurrent demand conditions indicated increased mental stress. Although strength recovery was not influenced by mental workload, a slower heart rate recovery was observed after concurrent demand conditions. The findings from this study provide fundamental evidence that physical capacity (fatigability and recovery) is adversely affected by mental workload. Thus, it is critical to determine or evaluate occupational demands based on modified muscular capacity (due to mental workload) to reduce risk of WMSD development.

Journal ArticleDOI
TL;DR: The results suggest that exercise capacity at moderate intensity in a warm environment is progressively impaired as the relative humidity increases.
Abstract: This study examined the influence of relative humidity on endurance exercise performance in a warm environment. Eight male volunteers performed four cycle exercise trials at 70% maximum oxygen uptake until volitional exhaustion in an environmental chamber maintained at 30.2 ± 0.2°C. Volunteers were tested under four relative humidity (rh) conditions: 24, 40, 60 and 80%. Core and weighted mean skin temperature, heart rate, skin blood flow, and cutaneous vascular conductance were recorded at rest and at regular intervals during exercise. Mean ± SD time to exhaustion was 68 ± 19, 60 ± 17, 54 ± 17, and 46 ± 14 min at 24, 40, 60, and 80% rh, respectively (P < 0.001); exercise time was significantly less at 60% (P = 0.013) and 80% (P = 0.005) rh than recorded at 24% rh. There were no differences in core temperature (P = 0.480) and heart rate (P = 0.097) between trials. Core temperature at exhaustion was 39.0 ± 0.3°C at 24, 40, and 60% rh and 39.1 ± 0.3°C at 80% rh (P = 0.159). Mean skin temperature at the point of exhaustion was higher at 80% rh than at 24% rh (P < 0.001). Total sweat loss was similar between trials (P = 0.345), but sweating rate was higher at 60 and 80% rh than at 24% rh (P < 0.001). The results suggest that exercise capacity at moderate intensity in a warm environment is progressively impaired as the relative humidity increases.

Journal ArticleDOI
TL;DR: Physically active subjects seem to have a more anabolic hormonal environment and a healthier semen production and the T/C ratio, index of anabolic versus catabolic status, was higher in PA than in SE.
Abstract: Physical exercise promotes many health benefits. The present study was undertaken to assess possible semen and hormone differences among physically active (PA) subjects and sedentary subjects (SE). The analyzed qualitative sperm parameters were: volume, sperm count, motility, and morphology; where needed, additional testing was performed. The measured hormones were: follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone (T), cortisol (C), and the ratio between T and C (T/C). Maximum oxygen consumption was also assessed to check for differences in fitness level. Statistically significant differences were found for several semen parameters such as total progressive motility (PA: 60.94 ± 5.03; SE: 56.07 ± 4.55) and morphology (PA: 15.54 ± 1.38, SE: 14.40 ± 1.15). The seminological values observed were supported by differences in hormones, with FSH, LH, and T being higher in PA than in SE (5.68 ± 2.51 vs. 3.14 ± 1.84; 5.95 ± 1.11 vs. 5.08 ± 0.98; 7.68 ± 0.77 vs. 6.49 ± 0.80, respectively). Likewise, the T/C ratio, index of anabolic versus catabolic status, was also higher in PA (0.46 ± 0.11 vs. 0.32 ± 0.07), which further supports the possibility of an improved hormonal environment. The present study shows that there are differences in semen and hormone values of physically active subjects and sedentary subjects. Physically active subjects seem to have a more anabolic hormonal environment and a healthier semen production.

Journal ArticleDOI
TL;DR: Inter-individual variability was the largest source of variance for vigorous activity in both sexes and steps in women and at least 3 monitoring weekdays were required to achieve a reliability of 0.80 for PAL, energy expenditure, inactivity, light, moderate and total physical activity.
Abstract: To examine sources of variance in objectively measured physical activity and to determine the number of monitoring days needed to quantify physical activity patterns reliably, 394 Flemish adults (41.1 ± 9.9 years) were monitored during 7 days, using the SenseWear Armband. Differences between weekdays, Saturday and Sunday were examined with repeated measures ANOVA’s. Variance components were estimated for subject, weekday and residual error using data from Mondays through Fridays and used to calculate the reliability of 1–5 monitoring weekdays. Saturday was more and Sunday less active than an average weekday. Inter-individual variability was the largest source of variance (54.4–67.9%) for physical activity level (PAL), energy expenditure, inactivity, light, moderate and total physical activity. Intra-individual variability accounted for 31.8–44.8% and weekday for 0.1–1.1% of total variance. Intra-individual variability was the largest source of variance for vigorous activity in both sexes and steps in women. At least, 3 monitoring weekdays were required to achieve a reliability of 0.80 for PAL, energy expenditure, inactivity, light, moderate and total physical activity. All 5 weekdays should be monitored to reach acceptable reliability for steps. Five weekdays resulted in a reliability of 0.58–0.60 for vigorous activity. Both Saturday and Sunday and at least 3 weekdays need to be monitored to obtain reliable measures of habitual physical activity.

Journal ArticleDOI
TL;DR: Since the Polar RS800 HRM did not identify errors satisfactorily, or return valid values of HRV for certain groups, it is concluded that, whenever possible, traditional ECGs should be used for both gathering and editing ofHRV data.
Abstract: A growing trend among clinical studies is the use of heart rate monitors (HRMs) for assessment of heart rate variability (HRV). These instruments offer a convenient alternative to traditional electrocardiographs (ECGs) for recording and processing of R-R data. Reports on the validity of such systems are, however, conflicting. This study aimed to assess the validity of a commercial HRM on a large study sample, with emphasis on gender and age. Simultaneous recordings of R-R intervals were conducted with the Polar RS800 HRM and a 3-lead ECG on 341 individuals. Data editing was performed with individually designated software for each instrument. Agreement on SDNN, RMSSD, and HF- and LF power was assessed with intraclass correlations (ICCs), standard errors of measurement (SEMs) and Bland and Altman plots. The HRM was not able to identify 18 observations with non-sinus beats. For men, agreement between instruments ranged from good to excellent (ICC ≥ 0.8) on all HRV measures, and SEMs were generally small. For women the results were weaker, with unacceptable agreement between instruments on SDNN. Women over 60 years did not reach a critical ICC value of 0.75 on any of the HRV measures. Bland and Altman plots demonstrated that the RS800 generally overestimated HRV, and that uncertainty increased with higher values. Since the Polar system did not identify errors satisfactorily, or return valid values of HRV for certain groups, it is concluded that, whenever possible, traditional ECGs should be used for both gathering and editing of HRV data.

Journal ArticleDOI
TL;DR: It is reported that the acute exercise-induced systemic hormonal responses of cortisol and GH are weakly correlated with resistance training-induced changes in fibre CSA and LBM (cortisol only), but not with changes in strength.
Abstract: The purpose of this study was to investigate associations between acute exercise-induced hormone responses and adaptations to high intensity resistance training in a large cohort (n = 56) of young men. Acute post-exercise serum growth hormone (GH), free testosterone (fT), insulin-like growth factor (IGF-1) and cortisol responses were determined following an acute intense leg resistance exercise routine at the midpoint of a 12-week resistance exercise training study. Acute hormonal responses were correlated with gains in lean body mass (LBM), muscle fibre cross-sectional area (CSA) and leg press strength. There were no significant correlations between the exercise-induced elevations (area under the curve-AUC) of GH, fT and IGF-1 and gains in LBM or leg press strength. Significant correlations were found for cortisol, usually assumed to be a hormone indicative of catabolic drive, AUC with change in LBM (r = 0.29, P < 0.05) and type II fibre CSA (r = 0.35, P < 0.01) as well as GH AUC and gain in fibre area (type I: r = 0.36, P = 0.006; type II: r = 0.28, P = 0.04, but not lean mass). No correlations with strength were observed. We report that the acute exercise-induced systemic hormonal responses of cortisol and GH are weakly correlated with resistance training-induced changes in fibre CSA and LBM (cortisol only), but not with changes in strength.

Journal ArticleDOI
TL;DR: The most efficient way to reduced the physiological burden of firefighters’ protective equipment, and thereby increase safety, would be to reduce the mass of the boots and thermal protective clothing.
Abstract: Load carriage increases physiological strain, reduces work capacity and elevates the risk of work-related injury. In this project, the separate and combined physiological consequences of wearing the personal protective equipment used by firefighters were evaluated. The overall impact upon performance was first measured in 20 subjects during a maximal, job-related obstacle course trial and an incremental treadmill test to exhaustion (with and without protective equipment). The fractional contributions of the thermal protective clothing, helmet, breathing apparatus and boots were then separately determined during steady-state walking (4.8 km h−1, 0% gradient) and bench stepping (20 cm at 40 steps min−1). The protective equipment reduced exercise tolerance by 56% on a treadmill, with the ambulatory oxygen consumption reserve (peak minus steady-state walking) being 31% lower. For the obstacle course, performance declined by 27%. Under steady-state conditions, the footwear exerted the greatest relative metabolic impact during walking and bench stepping, being 8.7 and 6.4 times greater per unit mass than the breathing apparatus. Indeed, the relative influence of the clothing on oxygen cost was at least three times that of the breathing apparatus. Therefore, the most efficient way to reduce the physiological burden of firefighters’ protective equipment, and thereby increase safety, would be to reduce the mass of the boots and thermal protective clothing.

Journal ArticleDOI
TL;DR: Evidence is provided that autonomic control of the heart is altered by the simple act of just viewing natural scenes with an increase in vagal activity, and heart rate variability was used to investigate alterations in autonomic activity.
Abstract: Previously studies have shown that nature improves mood and self-esteem and reduces blood pressure. Walking within a natural environment has been suggested to alter autonomic nervous system control, but the mechanisms are not fully understood. Heart rate variability (HRV) is a non-invasive method of assessing autonomic control and can give an insight into vagal modulation. Our hypothesis was that viewing nature alone within a controlled laboratory environment would induce higher levels of HRV as compared to built scenes. Heart rate (HR) and blood pressure (BP) were measured during viewing different scenes in a controlled environment. HRV was used to investigate alterations in autonomic activity, specifically parasympathetic activity. Each participant lay in the semi-supine position in a laboratory while we recorded 5 min (n = 29) of ECG, BP and respiration as they viewed two collections of slides (one containing nature views and the other built scenes). During viewing of nature, markers of parasympathetic activity were increased in both studies. Root mean squared of successive differences increased 4.2 ± 7.7 ms (t = 2.9, p = 0.008) and natural logarithm of high frequency increased 0.19 ± 0.36 ms2 Hz−1 (t = 2.9, p = 0.007) as compared to built scenes. Mean HR and BP were not significantly altered. This study provides evidence that autonomic control of the heart is altered by the simple act of just viewing natural scenes with an increase in vagal activity.

Journal ArticleDOI
TL;DR: Investigating the intramuscular metabolic stress during multiple-set BFR exercises found that the multiple sets of low-intensity resistance exercise with continuous BFR could achieve with the same metabolic stress as multiple setsof high- intensity resistance exercise.
Abstract: Our previous study reported that intramuscular metabolic stress during low-intensity resistance exercise was significantly enhanced by combining blood flow restriction (BFR); however, they did not reach the levels achieved during high-intensity resistance exercise. That study was performed using a single set of exercise; however, usual resistance exercise consists of multiple sets with rest intervals. Therefore, we investigated the intramuscular metabolic stress during multiple-set BFR exercises, and compared the results with those during multiple-set high-intensity resistance exercise. Twelve healthy young subjects performed 3 sets of 1-min unilateral plantar flexion (30 repetitions) with 1-min intervals under 4 different conditions: low intensity (L, 20 % 1 RM) and high intensity (H, 65 % 1 RM) without BFR, and L with intermittent BFR (IBFR, only during exercise) and with continuous BFR (CBFR, during rest intervals as well as exercise). Intramuscular metabolic stress, defined as intramuscular metabolites and pH, and muscle fiber recruitment were evaluated by 31P-magnetic resonance spectroscopy. The changes of intramuscular metabolites and pH during IBFR were significantly greater than those in L but significantly lower than those in H. By contrast, those changes in CBFR were similar to those in H. Moreover, the fast-twitch fiber recruitment, evaluating by a splitting Pi peak, showed a similar level to H. In conclusion, the multiple sets of low-intensity resistance exercise with continuous BFR could achieve with the same metabolic stress as multiple sets of high-intensity resistance exercise.

Journal ArticleDOI
TL;DR: In this article, the authors evaluated the impact of short-term (5-day) heat acclimation on highly trained athletes and found significant physiological and performance improvements in rowing performance.
Abstract: Effectiveness of short-term acclimation has generally been undertaken using untrained and moderately-trained participants. The purpose of this study was to determine the impact of short-term (5-day) heat acclimation on highly trained athletes. Eight males (mean ± SD age 21.8 ± 2.1 years, mass 75.2 ± 4.6 kg, \( \dot{V}\)O2peak 4.9 ± 0.2 L min−1 and power output 400 ± 27 W) were heat acclimated under controlled hyperthermia (rectal temperature 38.5°C), for 90-min on five consecutive days (Ta = 39.5°C, 60% relative humidity). Acclimation was undertaken with dehydration (no fluid-intake) during daily bouts. Participants completed a rowing-specific, heat stress test (HST) 1 day before and after acclimation (Ta = 35°C, 60% relative humidity). HST consisted 10-min rowing at 30% peak power output (PPO), 10 min at 60% PPO and 5-min rest before a 2-km performance test, without feedback cues. Participants received 250 mL fluid (4% carbohydrate; osmolality 240–270 mmol kg−1) before the HST. Body mass loss during acclimation bouts was 1.6 ± 0.3 kg (2.1%) on day 1 and 2.3 ± 0.4 kg (3.0%) on day 5. In contrast, resting plasma volume increased by 4.5 ± 4.5% from day 1 to 5 (estimated from [Hb] & Hct). Plasma aldosterone increased at rest (52.6 pg mL−1; p = 0.03) and end-exercise (162.4 pg mL−1; p = 0.00) from day 1 to 5 acclimation. During the HST Tre and fc were lowered 0.3°C (p = 0.00) and 14 b min−1 (p = 0.00) after 20-min exercise. The 2-km performance time (6.52.7 min) improved by 4 s (p = 0.00). Meaningful physiological and performance improvements occurred for highly trained athletes using a short-term (5-day) heat acclimation under hyperthermia control, with dehydration.

Journal ArticleDOI
TL;DR: Investigation of the effects of exercise intensity and duration on nocturnal HR, HRV, HR, and HRV-based relaxation, as well as on actigraphic and subjective sleep quality suggests that increased exerciseintensity and/or duration cause delayed recovery ofnocturnal cardiac autonomic modulation.
Abstract: Acute physical exercise may affect cardiac autonomic modulation hours or even days during the recovery phase. Although sleep is an essential recovery period, the information on nocturnal autonomic modulation indicated by heart rate variability (HRV) after different exercises is mostly lacking. Therefore, this study investigated the effects of exercise intensity and duration on nocturnal HR, HRV, HR, and HRV-based relaxation, as well as on actigraphic and subjective sleep quality. Fourteen healthy male subjects (age 36 ± 4 years, maximal oxygen uptake 49 ± 4 ml/kg/min) performed five different running exercises on separate occasions starting at 6 p.m. with HR guidance at home. The effect of intensity was studied with 30 min of exercises at intensities corresponding to HR level at 45% (easy), 60% (moderate) and 75% (vigorous) of their maximal oxygen uptake. The effect of duration was studied with 30, 60, and 90 min of moderate exercises. Increased exercise intensity elevated nocturnal HR compared to control day (p < 0.001), but it did not affect nocturnal HRV. Nocturnal HR was greater after the day with 90- than 30- or 60-min exercises (p < 0.01) or control day (p < 0.001). Nocturnal HRV was lower after the 90-min exercise day compared to control day (p < 0.01). Neither exercise intensity nor duration had any impact on actigraphic or subjective sleep quality. The results suggest that increased exercise intensity and/or duration cause delayed recovery of nocturnal cardiac autonomic modulation, although long exercise duration was needed to induce changes in nocturnal HRV. Increased exercise intensity or duration does not seem to disrupt sleep quality.

Journal ArticleDOI
TL;DR: It is concluded the MM3B produces acceptably stable and reliable results, but is not adequately valid during moderate and vigorous exercise without some further correction of VO2 and VCO2.
Abstract: This study investigated the performance of the portable Cortex Metamax 3B (MM3B) automated gas analysis system during both simulated and human exercise using adolescents. Repeated measures using a Gas Exchange System Validator (GESV) across a range of simulated metabolic rates, showed the MM3B to be adequately reliable (both percentage errors, and percentage technical error of measurements <2%) for measuring expired ventilation (V (E)), oxygen consumption (VO(2)), and carbon dioxide production (VCO(2)). Over a 3 h period, the MM3B was shown to be acceptably stable in measuring gas fractions, as well as V (E), VO(2), and VCO(2) generated by the GESV, especially at moderate and high metabolic rates (drifts <2% and of minor physiological significance). Using eight healthy adolescents during rest, moderate, and vigorous cycle ergometry, the validity of the MM3B was tested against the primary criterion Douglas bag method (DBM) and a secondary criterion machine known to be accurate, the Jaeger Oxycon Pro system. No significant errors in V (E) were noted, yet the MM3B significantly overestimated both VO(2) and VCO(2) by approximately 10-17% at moderate and vigorous exercise as compared to the DBM and at all exercise levels compared to the Oxycon Pro. No significant differences were seen in any metabolic variable between the two criterion systems (DBM and Oxycon Pro). It is concluded the MM3B produces acceptably stable and reliable results, but is not adequately valid during moderate and vigorous exercise without some further correction of VO(2) and VCO(2).

Journal ArticleDOI
TL;DR: The report of Wallen et al. (2012) concerning the validity of the Polar RS800 heart rate monitor (HRM) as compared to a 5-min supine electrocardiogram (ECG) with respect to the calculation of various indices of heart rate variability (HRV).
Abstract: Dear Editor, We read with interest the report of Wallen et al. (2012) concerning the validity of the Polar RS800 heart rate monitor (HRM) as compared to a 5-min supine electrocardiogram (ECG) with respect to the calculation of various indices of heart rate variability (HRV). The Polar system consists of an HRM with bundled software (Polar Pro Trainer 5; PPT) which is used to derive HRV values. Wallen et al. (2012) compare the results from hand-corrected ECG data to this system, and conclude that traditional ECGs should be preferred as ‘‘...the Polar system did not identify errors satisfactorily, or return valid values of HRV for certain groups...’’. It should be noted first that within a research context, inaccuracy of a bundled hardware/software system is somewhat moot. Research groups overwhelmingly utilize the Polar system as a source of RR intervals, which are exported from the PPT software, and corrected if necessary to a normal-to-normal approximation then analysed using separate software. Recent work within this journal, for example, bears this out (e.g., Mateo et al. 2012; Mendonca et al. 2011; Vieira et al. 2012). As Wallen et al. (2012) note, the accuracy of this method is not in question, as previous research (e.g., Weippert et al. 2010) compared the accuracy of ECG-derived and Polar-derived RR intervals and concluded that the RR intervals are sufficiently interchangeable when analysed through identical methods. Wallen et al. (2012) note that recorded RR intervals (as provided from the Polar HRM) are less than ideal for the identification of cardiac dysrhythmia, as a normative ECG waveform is not available. This is undoubtedly the case, but as might be expected from a system designed primarily for tracking HR in a sporting context, the Polar system makes no systematic claims about its ability to identify and eliminate ectopy in groups that may display persistent ectopy at baseline (e.g., the elderly). Thus, the appropriate question is whether Polar-recorded data can optimally produce ECG-comparable measures of HRV, not whether the HRM system is able to identify and deal with cardiac dysrhythmia. Several recent implementations of correction methods applicable to RR series exist (e.g. Barbieri and Brown 2006; Clifford and Tarassenko 2005) but were not attempted by Wallen et al. (2012). The presence and correction of cardiac dysrhythmia (e.g., ectopy, premature atrial contraction) is a well-known source of error in the calculation for HRV, especially in the frequency domain as even one ectopic beat can bias the analysis of a short-term recording (Berntson and Stowell 1998). However, with regard to analytical methods, Wallen et al. (2012) did not provide an explicit methodology for the identification of ectopic beats in their ECG recording beyond visual inspection. The Task Force (1996) paper cited does not specify a methodology beyond stating that interpolation or regression methods may improve the bias conferred by ectopy. The lack of a uniform methodology for the detection of ectopy has the potential for unintended bias in the comparative ECG recording against which the HRM intervals were compared, especially if the assessors are not blind to the overall research question (which was the case in the report by Wallen et al. 2012). Furthermore, Communicated by Susan A. Ward.

Journal ArticleDOI
TL;DR: The data suggest that acute exercise-induced TBARS are exercise intensity-dependent whereas FMD appears to improve following energy expenditure equivalent to 30 min 50% VO2peak, regardless of intensity or duration.
Abstract: The aim of this investigation was to establish whether changes in oxidative stress and endothelial function following acute aerobic exercise are dose-dependent. Ten healthy trained men completed four exercise sessions: 50% VO2peak for 30 min (moderate intensity moderate duration, MIMD), 50% VO2peak for 60 min (moderate intensity long duration, MILD), 80% VO2peak for 30 min (high intensity moderate duration, HIMD), and 80% VO2peak for the time to reach the caloric equivalent of MIMD (high intensity short duration, HISD). Thiobarbituric acid reactive substances (TBARS) were measured as an index of oxidative stress and brachial artery flow-mediated dilation (FMD) was assessed as an index of endothelial function. Variables were measured at baseline, immediately post-exercise, 1 and 2 h post-exercise. Both HIMD (14.2 ± 2.5 μmol/L) and HISD (14.7 ± 1.9 μmol/L) TBARS differed from MIMD (11.8 ± 1.5 μmol/L) immediately post-exercise. TBARS increased from pre to immediately post-exercise for HIMD (12.6 ± 2.1 vs.14.2 ± 2.5 μmol/L) and HISD (12.3 ± 2.8 vs. 14.7 ± 1.9 μmol/L). Both MIMD (7.2 ± 2.2%) and HISD (7.6 ± 2.7%) FMD immediately post-exercise were greater than HIMD (4.7 ± 2.2%). An increase of FMD from pre to immediately post-exercise was found for MIMD (5.0 ± 2.5 vs. 7.2 ± 2.2%) and HISD (5.9 ± 2.4 vs. 7.6 ± 2.7%). These data suggest that acute exercise-induced TBARS are exercise intensity-dependent whereas FMD appears to improve following energy expenditure equivalent to 30 min 50% VO2peak, regardless of intensity or duration.

Journal ArticleDOI
TL;DR: The results strongly suggest that autophagy is activated in response to ultra endurance exercise.
Abstract: The purpose of this study was to evaluate whether ultra endurance exercise changes the mRNA levels of the autophagy-related and autophagy-regulatory genes. Eight men (44 ± 1 years, range: 38-50 years) took part in a 200-km running race. The average running time was 28 h 03 min ± 2 h 01 min (range: 22 h 15 min-35 h 04 min). A muscle sample was taken from the vastus lateralis 2 weeks prior to the race and 3 h after arrival. Gene expression was assessed by RT-qPCR. Transcript levels of autophagy-related genes were increased by 49% for ATG4b (P = 0.025), 57% for ATG12 (P = 0.013), 286% for Gabarapl1 (P = 0.008) and 103% for LC3b (P = 0.011). The lysosomal enzyme cathepsin L mRNA was upregulated by 123% (P = 0.003). Similarly, transcript levels of the autophagy-regulatory genes BNIP3 and BNIP3l were both increased by 113% (P = 0.031 and P = 0.007, respectively). Since upregulation of these genes has been related with an increased autophagic flux in various models, our results strongly suggest that autophagy is activated in response to ultra endurance exercise.

Journal ArticleDOI
TL;DR: Compared to dual energy X-ray absorptiometry, bioelectrical impedance analysis underestimates the total body fat mass and overestimates fat free mass in healthy young adults and should, therefore, be used with caution in the measurement of total body composition in women and men with >25% total bodyfat.
Abstract: The aim of this study was to investigate the accuracy of BIA in the measurement of total body composition and regional fat and the fat free mass in the healthy young adults. Four hundred and three healthy young adults (167 women and 236 men) aged 18–29 years were recruited from the Mid-West region of Ireland. Multi frequency, eight-polar bioelectrical impedance analysis (BIA) and dual energy X-ray absorptiometry (DXA) were used to measure the total body and segmental (arm, leg and trunk) fat mass and the fat free mass. BIA was found to underestimate the percentage total body fat in men and women (p 24.6% body fat and women with >32% body fat (p 25% total body fat. Though statistically significant, the small difference (~ 4%) between the methods indicates that the BIA may be used interchangeably with DXA in the measurement of appendicular fat free mass in healthy young adults.

Journal ArticleDOI
TL;DR: Age-related atrophy compared with young women was less in the deep antigravity trunk muscles than the superficial muscles in the independent elderly women, and atrophy associated with chronic bed rest was more marked in the antig gravity muscles, such as the back and transversus abdominis.
Abstract: This study investigated the effects of age and inactivity due to being chronically bedridden on atrophy of trunk muscles. The subjects comprised 33 young women (young group) and 41 elderly women who resided in nursing homes or chronic care institutions. The elderly subjects were divided into two groups: independent elderly group who were able to perform activities of daily living involving walking independently (n = 28) and dependent elderly group who were chronically bedridden (n = 13). The thickness of the following six trunk muscles was measured by B-mode ultrasound: the rectus abdominis, external oblique, internal oblique, transversus abdominis, thoracic erector spinae (longissimus) and lumbar multifidus muscles. All muscles except for the transversus abdominis and lumbar multifidus muscles were significantly thinner in the independent elderly group compared with those in the young group. The thicknesses of all muscles in the dependent elderly group was significantly smaller than that in the young group, whereas there were no differences between the dependent elderly and independent elderly groups in the muscle thicknesses of the rectus abdominis and internal oblique muscles. In conclusion, our results suggest that: (1) age-related atrophy compared with young women was less in the deep antigravity trunk muscles than the superficial muscles in the independent elderly women; (2) atrophy associated with chronic bed rest was more marked in the antigravity muscles, such as the back and transversus abdominis.

Journal ArticleDOI
TL;DR: Developments in the measurement of physiological responses, studies of metabolism and indirect and direct calorimetry are reviewed, as required by the applied physiologist, ergonomist, sports scientist, nutritionist and epidemiologist.
Abstract: Over the years, techniques for the study of human movement have ranged in complexity and precision from direct observation of the subject through activity diaries, questionnaires, and recordings of body movement, to the measurement of physiological responses, studies of metabolism and indirect and direct calorimetry. This article reviews developments in each of these domains. Particular reference is made to their impact upon the continuing search for valid field estimates of activity patterns and energy expenditures, as required by the applied physiologist, ergonomist, sports scientist, nutritionist and epidemiologist. Early observers sought to improve productivity in demanding employment. Direct observation and filming of workers were supplemented by monitoring of heart rates, ventilation and oxygen consumption. Such methods still find application in ergonomics and sport, but many investigators are now interested in relationships between habitual physical activity and chronic disease. Even sophisticated questionnaires still do not provide valid information on the absolute energy expenditures associated with good health. Emphasis has thus shifted to use of sophisticated pedometer/accelerometers, sometimes combining their output with GPS and other data. Some modern pedometer/accelerometers perform well in the laboratory, but show substantial systematic errors relative to laboratory reference criteria such as the metabolism of doubly labeled water when assessing the varied activities of daily life. The challenge remains to develop activity monitors that are sufficiently inexpensive for field use, yet meet required accuracy standards. Possibly, measurements of oxygen consumption by portable respirometers may soon satisfy part of this need, although a need for valid longer term monitoring will remain.

Journal ArticleDOI
TL;DR: The dissociation between age-related changes at the whole muscle and single fiber level suggest that, even among older adults with overt mobility problems, contractile properties of surviving muscle fibers are preserved in an attempt to maintain overall muscle function.
Abstract: This study investigated the physiological and gender determinants of the age-related loss of muscle power in 31 healthy middle-aged adults (aged 40–55 years), 28 healthy older adults (70–85 years) and 34 mobility-limited older adults (70–85 years). We hypothesized that leg extensor muscle power would be significantly lower in mobility-limited elders relative to both healthy groups and sought to characterize the physiological mechanisms associated with the reduction of muscle power with aging. Computed tomography was utilized to assess mid-thigh body composition and calculate specific muscle power and strength. Surface electromyography was used to assess rate of neuromuscular activation and muscle biopsies were taken to evaluate single muscle fiber contractile properties. Peak muscle power, strength, muscle cross-sectional area, specific muscle power and rate of neuromuscular activation were significantly lower among mobility-limited elders compared to both healthy groups (P ≤ 0.05). Mobility-limited older participants had greater deposits of intermuscular adipose tissue (P < 0.001). Single fiber contractile properties of type I and type IIA muscle fibers were preserved in mobility-limited elders relative to both healthy groups. Male gender was associated with greater decrements in peak and specific muscle power among mobility-limited participants. Impairments in the rate of neuromuscular activation and concomitant reductions in muscle quality are important physiological mechanisms contributing to muscle power deficits and mobility limitations. The dissociation between age-related changes at the whole muscle and single fiber level suggest that, even among older adults with overt mobility problems, contractile properties of surviving muscle fibers are preserved in an attempt to maintain overall muscle function.