scispace - formally typeset
Search or ask a question

Showing papers in "European Journal of Histochemistry in 2012"


Journal ArticleDOI
TL;DR: The expression of PARP-1 gene is expressed in GBM and the presence of the protein exclusively at the nucleus further support the function played by this gene in genome integrity maintenance and apoptosis.
Abstract: One of the most common type of primary brain tumors in adults is the glioblastoma multiforme (GBM) (World Health Organization grade IV astrocytoma). It is the most common malignant and aggressive form of glioma and it is among the most lethal ones. Poly (ADP-ribose) polymerase 1 (PARP-1) gene, located to 1q42, plays an important role for the efficient maintenance of genome integrity. PARP-1 protein is required for the apoptosis-inducing factor (AIF) translocation from the mitochondria to the nucleus. PARP-1 is proteolytically cleaved at the onset of apoptosis by caspase-3. Microarray analysis of PARP-1 gene expression in more than 8,000 samples revealed that PARP-1 is more highly expressed in several types of cancer compared with the equivalent normal tissues. Overall, the most differences in PARP-1 gene expression have been observed in breast, ovarian, endometrial, lung, and skin cancers, and non-Hodgkin's lymphoma. We evaluated the expression of PARP-1 protein in normal brain tissues and primary GBM by immunohistochemistry. Positive nuclear PARP-1 staining was found in all samples with GBM, but not in normal neurons from controls (n=4) and GBM patients (n=27). No cytoplasmic staining was observed in any sample. In conclusion, PARP-1 gene is expressed in GBM. This finding may be envisioned as an attempt to trigger apoptosis in this tumor, as well as in many other malignancies. The presence of the protein exclusively at the nucleus further support the function played by this gene in genome integrity maintenance and apoptosis. Finally, PARP-1 staining may be used as GBM cell marker.

119 citations


Journal ArticleDOI
TL;DR: The subcellular structure of human mature oocytes following vitrification is discussed at the light of most relevant ultrastructural studies, which may actually provide a great insight in this debate on oocyte integrity.
Abstract: Since the introduction of human assisted reproduction, oocyte cryopreservation has been regarded as an attractive option to capitalize the reproductive potential of surplus oocytes and preserve female fertility. However, for two decades the endeavor to store oocytes has been limited by the not yet optimized methodologies, with the consequence of poor clinical outcome or of uncertain reproducibility. Vitrification has been developed as the promising technology of cryopreservation even if slow freezing remains a suitable choice. Nevertheless, the insufficiency of clinical and correlated multidisciplinary data is still stirring controversy on the impact of this technique on oocyte integrity. Morphological studies may actually provide a great insight in this debate. Phase contrast microscopy and other light microscopy techniques, including cytochemistry, provided substantial morphofunctional data on cryopreserved oocyte, but are unable to unraveling fine structural changes. The ultrastructural damage is one of the most adverse events associated with cryopreservation, as an effect of cryo-protectant toxicity, ice crystal formation and osmotic stress. Surprisingly, transmission electron microscopy has attracted only limited attention in the field of cryopreservation. In this review, the subcellular structure of human mature oocytes following vitrification is discussed at the light of most relevant ultrastructural studies.

70 citations


Journal ArticleDOI
TL;DR: It proved possible to obtain immunohistochemical staining largely equivalent to that following formalin-fixation with the following fixatives: Greenfix, Hollande, UPM and CyMol.
Abstract: Fixation is a critical step in the preparation of tissues for histopathology. The objective of this study was to investigate the effects of different fixatives vs formalin on proteins and DNA, and to evaluate alternative fixation for morphological diagnosis and nucleic acid preservation for molecular methods. Forty tissues were fixed for 24 h with six different fixatives: the gold standard fixative formalin, the historical fixatives Bouin and Hollande, and the alternative fixatives Greenfix, UPM and CyMol. Tissues were stained (Haematoxylin-Eosin, Periodic Acid Schiff, Trichromic, Alcian-blue, High Iron Diamine), and their antigenicity was determined by immunohistochemistry (performed with PAN-CK, CD31, Ki-67, S100, CD68, AML antibodies). DNA extraction, KRAS sequencing, FISH for CEP-17, and flow cytometry analysis of nuclear DNA content were applied. For cell morphology the alternative fixatives (Greenfix, UPM, CyMol) were equivalent to formalin. As expected, Hollande proved the best fixative for morphology. The morphology obtained with Bouin was comparable to that with formalin. Hollande was the best fixative for histochemistry. Bouin proved equivalent to formalin. The alternative fixatives were equivalent to formalin, although with greater variability in haematoxylin-eosin staining. It proved possible to obtain immunohistochemical staining largely equivalent to that following formalin-fixation with the following fixatives: Greenfix, Hollande, UPM and CyMol. The tissues fixed in Bouin did not provide results comparable to those obtained with formalin. The DNA extracted from samples fixed with alternative fixatives was found to be suitable for molecular analysis.

48 citations


Journal ArticleDOI
TL;DR: Fluorescently-labelled chitosan NPs were administered in vitro to a neuronal cell line, and diaminobenzidine (DAB) photoconversion was applied to correlate fluorescence and transmission electron microscopy to precisely describe the NPs intracellular fate.
Abstract: Chitosan-based nanoparticles (NPs) deserve particular attention as suitable drug carriers in the field of pharmaceutics, since they are able to protect the encapsulated drugs and/or improve their efficacy by making them able to cross biological barriers (such as the blood-brain barrier) and reach their intracellular target sites. Understanding the intracellular location of NPs is crucial for designing drug delivery strategies. In this study, fluorescently-labelled chitosan NPs were administered in vitro to a neuronal cell line, and diaminobenzidine (DAB) photoconversion was applied to correlate fluorescence and transmission electron microscopy to precisely describe the NPs intracellular fate. This technique allowed to demonstrate that chitosan NPs easily enter neuronal cells, predominantly by endocytosis; they were found both inside membrane-bounded vesicles and free in the cytosol, and were observed to accumulate around the cell nucleus.

47 citations


Journal ArticleDOI
TL;DR: The identification of a mechanism that accounts for accumulation of unrepairable DNA damage due to reactive oxygen species (ROS) generation in laminopathic cells, similar to that found in other muscular dystrophies (MDs) caused by altered expression of extracellular matrix (ECM) components, suggests that anti-oxidant therapeutic strategies might prove beneficial to laminopathies patients.
Abstract: Mutations in genes encoding nuclear envelope proteins, particularly LMNA encoding the A-type lamins, cause a broad range of diverse diseases, referred to as laminopathies. The astonishing variety of diseased phenotypes suggests that different mechanisms could be involved in the pathogenesis of laminopathies. In this review we will focus mainly on two of these pathogenic mechanisms: the nuclear damages affecting the chromatin organization, and the oxidative stress causing un-repairable DNA damages. Alteration in the nuclear profile and in chromatin organization, which are particularly impressive in systemic laminopathies whose cells undergo premature senescence, are mainly due to accumulation of unprocessed prelamin A. The toxic effect of these molecular species, which interfere with chromatin-associated proteins, transcription factors, and signaling pathways, could be reduced by drugs which reduce their farnesylation and/or stability. In particular, inhibitors of farnesyl transferase (FTIs), have been proved to be active in rescuing the altered cellular phenotype, and statins, also in association with other drugs, have been included into pilot clinical trials. The identification of a mechanism that accounts for accumulation of un-repairable DNA damage due to reactive oxygen species (ROS) generation in laminopathic cells, similar to that found in other muscular dystrophies (MDs) caused by altered expression of extracellular matrix (ECM) components, suggests that anti-oxidant therapeutic strategies might prove beneficial to laminopathic patients.

46 citations


Journal ArticleDOI
Jinfeng Ning1, Jinfeng Zhang1, Wei Liu1, Yaoguo Lang1, Y. Xue1, Shidong Xu1 
TL;DR: The data suggest that USP 22 plays an important role in NSCLC progression at the early stage, and that overexpression of USP22 in tumor tissues could be used as a potential prognostic marker for patients with early clinical stage ofNSCLC.
Abstract: Ubiquitin-specific protease 22 (USP22), a novel ubiquitin hydrolase, has been implicated in oncogenesis and cancer progression in various types of human cancer. However, the clinical significance of USP22 expression in non-small cell lung cancer (NSCLC) has not been determined. In the present study, USP22 messenger RNA (mRNA) and protein levels were analyzed by quantitative real-time polymerase chain reaction (PCR) and western blot analysis in 30 cases of NSCLC and in corresponding non-tumor tissue samples. Furthermore, immunohistochemistry was performed to detect USP22 protein expression in 86 primary tumor tissues derived from clinically annotated NSCLC cases at stage I-II. In our analysis we found that both USP22 mRNA and protein levels in NSCLC tissues were significantly higher than those in corresponding non-tumor tissues and that there was a significant correlation between the expression of USP22 mRNA and protein (P=0.000, κ=0.732). In addition, a high-level of USP22 expression was observed in 53.3% (39 out of 86) cases and it was correlated with large tumor size (P=0.029) and lymph node metastasis (P=0.026). Patients with tumors displaying a high-level of USP22 expression showed significantly shorter survival (P=0.006, log-rank test). Importantly, multivariate analysis showed that high USP22 protein expression was an independent prognostic factor for NSCLC patients (P=0.003). In sum, our data suggest that USP22 plays an important role in NSCLC progression at the early stage, and that overexpression of USP22 in tumor tissues could be used as a potential prognostic marker for patients with early clinical stage of NSCLC.

44 citations


Journal ArticleDOI
TL;DR: It was demonstrated that the myotendinous junctions is able to adapt to an increase in tensile force by enlarging the muscle-tendon contact area and, consequently, mechanical resistance.
Abstract: Myotendinous junctions can be easily injured by overloading or trauma, and exercise training may be a way of increasing their resistance to mechanical stress. To this end, we examined herein the morphological changes induced by moderate exercise training in the myotendinous junctions of extensor digitorum longus and gastrocnemius muscles in rats. Twelve Sprague-Dawley rats were used in this investigation. Six of them were trained to run on a treadmill for 1 h/day, 3 days/week over 10 weeks in order for them to achieve a running rate of 25 m/min at the end of the training period. Six age-matched sedentary rats were used as controls. The rats were sacrificed 24 h after the final training session, and the extensor digitorum longum (EDL) and the gastrocnemium were excised; the myotendinous junctions (MTJ) were then prepared and observed with electron microscopy. Digitation branching was evaluated by counting the bifurcations in the MTJ protrusions. Our observations indicate that exercise does indeed induce changes in MTJ morphology. In both muscles the number of bifurcated interdigitations increased significantly, as well as, in gastrocnemius, the branching of the finger-like processes. It was demonstrated that the MTJ is able to adapt to an increase in tensile force by enlarging the muscle-tendon contact area and, consequently, mechanical resistance.

38 citations


Journal ArticleDOI
Yuhui Zhao1, Haixia Huang, Y. Jiang, H. Wei, P. Liu, W. Wang, W. Niu 
TL;DR: It is shown that TRPV4 protein was predominantly located in the nucleus of cultured neonatal myocytes, and cardiac myocytes responded to hypotonic stimulation by translocating TRPv4 protein out of the nucleus.
Abstract: TRPV4 protein forms a Ca2+-permeable channel that is sensitive to osmotic and mechanical stimuli and responds to warm temperatures, and expresses widely in various kinds of tissues. As for cardiac myocytes, TRPV4 has been detected only at the mRNA level and there were few reports about subcellular localization of the protein. The purpose of the present study was to investigate the expression profile of TRPV4 protein in cultured neonatal rat ventricular myocytes. Using Western blots, immunofluorescence, confocal microscopy and immuno-electron microscopy, we have shown that TRPV4 protein was predominantly located in the nucleus of cultured neonatal myocytes. Furthermore, cardiac myocytes responded to hypotonic stimulation by translocating TRPV4 protein out of the nucleus. The significance and mechanism concerning the unusual distribution and translocation of TRPV4 protein in cardiac myocytes remain to be clarified.

37 citations


Journal ArticleDOI
TL;DR: "Studies on experimental models", published by Humana Press, pertaining to the series "Oxidative Stress in Applied Basic Research and Clinical Practice", is a tool for the study and reflections on oxidative stress and its implications for clinical research.
Abstract: A simple, up to date search in PubMed gets over 90000 results for "oxidative stress". The interest on oxidative stress in the field of basic and medical research is remarkable (Parkinson's disease, G6PDH deficiency, or diabetes are only a few examples). "Studies on experimental models", published by Humana Press, pertaining to the series "Oxidative Stress in Applied Basic Research and Clinical Practice", is a tool for the study and reflections on oxidative stress and its implications for clinical research.....

33 citations


Journal ArticleDOI
TL;DR: The results demonstrate that during oocyte elimination in adult rats the proteins involved in both processes, apoptosis and autophagy, are present in the same cell at the same time.
Abstract: Cell death is a process for maintaining homeostasis in tissues and organs. In the ovary, apoptotic cell death has been implicated in follicular atresia; in the elimination of the follicles that are not ovulated during adult life. Recent studies indicate that apoptosis and autophagy are two programmed processes of cell death. Apoptosis is performed by proteases called caspases and leads to such morphological traits as DNA fragmentation. Autophagy, in turn, is characterized by the exacerbated formation of autophagosomes; a process in which the amount of the LC3 and Lamp 1 proteins increases. In this study, oocytes from all stages of the estrous cycle of Wistar rats were analyzed. The apoptosis process was identified by immunodetecting active Caspase-3 and locating DNA fragmentation using the TUNEL technique. Autophagy was evaluated through immunodetection of the LC3 and Lamp 1 proteins, and by ultrastructural localization of autophagic vesicle formation. All techniques were conducted using the same oocytes. Results show that all phases of the estrous cycle contain dying oocytes that test positive simultaneously for apoptosis and autophagy markers. The highest level of apoptosis was found during estrus; while the proestrous stage had the highest level of autophagy. The diestrous and metestrous phases were characterized by a high frequency of the presence of markers of apoptosis and autophagy in the same oocyte. Our results demonstrate that during oocyte elimination in adult rats the proteins involved in both processes, apoptosis and autophagy, are present in the same cell at the same time.

33 citations


Journal ArticleDOI
TL;DR: The similar distribution pattern of collagen and proteoglycans in the early developmental stages of the human lung may be closely related to the process of dichotomous division of the bronchial tree.
Abstract: The lung is formed from a bud that grows and divides in a dichotomous way. A bud is a new growth center which is determined by epithelial-mesenchymal interactions where proteins of the extracellular matrix (ECM) might be involved. To understand this protein participation during human lung development, we examined the expression and distribution of proteoglycans in relation to the different types of collagens during the period in which the air conducting system is installed. Using light microscopy and immunohistochemistry we evaluate the expression of collagens (I, III and VI) and proteoglycans (decorin, biglycan and lumican) between 8 to 10 weeks post fertilization and 11 to 14 weeks of gestational age of human embryo lungs. We show that decorin, lumican and all the collagen types investigated were expressed at the epithelium-mesenchymal interface, forming a sleeve around the bronchiolar ducts. In addition, biglycan was expressed in both the endothelial cells and the smooth muscle of the blood vessels. Thus, the similar distribution pattern of collagen and proteoglycans in the early developmental stages of the human lung may be closely related to the process of dichotomous division of the bronchial tree. This study provides a new insight concerning the participation of collagens and proteoglycans in the epithelial-mesenchymal interface during the period in which the air conducting system is installed in the human fetal lung.

Journal ArticleDOI
TL;DR: DPP-IV is a promising in situ marker of biliary functionality not only of normal but also of fatty rats and suggests that bile canaliculi in steatotic cells have an impaired capacity to inactivate incretins and neuropeptides.
Abstract: Given the scarcity of donors, moderately fatty livers (FLs) are currently being considered as possible grafts for orthotopic liver transplantation (OLT), notwithstanding their poor tolerance to conventional cold preservation. The behaviour of parenchymal and sinusoidal liver cells during transplantation is being studied worldwide. Much less attention has been paid to the biliary tree, although this is considered the Achille’s heel even of normal liver transplantation. To evaluate the response of the biliary compartment of FLs to the various phases of OLT reliable markers are necessary. Previously we demonstrated that Alkaline Phosphatase was scarcely active in bile canaliculi of FLs and thus ruled it out as a marker. As an alternative, dipeptidylpeptidase-IV (DPP-IV), was investigated. This ecto-peptidase plays an important role in glucose metabolism, rapidly inactivating insulin secreting hormones (incretins) that are important regulators of glucose metabolism. DPP-IV inhibitors are indeed used to treat Type II diabetes. Neuropeptides regulating bile transport and composition are further important substrates of DPP-IV in the enterohepatic axis. DPP-IV activity was investigated with an azo-coupling method in the liver of fatty Zucker rats ( fa/fa ), using as controls lean Zucker ( fa/+) and normal Wistar rats. Protein expression was studied by immunofluorescence with the monoclonal antibody (clone 5E8). In Wistar rat liver, DPP-IV activity and expression were high in the whole biliary tree, and moderate in sinusoid endothelial cells, in agreement with the literature. Main substrates of DPP-IV in hepatocytes and cholangiocytes could be incretins GLP-1 and GIP, and neuropeptides such as vasoactive intestinal peptide (VIP) and substance P, suggesting that these substances are inactivated or modified through the biliary route. In lean Zucker rat liver the enzyme reaction and protein expression patterns were similar to those of Wistar rat. In obese rat liver the patterns of DPP-IV activity and expression in hepatocytes reflected the morphological alterations induced by steatosis as lipid-rich hepatocytes had scarce activity, located either in deformed bile canaliculi or in the sinusoidal and lateral domains of the plasma membrane. These findings suggest that bile canaliculi in steatotic cells have an impaired capacity to inactivate incretins and neuropeptides. Incretin and/or neuropeptide deregulation is indeed thought to play important roles in obesity and insulin-resistance. No alteration in enzyme activity and expression was found in the upper segments of the biliary tree of obese respect to lean Zucker and Wistar rats. In conclusion, this research demonstrates that DPP-IV is a promising in situ marker of biliary functionality not only of normal but also of fatty rats. The approach, initially devised to investigate the behaviour of the liver during the various phases of transplantation, appears to have a much higher potentiality as it could be further exploited to investigate any pathological or stressful conditions involving the biliary tract ( i.e. , metabolic syndrome and cholestasis) and the response of the biliary tract to therapy and/or to surgery.

Journal ArticleDOI
TL;DR: It is demonstrated that GJC between germinal and somatic compartments plays a fundamental role in the regulation of chromatin remodeling and transcription activities during the final oocyte differentiation, throughout cAMP dependent mechanism(s).
Abstract: Mammalian oocyte development is characterized by impressive changes in chromatin structure and function within the germinal vesicle (GV). These changes are crucial to confer the oocyte with meiotic and developmental competencies. In cow, oocytes collected from early and middle antral follicles present four patterns of chromatin configuration, from GV0 to GV3, and its progressive condensation has been related to the achievement of developmental potential. During oogenesis, follicular cells are essential for the acquisition of meiotic and developmental competencies and communicate with the oocyte by paracrine and gap junction mediated mechanisms. We recently analyzed the role of gap junction communications (GJC) on chromatin remodeling process during the specific phase of folliculogenesis that coincides with the transcriptional silencing and sequential acquisition of meiotic and developmental capabilities. Our studies demonstrated that GJC between germinal and somatic compartments plays a fundamental role in the regulation of chromatin remodeling and transcription activities during the final oocyte differentiation, throughout cAMP dependent mechanism(s).

Journal ArticleDOI
TL;DR: The study suggests that Mena protein seems to play a role in malignant transformation and its intensity is correlated with the type and grade of tumor and also with vascular invasion.
Abstract: Mena (mammalian Ena) is an actin regulatory protein involved in cell motility and adhesion. Based on its potential role in malignant transformation revealed in other organs, we analyzed the Mena expression in normal salivary glands (SG) and salivary tumors. Mena expression was determined in normal SG (n=10) and also benign (n=20) and malignant (n=35) lesions of SG. For the immunohistochemical staining we used the anti-Mena antibody. All normal SG and the benign lesions (10 pleomorphic adenomas, 10 Warthin's tumors) were Mena negative. Salivary duct carcinomas (n=5), carcinomas in pleomorphic adenoma (n=5), acinic cell carcinomas (n=5), squamous cell carcinomas (n=10) and high-grade mucoepidermoid carcinomas (n=2) were positive. The lymphomas (n=5) and low-grade mucoepidermoid carcinomas (n=1) were Mena negative. In one case the lymphoblastic cells stained positive for Mena. Some of the endothelial cells, in the peritumoral vessels, were Mena positive. To the best of our knowledge, this is the first study in the literature about Mena expression in salivary tumors. Our study suggests that Mena protein seems to play a role in malignant transformation and its intensity is correlated with the type and grade of tumor and also with vascular invasion. Its positivity in endothelial cells may suggest its potential role in tumor angiogenesis.

Journal ArticleDOI
TL;DR: Alendronate impeded the removal of calcified cartilage and maturation of bone trabeculae in the mandibular ramus, while in controls they occurred normally, highlighting for giving attention to the potential side-effects of bisphosphonates administered to young patients once it may represent a risk of disturbing maxillofacial development.
Abstract: The replacement of the calcified cartilage by bone tissue during the endochondral ossification of the mandibular condyle is dependent of the resorbing activity of osteoclats. After partial resorption, calcified cartilage septa are covered by a primary bone matrix secreted by osteoblasts. Osteoadherin (OSAD) is a small proteoglycan present in bone matrix but absent in cartilage during the endochondral ossification. The aim of this study was to analyze the effect of alendronate, a drug known to inhibit bone resorption by osteoclasts, on the endochondral ossification of the mandibular condyle of young rats, by evaluating the distribution of osteoclasts and the presence of OSAD in the bone matrix deposited. Wistar newborn rats (n=45) received daily injections of alendronate (n=27) or sterile saline solution as control (n=18) from the day of birth until the ages of 4, 14 and 30 days. At the days mentioned, the mandibular condyles were collected and processed for transmission electron microscopy analysis. Specimens were also submitted to tartrate resistant acid phosphatase (TRAP) histochemistry and ultrastructural immunodetection of OSAD. Alendronate treatment did not impede the recruitment and fusion of osteoclasts at the ossification zone during condyle growth, but they presented inactivated phenotype. The trabeculae at the ossification area consisted of cartilage matrix covered by a layer of primary bone matrix that was immunopositive to OSAD at all time points studied. Apparently, alendronate impeded the removal of calcified cartilage and maturation of bone trabeculae in the mandibular ramus, while in controls they occurred normally. These findings highlight for giving attention to the potential side-effects of bisphosphonates administered to young patients once it may represent a risk of disturbing maxillofacial development.

Journal ArticleDOI
TL;DR: Interestingly, the accumulation of pre-mRNA processing factors in the myonuclei of DM1 and DM2 patients is reminiscent of the nuclear alterations typical of sarcopenia, i.e., the loss of muscle mass and function which physiologically occurs during ageing.
Abstract: In the cell nucleus, the gene primary transcripts undergo molecular processing to generate mature RNAs, which are finally exported to the cytoplasm. These mRNA maturation events are chronologically and spatially ordered, and mostly occur on distinct ribonucleoprotein (RNP)-containing structures. Defects in the mRNA maturation pathways have been demonstrated in myotonic dystrophy type 1 (DM1) and type 2 (DM2) whose characteristic multisystemic features are caused by the expansion of two distinct nucleotide sequences: (CTG)n in the DMPK gene on chromosome 19q13 in DM1, and (CCTG)n in the ZNF9 gene on chromosome 3q21 in DM2. By combining biomolecular and cytochemical techniques, it has been shown that the basic mechanisms of DMs reside in the accumulation of CUG- or CCUG-containing transcripts in intranuclear foci where several RNA-binding proteins necessary for the physiological processing of pre-mRNA are sequestered. Moreover, a nucleoplasmic accumulation of splicing and cleavage factors has been found in DMs. This suggests that the dystrophic phenotype could depend on a general alteration of the pre-mRNA post-transcriptional pathway. Interestingly, the accumulation of pre-mRNA processing factors in the myonuclei of DM1 and DM2 patients is reminiscent of the nuclear alterations typical of sarcopenia, i.e., the loss of muscle mass and function which physiologically occurs during ageing. Consistently, in an in vitro study, we observed that satellite-cell-derived DM2 myoblasts show cell senescence alterations and impairment of the pre-mRNA maturation pathways earlier than the myoblasts from healthy patient. These results suggest possible common cellular mechanisms responsible for skeletal muscle wasting in sarcopenia and in myotonic dystrophy.

Journal ArticleDOI
TL;DR: It is suggested that the IGF system is involved in the formation of the condylar cartilage as well as in the TMJ, with IGFBP-5 mRNA continuously expressed in the outer layer of the perichondrium/fibrous cell layer in the developing mandibular condyle.
Abstract: The objective of this study was to investigate the involvement of the insulin-like growth factor (IGF) system in the developing mandibular condylar cartilage and temporomandibular joint (TMJ). Fetal mice at embryonic day (E) 13.0-18.5 were used for in situ hybridization studies using [35S]-labeled RNA probes for IGF-I, IGF-II, IGF-I receptor (-IR), and IGF binding proteins (-BPs). At E13.0, IGF-I and IGF-II mRNA were expressed in the mesenchyme around the mandibular bone, but IGF-IR mRNA was not expressed within the bone. At E14.0, IGF-I and IGF-II mRNA were expressed in the outer layer of the condylar anlage, and IGF-IR mRNA was first detected within the condylar anlage, suggesting that the presence of IGF-IR mRNA in an IGF-rich environment triggers the initial formation of the condylar cartilage. IGFBP-4 mRNA was expressed in the anlagen of the articular disc and lower joint cavity from E15.0 to 18.5. When the upper joint cavity was formed at E18.5, IGFBP-4 mRNA expression was reduced in the fibrous mesenchymal tissue facing the upper joint cavity. Enhanced IGFBP-2 mRNA expression was first recognized in the anlagen of both the articular disc and lower joint cavity at E16.0 and continued expression in these tissues as well as in the fibrous mesenchymal tissue facing the upper joint cavity was observed at E18.5. IGFBP-5 mRNA was continuously expressed in the outer layer of the perichondrium/fibrous cell layer in the developing mandibular condyle. These findings suggest that the IGF system is involved in the formation of the condylar cartilage as well as in the TMJ.

Journal ArticleDOI
TL;DR: The obtained evidences indicate that histamine is a potential candidate as a safe radio-protective agent that might increase the therapeutic index of radiotherapy for intra-abdominal and pelvic cancers, however, its efficacy needs to be carefully investigated in prospective clinical trials.
Abstract: The aim of this study was to improve knowledge about histamine radioprotective potential investigating its effect on reducing ionising radiation-induced injury and genotoxic damage on the rat small intestine and uterus. Forty 10-week-old male and 40 female Sprague-Dawley rats were divided into 4 groups. Histamine and histamine-5Gy groups received a daily subcutaneous histamine injection (0.1 mg/kg) starting 24 h before irradiation. Histamine-5Gy and untreated-5Gy groups were irradiated with a dose of whole-body Cesium-137 irradiation. Three days after irradiation animals were sacrificed and tissues were removed, fixed, and stained with haematoxylin and eosin, and histological characteristics were evaluated. Proliferation, apoptosis and oxidative DNA markers were studied by immunohistochemistry, while micronucleus assay was performed to evaluate chromosomal damage. Histamine treatment reduced radiation-induced mucosal atrophy, oedema and vascular damage produced by ionising radiation, increasing the number of crypts per circumference (239 ± 12 vs 160 ± 10; P<0.01). This effect was associated with a reduction of radiation-induced intestinal crypts apoptosis. Additionally, histamine decreased the frequency of micronuclei formation and also significantly attenuated 8-OHdG immunoreactivity, a marker of DNA oxidative damage. Furthermore, radiation induced flattening of the endometrial surface, depletion of deep glands and reduced mitosis, effects that were completely blocked by histamine treatment. The expression of a proliferation marker in uterine luminal and glandular cells was markedly stimulated in histamine treated and irradiated rats. The obtained evidences indicate that histamine is a potential candidate as a safe radioprotective agent that might increase the therapeutic index of radiotherapy for intra-abdominal and pelvic cancers. However, its efficacy needs to be carefully investigated in prospective clinical trials.

Journal ArticleDOI
TL;DR: It is suggested that Cd prevents the cytotoxic effect of 5-FU on breast cancer cells, and could have an important clinical application in patients with breast cancer.
Abstract: The aim of the research was to evaluate a heavy metal, Cadmium (Cd), which was used to produce alterations in human breast cancer cell line MCF-7. Moreover, we analyzed both immunohistochemical and ultrastructural alterations induced by the antineoplastic drug, 5-Fluorouracil (5-FU), after exposure to different concentrations of Cadmium. Also, we compared the effects of these compounds on actin and tubulin cytoskeleton proteins. Under ultramicroscopic observation, control cells looked polymorphous with filopodia. In cells already treated with small concentrations of Cd, after brief times of incubation, we observed an intense metabolic activity with larger, clearer, and elongated mitochondria characterized by thin and numerous dilated cristae. 5-FU-treated cells showed cytotoxicity signs with presence of pore-like alterations in the cell membrane and evident degeneration of cytoplasm and cell nuclei. The addition of 5-FU (1.5 μM) to the cells treated with Cd (5 μM-20 μM) did not induce significant ultrastructural changes in comparison with cells treated only with Cd. In Cd+5FU-treated cells mitochondria with globular aspect and regular cristae indicated the active metabolic state. In cells treated only with Cd we observed alterations in actin distribution, while tubulin branched out throughout the cytoplasm. With the association of Cd+5FU, we observed less morphological alterations in both tubulin and actin cytoskeleton proteins. Although the mechanism remains unknown at present, our findings suggest that Cd prevents the cytotoxic effect of 5-FU on breast cancer cells. These preliminary results could have an important clinical application in patients with breast cancer.

Journal ArticleDOI
TL;DR: The present data suggest that M UC1 expression characterizes multiple structures during human nephrogenesis, from the ureteric bud, to the initial phases of mesenchymal-to-epithelial transition and that MUC1 should be added to the genes activated during the process of MesenchymAl- to-epIThelial transition in the cap mesenchyme of human kidney.
Abstract: MUC1 is a transmembrane glycoprotein, apically expressed in most epithelial cells, used in the differential diagnosis of carcinomas and for discrimination of tumors of non-epithelial origin showing epithelioid features. Little attention has been paid so far though, on its possible significance in embryonic tissues. A preliminary study from our group revealed MUC1 expression in the cap mesenchymal cells during human nephrogenesis, suggesting a role for MUC1 in the process of mesenchymal-to-epithelial transition. This study aimed at investigating the expression pattern of MUC1 in various developing structures of human fetal kidney. Expression of MUC1 was examined in kidneys of 5 human fetuses. MUC1 immunoreactivity was detected in ureteric bud tips, in collecting tubules, in cap mesenchymal cells undergoing the initial phases of mesenchymal-to-epithelial transition, in renal vesicles, comma-bodies, and S-shaped bodies. Our previous preliminary report suggested a role for MUC1 in the initial phases of the process of mesenchymal-to-epithelial transition. The present data suggest that MUC1 expression characterizes multiple structures during human nephrogenesis, from the ureteric bud, to the initial phases of mesenchymal-to-epithelial transition and that MUC1 should be added to the genes activated during the process of mesenchymal-to-epithelial transition in the cap mesenchyme of human kidney.

Journal ArticleDOI
TL;DR: An ImageJ JavaScript, AUTOCOUNTER, enabled to quantify LC3B-GFP expression and to monitor dynamics changes in number and shapes of autophagosomal-like vesicles: it might therefore represent a suitable algorithmic tool for in vitro autophagy modulation studies.
Abstract: An ImageJ JavaScript, AUTOCOUNTER, was specifically developed to monitor and measure LC3B-GFP expression in living human astrocytoma cells, namely T98G and U373-MG. Discrete intracellular GFP fluorescent spots derived from transduction of a Baculovirus replication-defective vector (BacMam LC3B-GFP), followed by microscope examinations at different times. After viral transgene expression, autophagy was induced by Rapamycin administration and assayed in ph-p70S6K/p70S6K and LC3B immunoblotting expression as well as by electron microscopy examinations. A mutated transgene, defective in LC3B lipidation, was employed as a negative control to further exclude fluorescent dots derived from protein intracellular aggregation. The ImageJ JavaScript was then employed to evaluate and score the dynamics changes of the number and area of LC3B-GFP puncta per cell in time course assays and in complex microscope examinations. In conclusion, AUTOCOUNTER enabled to quantify LC3B-GFP expression and to monitor dynamics changes in number and shapes of autophagosomal-like vesicles: it might therefore represent a suitable algorithmic tool for in vitro autophagy modulation studies.

Journal ArticleDOI
TL;DR: It is proposed that DAPIT, in addition to indicated sub unit of mitochondrial F-ATPase, is also a subunit of lysosomal V- ATPase suggesting that it is a common component in different proton pumps.
Abstract: DAPIT (Diabetes Associated Protein in Insulin-sensitive Tissues) is a small, phylogenetically conserved, 58 amino acid peptide that was previously shown to be down-regulated at mRNA level in insulin-sensitive tissues of type 1 diabetes rats. In this study we characterize a custom made antibody against DAPIT and confirm the mitochondrial presence of DAPIT on cellular level. We also show that DAPIT is localized in lysosomes of HUVEC and HEK 293T cells. In addition, we describe the histological expression of DAPIT in several tissues of rat and man and show that it is highly expressed especially in cells with high aerobic metabolism and epithelial cells related to active transport of nutrients and ions. We propose that DAPIT, in addition to indicated subunit of mitochondrial F-ATPase, is also a subunit of lysosomal V-ATPase suggesting that it is a common component in different proton pumps.

Journal ArticleDOI
TL;DR: Improved knowledge of the anatomy of T. democratica is improved and the presence of a complex serotonergic system is demonstrated, which may be linked to the planktonic life of these animals.
Abstract: Thalia democratica is a cosmopolitan tunicate belonging to the Thaliacea class. To further investigate the anatomy of this species, immunohistochemical labelling was performed using anti-tubulin and anti-serotonin antibodies on specimens collected in the Mediterranean Sea. The anti-tubulin antibody stained the cilia of the endostyle, the pericoronal bands and of the gill bar, enabling a detailed description of these structures. Moreover, immunolabelling of the nervous system showed the presence of eight pairs of nerve fibres emerging from the neural ganglion. Serotonergic cells were observed in the distal tract of the intestine, along the pericoronal bands, and in the placenta of gravid blastozooids, as well as in the neural ganglion. The presence of serotonin in the central nervous system has also been reported in the larvae of ascidians and may be linked to the planktonic life of these animals, a condition shared by adult thaliaceans and ascidian larvae. This work improves our knowledge of the anatomy of T. democratica and demonstrates the presence of a complex serotonergic system.

Journal ArticleDOI
TL;DR: The results show that SNP treatment at first results in a gradual increase of cytoskeleton degradation marked by the loss of actin labeling and fragmentation of sarcomeric structure, followed by the appearance of TUNEL-positive nuclei, which is reminiscent of anthracycline-induced cardiotoxicity.
Abstract: Sodium nitroprusside (SNP) is used clinically as a rapid-acting vasodilator and in experimental models as donor of nitric oxide (NO). High concentrations of NO have been reported to induce cardiotoxic effects including apoptosis by the formation of reactive oxygen species. We have therefore investigated effects of SNP on the myofibrillar cytoskeleton, contractility and cell death in long-term cultured adult rat cardiomyocytes at different time points after treatment. Our results show, that SNP treatment at first results in a gradual increase of cytoskeleton degradation marked by the loss of actin labeling and fragmentation of sarcomeric structure, followed by the appearance of TUNEL-positive nuclei. Already lower doses of SNP decreased contractility of cardiomyocytes paced at 2 Hz without changes of intracellular calcium concentration. Ultrastructural analysis of the cultured cells demonstrated mitochondrial changes and disintegration of sarcomeric alignment. These adverse effects of SNP in cardiomyocytes were reminiscent of anthracycline-induced cardiotoxicity, which also involves a dysregulation of NO with the consequence of myofibrillar degradation and ultimately cell death. An inhibition of the pathways leading to the generation of reactive NO products, or their neutralization, may be of significant therapeutic benefit for both SNP and anthracycline-induced cardiotoxicity.

Journal ArticleDOI
TL;DR: Results suggest that in newborn rats hyperoxia can trigger oxygen free radical mediated membrane injury through a pPKCα mediated HIF-1α signalling system, even though specificity of such response could be obtained by in vivo administration to the rats of specific inhibitors of PKCα.
Abstract: In premature babies birth an high oxygen level exposure can occur and newborn hyperoxia exposure can be associated with free radical oxygen release with impairment of myocardial function, while in adult animal models short exposure to hyperoxia seems to protect heart against ischemic injury. Thus, the mechanisms and consequences which take place after hyperoxia exposure are different and related to animals age. The aim of our work has been to analyze the role played by HIF-1α in the occurrence of the morphological modifications upon hyperoxia exposure in neonatal rat heart. Hyperoxia exposure induces connective compartment increase which seems to allow enhanced blood vessels growth. An increased hypoxia inducible factor-1α (HIF-1α) translocation and vascular endothelial growth factor (VEGF) expression has been found upon 95% oxygen exposure to induce morphological modifications. Upstream pPKC-α expression increase in newborn rats exposed to 95% oxygen can suggest PKC involvement in HIF-1α activation. Since nitric oxide synthase (NOS) are involved in heart vascular regulation, endothelial NOS (e-NOS) and inducible NOS (i-NOS) expression has been investigated: a lower eNOS and an higher iNOS expression has been found in newborn rats exposed to 95% oxygen related to the evidence that hyperoxia provokes a systemic vasoconstriction and to the iNOS pro-apoptotic action, respectively. The occurrence of apoptotic events, evaluated by TUNEL and Bax expression analyses, seems more evident in sample exposed to severe hyperoxia. All in all such results suggest that in newborn rats hyperoxia can trigger oxygen free radical mediated membrane injury through a pPKCα mediated HIF-1α signalling system, even though specificity of such response could be obtained by in vivo administration to the rats of specific inhibitors of PKCα. This intracellular signalling can switch molecular events leading to blood vessels development in parallel to pro-apoptotic events due to an immature anti-oxidant defensive system in newborn rat hearts.

Journal ArticleDOI
TL;DR: Immunohistochemical studies in the rodent tongue suggest that the TRPV1-expressing epithelium monitors the oral environment and acquired information may then be conducted to the adjacent CGRP-expression terminals.
Abstract: Transient receptor potential vanilloid subfamily member 1 (TRPV1) is activated by capsaicin, acid, and heat and mediates pain through peripheral nerves. In the tongue, TRPV1 expression has been reported also in the epithelium. This indicates a possibility that sensation is first received by the epithelium. However, how nerves receive sensations from the epithelium remains unclear. To clarify the anatomical basis of this interaction, we performed immunohistochemical studies in the rodent tongue to detect TRPV1 and calcitonin gene-related peptide (CGRP), a neural marker. Strong expression of TRPV1 in the epithelium was observed and was restricted to the apex of the tongue. Double immunohistochemical staining revealed that CGRP-expressing nerve terminals were in close apposition to the strongly TRPV1-expressing epithelium of fungiform papilla in the apex of rodent tongues. These results suggest that the TRPV1-expressing epithelium monitors the oral environment and acquired information may then be conducted to the adjacent CGRPexpressing terminals.

Journal ArticleDOI
TL;DR: The results suggested that AECs isolated from chicken embryos exhibited the characteristics of the multipotent stem cells, and may be ideal candidates for cellular transplantation therapy and tissue engineering.
Abstract: Amniotic epithelial cells (AECs) express Oct4, Nanog and Sox-2, which are necessary for maintaining the undifferentiated state of pluripotent stem cells. AECs additionally express CK19, which is a specific marker of epithelial cells, both in vivo and in vitro. In this research, we investigated the biological characteristics and potential for cell therapy of AECs from 6-day-old chicken embryos. We induced the AECs to differentiate into pancreatic islet-like cells (endoderm), adipocytes and osteoblasts (mesoderm) and neural-like cells (ectoderm), and used immunofluorescence and RT-PCR to detect the expression of AECs specific markers. To assess the differentiation capacity of AECs, passage 3 cells were induced to differentiate into adipocytes, osteoblasts, pancreatic islet-like cells and neural-like cells. The AEC markers, Oct-4, Nanog, Sox-2 and CK19, were all positively expressed. Cloning efficiency decreased with increasing passage number. Passage 3 AECs were successfully induced to differentiate into pancreatic islet-like cells, osteoblasts, adipo cytes, and neural-like cells. These results suggested that AECs isolated from chicken embryos exhibited the characteristics of the multipotent stem cells. AECs may therefore be ideal candidates for cellular transplantation therapy and tissue engineering.

Journal ArticleDOI
TL;DR: Parafibromin expression was strongly correlated with tumor types, which may suggest that it plays a role in the tumorigenesis in renal cell tumors.
Abstract: Parafibromin, encoded by HRPT2 gene, is a recently identified tumor suppressor. Complete and partial loss of its expression have been observed in hyperparathyroidism-jaw tumor (HPT-JT), parathyroid carcinoma, breast carcinoma, lung carcinoma, gastric and colorectal carcinoma. However, little has been known about its expression in renal tumors. In order to study the expression of parafibromin in a series of the 4 major renal cell tumors - clear cell renal cell carcinoma (ccRCC), papillary renal cell carcinoma (pRCC), chromophobe renal cell carcinoma (chRCC) and oncocytoma. One hundred thirty nine renal tumors including 61 ccRCCs, 37 pRCCs, 22 chRCCs and 19 oncocytomas were retrieved and used for the construction of renal tissue microarrays (TMAs). The expression of parafibromin was detected by immunohistochemical method on the constructed TMAs. Positive parafibromin stains are seen in 4 out of 61 ccRCCs (7%), 7 out of 37 pRCCs (19%), 12 out of 23 chRCCs (52%) and all 19 oncocytomas (100%). Parafibromin expression varies significantly (P< 8.8 x10-16) among the four major renal cell tumors and were correlated closely with tumor types. No correlation of parafibromin expression with tumor staging in ccRCCs, pRCCs and chRCCs, and Fuhrman nuclear grading in ccRCCs and pRCCs. In summary, parafibromin expression was strongly correlated with tumor types, which may suggest that it plays a role in the tumorigenesis in renal cell tumors.

Journal ArticleDOI
TL;DR: The direction of future TMJ disc studies should be towards obtaining more evidence to support previous results, and should hopefully be of practical use in terms of prevention and cure of ID.
Abstract: The articular disc of the temporomandibular joint (TMJ) is composed of fibrocartilage, and the extracellular matrix of this disc is composed mainly of collagen, glycosaminoglycan and proteoglycans. Research on the changes that occur in the composition of the articular disc of the TMJ is necessary for understanding the basis of the pathological process of internal derangement (ID), and a number of reports have been published in recent years on the application of refined histochemical techniques to investigate the structure and function of the TMJ. The direction of future TMJ disc studies should be towards obtaining more evidence to support previous results, and should hopefully be of practical use in terms of prevention and cure of ID.

Journal ArticleDOI
TL;DR: Evidence is provided that HMA can act as a fluorescent probe and changes in both spectral shape and amplitude emission indicate a marked pH influence on HMA fluorescence properties, making HMA exploitable as a self biomarker of pH alterations in cell studies, in the absence of perturbations induced by the administration of other exogenous dyes.
Abstract: HMA (5-(N,N-hexamethylene)amiloride), which belongs to a family of novel amiloride derivatives, is one of the most effective inhibitors of Na+/H+ exchangers, while uneffective against Na+ channels and Na+/Ca2+ exchangers. In this study, we provided evidence that HMA can act as a fluorescent probe. In fact, human retinal ARPE19 cells incubated with HMA show an intense bluish fluorescence in the cytoplasm when observed at microscope under conventional UV-excitation conditions. Interestingly, a prolonged observation under continuous exposure to excitation lightdoes not induce great changes in cells incubated with HMA for times up to about 5 min, while an unexpected rapid increase in fluorescence signal is observed in cells incubated for longer times. The latter phenomenon is particularly evident in the perinuclear region and in discrete spots in the cytoplasm. Since HMA modulates intracellular acidity, the dependence of its fluorescence properties on medium pH and response upon irradiation have been investigated in solution, at pH 5.0 and pH 7.2. The changes in both spectral shape and amplitude emission indicate a marked pH influence on HMA fluorescence properties, making HMA exploitable as a self biomarker of pH alterations in cell studies, in the absence of perturbations induced by the administration of other exogenous dyes.