scispace - formally typeset

European Physical Journal A 

About: European Physical Journal A is an academic journal. The journal publishes majorly in the area(s): Nuclear fusion & Neutron. Over the lifetime, 11851 publication(s) have been published receiving 205089 citation(s). The journal is also known as: European Physical Journal A. Hadrons and Nuclei.

More filters
Journal ArticleDOI

2,674 citations

Journal ArticleDOI
TL;DR: In this article, a new method of exciting nonradiative surface plasma waves (SPW) on smooth surfaces, causing also a new phenomena in total reflexion, is described.
Abstract: A new method of exciting nonradiative surface plasma waves (SPW) on smooth surfaces, causing also a new phenomena in total reflexion, is described. Since the phase velocity of the SPW at a metal-vacuum surface is smaller than the velocity of light in vacuum, these waves cannot be excited by light striking the surface, provided that this is perfectly smooth. However, if a prism is brought near to the metal vacuum-interface, the SPW can be excited optically by the evanescent wave present in total reflection. The excitation is seen as a strong decrease in reflection for the transverse magnetic light and for a special angle of incidence. The method allows of an accurate evaluation of the dispersion of these waves. The experimental results on a silver-vacuum surface are compared with the theory of metal optics and are found to agree within the errors of the optical constants.

2,501 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compared Dirac's theory of the positron to those proposed by Born and showed that the field strength of large fields differs strongly from those of small fields.
Abstract: [arXiv:physics/0605038]: According to Dirac’s theory of the positron, an electromagnetic field tends to create pairs of particles which leads to a change of Maxwell’s equations in the vacuum. These changes are calculated in the special case that no real electrons or positrons are present and the field varies little over a Compton wavelength. The resulting effective Lagrangian of the field reads: $\cal{L} = \frac{\displaystyle 1}{\displaystyle 2} (\cal{E}^2 - \cal{B}^2) + \frac{\displaystyle e^2}{\displaystyle h c}\int_0^\infty e^{-\eta} \frac{\displaystyle d \eta}{\displaystyle\eta^3}\left\{ i \eta^2 (\cal{EB})\cdot \frac{\displaystyle\cos\left(\frac{\displaystyle\eta}{\displaystyle\vert\cal{E}_k\vert}\sqrt{\cal{E}^2 - \cal{B}^2 + 2i (\cal{EB})}\right) + conj.}{\displaystyle\cos\left(\frac{\displaystyle\eta}{\displaystyle\vert\cal{E}_k\vert}\sqrt{\cal{E}^2 - \cal{B}^2 + 2i (\cal{EB}})\right) - conj. } + \vert\cal{E}\vert^2 + \frac{\displaystyle\eta^2}{\displaystyle 3} (\cal{B}^2 - \cal{E}^2)\right\}$. $\cal{E}$, $\cal{B}$ field strengths. $\vert\cal{E}_k\vert = \frac{\displaystyle m^2 c^3}{\displaystyle e\hbar} = \frac{\displaystyle 1}{\displaystyle 137} \frac{\displaystyle e}{\displaystyle(e^2/m c^2)^2}$ critical field strengths. The expansion terms in small fields (compared to $\cal{E}$) describe light-light scattering. The simplest term is already known from perturbation theory. For large fields, the equations derived here differ strongly from Maxwell’s equations. Our equations will be compared to those proposed by Born. Original German abstract [Z.Phys. 98(1936)714]: Aus der Diracschen Theorie des Positrons folgt, da jedes elektromagnetische Feld zur Paarerzeugung neigt, eine Abanderung der Maxwellschen Gleichungen des Vakuums. Diese Abanderungen werden fur den speziellen Fall berechnet, in dem keine wirklichen Elektronen und Positronen vorhanden sind, und in dem sich das Feld auf Strecken der Compton-Wellenlange nur wenig andert. Es ergibt sich fur das Feld eine Lagrange-Funktion: $\cal{L} = \frac{\displaystyle 1}{\displaystyle 2} (\cal{E}^2 - \cal{B}^2) + \frac{\displaystyle e^2}{\displaystyle h c}\int_0^\infty e^{-\eta} \frac{\displaystyle d \eta}{\displaystyle\eta^3}\left\{ i \eta^2 (\cal{EB})\cdot \frac{\displaystyle\cos\left(\frac{\displaystyle\eta}{\displaystyle\vert\cal{E}_k\vert}\sqrt{\cal{E}^2 - \cal{B}^2 + 2i (\cal{EB}})\right) + konj}{\displaystyle\cos\left(\frac{\displaystyle\eta}{\displaystyle\vert\cal{E}_k\vert}\sqrt{\cal{E}^2 - \cal{B}^2 + 2i (\cal{EB})}\right) - konj } + \vert\cal{E}\vert^2 + \frac{\displaystyle\eta^2}{\displaystyle 3} (\cal{B}^2 - \cal{E}^2)\right\}$. ($\cal{E}$, $\cal{B}$ Kraft auf das Elektron. $\vert\cal{E}_k\vert = \frac{\displaystyle m^2 c^3}{\displaystyle e\hbar} = \frac{\displaystyle 1}{\displaystyle ,,137``} \frac{\displaystyle e}{\displaystyle (e^2/m c^2)^2}$ „Kritische Feldstarke“.) Ihre Entwicklungsglieder fur (gegen $\vert\cal{E}_k\vert$) kleine Felder beschreiben Prozesse der Streuung von Licht an Licht, deren einfachstes bereits aus einer Storungsrechnung bekannt ist. Fur grose Felder sind die hier abgeleiteten Feldgleichungen von den Maxwellschen sehr verschieden. Sie werden mit den von Born vorgeschlagenen verglichen.

2,001 citations

Network Information
Related Journals (5)
Physical Review C
41.1K papers, 782.7K citations
93% related
Nuclear Physics
64.8K papers, 2.2M citations
90% related
Physics Letters B
60.5K papers, 2M citations
89% related
arXiv: High Energy Physics - Phenomenology
63.6K papers, 753.1K citations
85% related
Physical Review D
96.2K papers, 3.7M citations
83% related
No. of papers from the Journal in previous years