scispace - formally typeset
Search or ask a question

Showing papers in "European Physical Journal E in 2017"


Journal ArticleDOI
TL;DR: Numerically study non-interacting active Brownian particles in a two-dimensional random Lorentz gas, finding that for large propulsion speed, the long-time diffusion constant decreases more strongly in a denser obstacle environment than for passive particles.
Abstract: Biological microswimmers often inhabit a porous or crowded environment such as soil. In order to understand how such a complex environment influences their spreading, we numerically study non-interacting active Brownian particles (ABPs) in a two-dimensional random Lorentz gas. Close to the percolation transition in the Lorentz gas, they perform the same subdiffusive motion as ballistic and diffusive particles. However, due to their persistent motion they reach their long-time dynamics faster than passive particles and also show superdiffusive motion at intermediate times. While above the critical obstacle density $\eta_{c}$ the ABPs are trapped, their long-time diffusion below $\eta_{c}$ is strongly influenced by the propulsion speed v0. With increasing v0, ABPs are stuck at the obstacles for longer times. Thus, for large propulsion speed, the long-time diffusion constant decreases more strongly in a denser obstacle environment than for passive particles. This agrees with the behavior of an effective swimming velocity and persistence time, which we extract from the velocity autocorrelation function.

97 citations


Journal ArticleDOI
TL;DR: The present paper conclusively explains several physical phenomena observed, yet hitherto unexplained, in the case of the surface tension of such complex fluids by segregating the individual contributions of each component of the colloidal system.
Abstract: A systematically designed study has been conducted to understand and demarcate the degree of contribution by the constituting elements to the surface tension of nanocolloids. The effects of elements such as surfactants, particles and the combined effects of these on the surface tension of these complex fluids are studied employing the pendant drop shape analysis method by fitting the Young-Laplace equation. Only the particle has shown an increase in the surface tension with particle concentration in a polar medium like DI water, whereas only a marginal effect of particles on surface tension in weakly polar mediums like glycerol and ethylene glycol has been demonstrated. Such behaviour has been attributed to the enhanced desorption of particles to the interface and a theory has been presented to quantify this. The combined particle and surfactant effect on the surface tension of a complex nanofluid system showed a decreasing behaviour with respect to the particle and surfactant concentration with a considerably feeble effect of particle concentration. This combined colloidal system recorded a surface tension value below the surface tension of an aqueous surfactant system at the same concentration, which is a counterintuitive observation as only the particle results in an increase in the surface tension and only the surfactant results in a decrease in the surface tension. The possible physical mechanism behind such an anomaly happening at the complex fluid air interface has been explained. Detailed analyses based on thermodynamic, mechanical and chemical equilibrium of the constituents and their adsorption-desorption characteristics as extracted from the Gibbs adsorption analysis have been provided. The present paper conclusively explains several physical phenomena observed, yet hitherto unexplained, in the case of the surface tension of such complex fluids by segregating the individual contributions of each component of the colloidal system.

87 citations


Journal ArticleDOI
TL;DR: A reinforcement learning algorithm is applied to show how smart particles can learn approximately optimal strategies to navigate in complex flows with chaotic advection along streamlines and it is shown that it is sufficient to endow the swimmers with a very restricted set of actions to have enough freedom to find efficient strategies to move upward and escape local fluid traps.
Abstract: We apply a reinforcement learning algorithm to show how smart particles can learn approximately optimal strategies to navigate in complex flows. In this paper we consider microswimmers in a paradigmatic three-dimensional case given by a stationary superposition of two Arnold-Beltrami-Childress flows with chaotic advection along streamlines. In such a flow, we study the evolution of point-like particles which can decide in which direction to swim, while keeping the velocity amplitude constant. We show that it is sufficient to endow the swimmers with a very restricted set of actions (six fixed swimming directions in our case) to have enough freedom to find efficient strategies to move upward and escape local fluid traps. The key ingredient is the learning-from-experience structure of the algorithm, which assigns positive or negative rewards depending on whether the taken action is, or is not, profitable for the predetermined goal in the long-term horizon. This is another example supporting the efficiency of the reinforcement learning approach to learn how to accomplish difficult tasks in complex fluid environments.

58 citations


Journal ArticleDOI
TL;DR: Water is the first system that has been reviewed in this article, due to its important role in transport phenomena in environmental sciences and ionic liquids, which have been widely studied in the modern green chemistry movement are discussed here.
Abstract: During the past decade, the research on fluids in nanoconfined geometries has received considerable attention as a consequence of their wide applications in different fields. Several nanoconfined systems such as water and ionic liquids, together with an equally impressive array of nanoconfining media such as carbon nanotube, graphene and graphene oxide have received increasingly growing interest in the past years. Water is the first system that has been reviewed in this article, due to its important role in transport phenomena in environmental sciences. Water is often considered as a highly nanoconfined system, due to its reduction to a few layers of water molecules between the extended surface of large macromolecules. The second system discussed here is ionic liquids, which have been widely studied in the modern green chemistry movement. Considering the great importance of ionic liquids in industry, and also their oil/water counterpart, nanoconfined ionic liquid system has become an important area of research with many fascinating applications. Furthermore, the method of molecular dynamics simulation is one of the major tools in the theoretical study of water and ionic liquids in nanoconfinement, which increasingly has been joined with experimental procedures. In this way, the choice of water and ionic liquids in nanoconfinement is justified by applying molecular dynamics simulation approaches in this review article.

45 citations


Journal ArticleDOI
TL;DR: A two-dimensional model for the boundary layer flow of non-Newtonian Carreau fluid is developed and the magnitude of the skin friction and the rate of heat transfer decrease by raising the values of the melting parameter and the Weissenberg number.
Abstract: This article provides a comprehensive analysis of the energy transportation by virtue of the melting process of high-temperature phase change materials. We have developed a two-dimensional model for the boundary layer flow of non-Newtonian Carreau fluid. It is assumed that flow is caused by stretching of a cylinder in the axial direction by means of a linear velocity. Adequate local similarity transformations are employed to determine a set of non-linear ordinary differential equations which govern the flow problem. Numerical solutions to the resultant non-dimensional boundary value problem are computed via the fifth-order Runge-Kutta Fehlberg integration scheme. The solutions are captured for both zero and non-zero curvature parameters, i.e., for flow over a flat plate or flow over a cylinder. The flow and heat transfer attributes are witnessed to be prompted in an intricate manner by the melting parameter, the curvature parameter, the Weissenberg number, the power law index and the Prandtl number. We determined that one of the possible ways to boost the fluid velocity is to increase the melting parameter. Additionally, both the velocity of the fluid and the momentum boundary layer thickness are higher in the case of flow over a stretching cylinder. As expected, the magnitude of the skin friction and the rate of heat transfer decrease by raising the values of the melting parameter and the Weissenberg number.

44 citations


Journal ArticleDOI
TL;DR: The helical ground state is found to be linearly unstable to extensile stresses, without threshold in the limit of infinite system size, whereas contractile stresses are hydrodynamically screened by the cholesteric elasticity to give a finite threshold.
Abstract: We describe the basic properties and consequences of introducing active stresses, with principal direction along the local director, in cholesteric liquid crystals. The helical ground state is found to be linearly unstable to extensile stresses, without threshold in the limit of infinite system size, whereas contractile stresses are hydrodynamically screened by the cholesteric elasticity to give a finite threshold. This is confirmed numerically and the non-linear consequences of instability, in both extensile and contractile cases, are studied. We also consider the stresses associated to defects in the cholesteric pitch ([Formula: see text] lines) and show how the geometry near to the defect generates threshold-less flows reminiscent of those for defects in active nematics. At large extensile activity [Formula: see text] lines are spontaneously created and can form steady-state patterns sustained by constant active flows.

40 citations


Journal ArticleDOI
TL;DR: In this article, the authors studied vertex stability and the dynamics of T1 topological transitions in vertex models and showed that, when all edges have the same tension, stationary fourfold vertices in these models do indeed always break up.
Abstract: In computer simulations of dry foams and of epithelial tissues, vertex models are often used to describe the shape and motion of individual cells. Although these models have been widely adopted, relatively little is known about their basic theoretical properties. For example, while fourfold vertices in real foams are always unstable, it remains unclear whether a simplified vertex model description has the same behavior. Here, we study vertex stability and the dynamics of T1 topological transitions in vertex models. We show that, when all edges have the same tension, stationary fourfold vertices in these models do indeed always break up. In contrast, when tensions are allowed to depend on edge orientation, fourfold vertices can become stable, as is observed in some biological systems. More generally, our formulation of vertex stability leads to an improved treatment of T1 transitions in simulations and paves the way for studies of more biologically realistic models that couple topological transitions to the dynamics of regulatory proteins.

40 citations


Journal ArticleDOI
TL;DR: A simple trick for performing molecular dynamics simulations of bond-swapping network systems with particle-level description is proposed, based on the addition of a computationally non-expensive three-body repulsive potential that encodes for the single-bond per particle condition and establishes a flat potential energy surface for the bond swap.
Abstract: Novel soft matter materials join the resistance of a permanent mesh of strong inter-particle bonds with the self-healing and restructuring properties allowed by bond-swapping processes. Theoretical and numerical studies of the dynamics of coarse-grained models of covalent adaptable networks and vitrimers require effective algorithms for modelling the corresponding evolution of the network topology. Here I propose a simple trick for performing molecular dynamics simulations of bond-swapping network systems with particle-level description. The method is based on the addition of a computationally non-expensive three-body repulsive potential that encodes for the single-bond per particle condition and establishes a flat potential energy surface for the bond swap.

36 citations


Journal ArticleDOI
TL;DR: It is shown that the multiple reflections and transmissions at both the upper and the lower interfaces of the film must be taken into account to accurately describe the measured intensity and that the elastic deformations of the lens under loads can be accurately measured by comparing them with the results of the Herzian theory.
Abstract: In the study of interactions between liquids and solids, an accurate measurement of the film thickness between the two media is essential to study the dynamics. As interferometry is restricted by the wavelength of the light source used, recent studies of thinner films have prompted the use of frustrated total internal reflection (FTIR). In many studies the assumption of a simple exponential decay of the intensity with film thickness was used. In the present study we highlight that this model does not satisfy the Fresnel equations and thus gives an underestimation of the films. We show that the multiple reflections and transmissions at both the upper and the lower interfaces of the film must be taken into account to accurately describe the measured intensity. In order to quantitatively validate the FTIR technique, we measured the film thickness of the air gap between a convex lens of known geometry and a flat surface and obtain excellent agreement. Furthermore, we also found that we can accurately measure the elastic deformations of the lens under loads by comparing them with the results of the Herzian theory.

35 citations


Journal ArticleDOI
TL;DR: Using a coarse-grained nucleosome model, it is found that the process is very sensitive to sequence effects, so that evolution could potentially tune the accessibility of nucleosomal DNA and would only need a small number of mutations to do so.
Abstract: Roughly 3/4 of human genomes are sequestered by nucleosomes, DNA spools with a protein core, dictating a broad range of biological processes, ranging from gene regulation, recombination, and replication, to chromosome condensation. Nucleosomes are dynamical structures and temporarily expose wrapped DNA through spontaneous unspooling from either end, a process called site exposure or nucleosome breathing. Here we ask how this process is influenced by the mechanical properties of the wrapped DNA, which is known to depend on the underlying base pair sequence. Using a coarse-grained nucleosome model we calculate the accessibility profiles for site exposure. We find that the process is very sensitive to sequence effects, so that evolution could potentially tune the accessibility of nucleosomal DNA and would only need a small number of mutations to do so.

33 citations


Journal ArticleDOI
TL;DR: This paper examines entropic segregation for a bidisperse melt of short and long polymers, using self-consistent field theory (SCFT) to derive a simple expression for the interfacial tension between immiscible A- and B-type polydisperse homopolymers.
Abstract: Chain ends are known to have an entropic preference for the surface of a polymer melt, which in turn is expected to cause the short chains of a polydisperse melt to segregate to the surface. Here, we examine this entropic segregation for a bidisperse melt of short and long polymers, using self-consistent field theory (SCFT). The individual polymers are modeled by discrete monomers connected by freely-jointed bonds of statistical length a , and the field is adjusted so as to produce a specified surface profile of width $\xi$ . Semi-analytical expressions for the excess concentration of short polymers, $\delta\phi_{s}(z)$ , the integrated excess, $\theta_{s}$ , and the entropic effect on the surface tension, $\gamma_{en}$ , are derived and tested against the numerical SCFT. The expressions exhibit universal dependences on the molecular-weight distribution with model-dependent coefficients. In general, the coefficients have to be evaluated numerically, but they can be approximated analytically once $\xi \gtrsim a$ . We illustrate how this can be used to derive a simple expression for the interfacial tension between immiscible A- and B-type polydisperse homopolymers.

Journal ArticleDOI
TL;DR: It is shown that application of a spatial windowing filter to images in a sequence before they enter the standard DDM analysis can reduce these artifacts substantially and increase significantly the accessible range of wave vectors probed by DDM.
Abstract: Differential Dynamic Microscopy (DDM) analyzes traditional real-space microscope images to extract information on sample dynamics in a way akin to light scattering, by decomposing each image in a sequence into Fourier modes, and evaluating their time correlation properties. DDM has been applied in a number of soft-matter and colloidal systems. However, objects observed to move out of the microscope’s captured field of view, intersecting the edges of the acquired images, can introduce spurious but significant errors in the subsequent analysis. Here we show that application of a spatial windowing filter to images in a sequence before they enter the standard DDM analysis can reduce these artifacts substantially. Moreover, windowing can increase significantly the accessible range of wave vectors probed by DDM, and may further yield unexpected information, such as the size polydispersity of a colloidal suspension.

Journal ArticleDOI
TL;DR: It is shown that the observed kinematics implies that individual attraction to the swarm centre increases linearly with distance from the Swarm centre, and that this attraction also increases with an individual's flight speed.
Abstract: Midge swarms are a canonical example of collective animal behaviour where local interactions do not clearly play a major role and yet the animals display group-level cohesion. The midges appear somewhat paradoxically to be tightly bound to the swarm whilst at the same time weakly coupled inside it. The microscopic origins of this behaviour have remained elusive. Models based on Newtonian gravity do, however, agree well with experimental observations of laboratory swarms. They are biologically plausible since gravitational interactions have similitude with long-range acoustic and visual interactions, and they correctly predict that individual attraction to the swarm centre increases linearly with distance from the swarm centre. Here we show that the observed kinematics implies that this attraction also increases with an individual's flight speed. We find clear evidence for such an attractive force in experimental data.

Journal ArticleDOI
TL;DR: The root mechanism behind the impalement of the droplet to a fully wetting state is revealed and analysis of the internal pressure and flow distribution also presents necessary justification for the existence of a partially impaled state.
Abstract: The impact dynamics and spreading behavior of droplets impinging on structured superhydrophobic surfaces are dependent on both the droplet initial conditions and the surface texture. The equivalence of wetting and dewetting pressures is classically known to be a critical factor in determining the state of a droplet during the contact and spreading phases. The present study extensively examines the underlying physics behind this pressure balance during the impact process and its direct role in determining the wetting process. Extensive three-dimensional simulations employing droplet impact on a structured superhydrophobic surface has been performed to reveal the intricacies of the interactivities of the fluid with the microstructure. Insight onto the acute role of wetting pressures and the implications of the same on determining the wetting dynamics, with internal fluidics of the droplet during the impact process, has been discussed. The phenomenon of state transition from the Cassie-Baxter to the Wenzel up on impact is also investigated and the intricate flow mechanics at play within the posts has been presented. Knowledge of pressure distribution and internal flow structures within the droplet during its interaction with the surface at different instances of time reveals the root mechanism behind the impalement of the droplet to a fully wetting state. Analysis of the internal pressure and flow distribution also presents necessary justification for the existence of a partially impaled state. The time evolution of spread for different scenarios is in agreement with experimental results and the article provides insight onto the role of wetting pressure in determining fluidic interactions on such surfaces.

Journal ArticleDOI
TL;DR: This work determines how both the director and the geometry respond to a change of temperature in liquid crystal elastomers and polymer networks through a formalism based on differential geometry.
Abstract: In liquid crystal elastomers and polymer networks, the orientational order of liquid crystals is coupled with elastic distortions of crosslinked polymers. Previous theoretical research has described these materials through two different approaches: a neoclassical theory based on the liquid crystal director and the deformation gradient tensor, and a geometric elasticity theory based on the difference between the actual metric tensor and a reference metric. Here, we connect those two approaches using a formalism based on differential geometry. Through this connection, we determine how both the director and the geometry respond to a change of temperature.

Journal ArticleDOI
TL;DR: A simple analytical theory of a flexible polymer chain dissolved in a good solvent, carrying permanent freely oriented dipoles on the monomers takes into account the dipole correlations within the random phase approximation, as well as a dielectric heterogeneity in the internal polymer volume relative to the bulk solution.
Abstract: We present a simple analytical theory of a flexible polymer chain dissolved in a good solvent, carrying permanent freely oriented dipoles on the monomers. We take into account the dipole correlations within the random phase approximation (RPA), as well as a dielectric heterogeneity in the internal polymer volume relative to the bulk solution. We demonstrate that the dipole correlations of monomers can be taken into account as pairwise ones only when the polymer chain is in a coil conformation. In this case the dipole correlations manifest themselves through the Keesom interactions of the permanent dipoles. On the other hand, the dielectric heterogeneity effect (dielectric mismatch effect) leads to the effective interaction between the monomers of the polymeric coil. Both of these effects can be taken into account by renormalizing the second virial coefficient of the monomer-monomer volume interactions. We establish that in the case when the solvent dielectric permittivity exceeds the dielectric permittivity of the polymeric material, the dielectric mismatch effect competes with the dipole attractive interactions, leading to polymer coil expansion. In the opposite case, both the dielectric mismatch effect and the dipole attractive interaction lead to the polymer coil collapse. We analyse the coil-globule transition caused by the dipole correlations of monomers within the many-body theory. We demonstrate that accounting for the dipole correlations higher than the pairwise ones smooths this pure electrostatics driven coil-globule transition of the polymer chain.

Journal ArticleDOI
TL;DR: Combining both dynamical and structural information shows that the measured cooperative length $\xi$ξ corresponds to 2-5 times the underlying structural size D, thus providing a strong grounding to the “Shear Transformation Zones” modeling approach.
Abstract: Understanding the relationship between the material structural details, the geometrical confining constraints, the local dynamical events and the global rheological response is at the core of present investigations on complex fluid properties. In the present article, this problem is addressed on a model yield stress fluid made of highly entangled polymer gels of Carbopol which follows at the macroscopic scale the well-known Herschel-Bulkley rheological law. First, performing local rheology measurements up to high shear rates ( $\dot{\gamma} \geq 10^{2}$ s-1)and under confinement, we evidence unambiguously the breakdown of bulk rheology associated with cooperative processes under flow. Moreover, we show that these behaviors are fully captured with a unique cooperativity length $\xi$ over the whole range of experimental conditions. Second, we introduce an original optical microscopy method to access structural properties of the entangled polymer gel in the direct space. Performing image correlation spectroscopy of fluorophore-loaded gels, the characteristic size D of carbopol gels microstructure is determined as a function of preparation protocol. Combining both dynamical and structural information shows that the measured cooperative length $\xi$ corresponds to 2-5 times the underlying structural size D, thus providing a strong grounding to the “Shear Transformation Zones” modeling approach.

Journal ArticleDOI
TL;DR: By extensive numerical simulations, the phase chart in the parameter space of the model is investigated, identifying the regions where NDM, ANM and more common monotonic behaviors of the force-velocity curve are observed.
Abstract: We study the nonlinear response to an external force of an inertial tracer advected by a two-dimensional incompressible laminar flow and subject to thermal noise In addition to the driving external field F, the main parameters in the system are the noise amplitude [Formula: see text] and the characteristic Stokes time [Formula: see text] of the tracer The relation velocity vs force shows interesting effects, such as negative differential mobility (NDM), namely a non-monotonic behavior of the tracer velocity as a function of the applied force, and absolute negative mobility (ANM), ie a net motion against the bias By extensive numerical simulations, we investigate the phase chart in the parameter space of the model, [Formula: see text], identifying the regions where NDM, ANM and more common monotonic behaviors of the force-velocity curve are observed

Journal ArticleDOI
TL;DR: It is found that boundaries that possess concave regions make the density profile strongly dynamics-dependent and give it a nonlocal dependence on the geometry of the confining box, which constrains the scope of equilibrium mapping techniques in polar-isotropic active systems.
Abstract: Despite their fundamentally nonequilibrium nature, the individual and collective behavior of active systems with polar propulsion and isotropic interactions (polar-isotropic active systems) are remarkably well captured by equilibrium mapping techniques. Here we examine two signatures of equilibrium systems --the existence of a local free energy function and the independence of the coarse-grained behavior on the details of the microscopic dynamics-- in polar-isotropic active particles confined by hard walls of arbitrary geometry at the one-particle level. We find that boundaries that possess concave regions make the density profile strongly dynamics-dependent and give it a nonlocal dependence on the geometry of the confining box. This in turn constrains the scope of equilibrium mapping techniques in polar-isotropic active systems.

Journal ArticleDOI
TL;DR: A simplified expression for the relative amplitude of the two mass diffusion modes is obtained, allowing a parameterized determination of polystyrene and toluene Soret coefficients in the ternary mixture, suggesting that a two wavelength shadowgraph experiment is needed for a complete determination of all the coefficients.
Abstract: Dynamic analysis of the light scattered by non-equilibrium fluctuations in a thermodiffusion experiment has been performed on a sample of polystyrene-toluene-n -hexane, at 0.9-49.55-49.55% mass fraction. Time decays of the non-equilibrium fluctuations have been obtained revealing the accurate detectability of three modes. The slowest mode has been attributed to the mass diffusion of the polymer into the binary solvent; the intermediate one to mass diffusion of the two molecular components of the solvent; finally, the fastest one has been attributed to the thermal diffusivity of the overall mixture. The two eigenvalues of the mass diffusion matrix have been evaluated with accuracy in the order of 1%. Neglecting cross-diffusion effects we obtain a simplified expression for the relative amplitude of the two mass diffusion modes, allowing a parameterized determination of polystyrene and toluene Soret coefficients in the ternary mixture. We suggest that a two wavelength shadowgraph experiment is needed for a complete determination of all the coefficients.

Journal ArticleDOI
TL;DR: In the present paper a model for droplets with a third amphiphilic component is adopted and the dynamics is described by Navier-Stokes and convection-diffusion equations, solved by the lattice Boltzmann method coupled with finite-difference schemes.
Abstract: We numerically study the behavior of self-propelled liquid droplets whose motion is triggered by a Marangoni-like flow. This latter is generated by variations of surfactant concentration which affect the droplet surface tension promoting its motion. In the present paper a model for droplets with a third amphiphilic component is adopted. The dynamics is described by Navier-Stokes and convection-diffusion equations, solved by the lattice Boltzmann method coupled with finite-difference schemes. We focus on two cases. First, the study of self-propulsion of an isolated droplet is carried on and, then, the interaction of two self-propelled droplets is investigated. In both cases, when the surfactant migrates towards the interface, a quadrupolar vortex of the velocity field forms inside the droplet and causes the motion. A weaker dipolar field emerges instead when the surfactant is mainly diluted in the bulk. The dynamics of two interacting droplets is more complex and strongly depends on their reciprocal distance. If, in a head-on collision, droplets are close enough, the velocity field initially attracts them until a motionless steady state is achieved. If the droplets are vertically shifted, the hydrodynamic field leads to an initial reciprocal attraction followed by a scattering along opposite directions. This hydrodynamic interaction acts on a separation of some droplet radii otherwise it becomes negligible and droplets motion is only driven by the Marangoni effect. Finally, if one of the droplets is passive, this latter is generally advected by the fluid flow generated by the active one.

Journal ArticleDOI
TL;DR: It is shown that solvent exchange offers a versatile tool for the formation of droplets with a wide range of viscosity and the droplet size is shown to be dependent on the liquid temperature.
Abstract: Surface nanodroplets are essential units for many compartmentalised processes from catalysis, liquid-liquid reactions, crystallization, wetting and more. Current techniques for producing submicron droplets are mainly based on top-down approaches, which are increasingly limited as scale reduces. Herein, solvent exchange is demonstrated as a simple solution-based approach for the formation of surface nanodroplets with intermediate and extremely high viscosity (1 000 000 cSt). By solvent exchange, the viscous droplet liquid dissolves in a good solvent that is then displaced by a poor solvent to yield surface droplets for the oversaturaion pulse at the mixing front. Within controlled flow conditions, the geometry of droplets of low and intermediate viscosity liquids can be tailored on the nano and microscale by controlling the flow rate. Meanwhile for extremely viscous liquids, the droplet size is shown to be dependent on the liquid temperature. This work demonstrates that solvent exchange offers a versatile tool for the formation of droplets with a wide range of viscosity.

Journal ArticleDOI
TL;DR: It is reported that the leading front is governed by the porous structure and is not always in the finer pores, and an analytical model is developed which describes the flow dynamics in the layered porous medium.
Abstract: The imbibition of a wetting fluid in a homogeneous porous medium follows the diffusion-like behavior described by Washburn. The impregnation of a two-layered porous medium by a wetting fluid due to capillary action has been previously described to have two fronts, one saturating the medium and the other, leading front, which propagates in finer pores. Here, we report that the leading front is governed by the porous structure and is not always in the finer pores. Based on the experiments in a layered porous medium of permeability varying perpendicular to the direction of flow, we show that the permeability of the adjacent layers plays a significant role in determining the leading front amongst the layers. We have also developed an analytical model which describes the flow dynamics in the layered porous medium. The model predicts the condition for which the leading front in the larger pores is followed by the front in the finer pores. This condition is also verified experimentally.

Journal ArticleDOI
TL;DR: It is shown herein that thin films can be actuated using an external magnetic field applied through the system, which provides versatile ways to contribute to many applications from the microfabrication of actuators to soft robotics.
Abstract: Ferromagnetic particles are incorporated in a thin soft elastic matrix. A lamella, made of this smart material, is studied experimentally and modeled. We show herein that thin films can be actuated using an external magnetic field applied through the system. The system is found to be switchable since subcritical pitchfork bifurcation is discovered in the beam shape when the magnetic field orientation is modified. Strong magnetoelastic effects can be obtained depending on both field strength and orientation. Our results provide versatile ways to contribute to many applications from the microfabrication of actuators to soft robotics. As an example, we created a small synthetic octopus piloted by an external magnetic field.

Journal ArticleDOI
TL;DR: The validity and the efficiency of the recently proposed simple-average expression G(t) = \mu_{A}- h (t)$G(t)=μA-h(t), which characterizes the affine shear transformation of the system at t = 0, are confirmed.
Abstract: Focusing on simulated polymer glasses well below the glass transition, we confirm the validity and the efficiency of the recently proposed simple-average expression [Formula: see text] for the computational determination of the shear stress relaxation modulus G(t). Here, [Formula: see text] characterizes the affine shear transformation of the system at t = 0 and h(t) the mean-square displacement of the instantaneous shear stress as a function of time t. This relation is seen to be particulary useful for systems with quenched or sluggish transient shear stresses which necessarily arise below the glass transition. The commonly accepted relation [Formula: see text] using the shear stress auto-correlation function c(t) becomes incorrect in this limit.

Journal ArticleDOI
TL;DR: It was found that the Soret coefficient could be accurately determined from the initial phase of the transient and close to the heat source, which opens the possibility of a new way to analyse results from transient experiments and thereby minimize effects of gravity and convection due to buoyancy.
Abstract: A binary isotope mixture of Lennard-Jones/spline particles at equilibrium was perturbed by a sudden change in the system's boundary temperatures. The system's response was determined by non-equilibrium molecular dynamics (NEMD). Three transient processes were studied: 1) The propagation of a pressure (shock) wave, 2) heat diffusivity and conduction, and 3) thermal diffusion (the Ludwig-Soret effect). These three processes occur at different time scales, which makes it possible to separate them in one single NEMD run. The system was studied in liquid, supercritical, and dense gas states with various forms and strengths of the thermal perturbation. The results show that heat was initially transported by two separate mechanisms: 1) heat diffusion as described by the transient heat equation and 2) as a consequence of a pressure wave. The pressure wave travelled faster than the speed of sound, generating a shock wave in the system. Local equilibrium was found in the transient phase, even with very strong perturbations and in the shock front. Although the mass separation due to the Ludwig-Soret effect developed much slower than the pressure and temperature fields in the system at large, it was found that the Soret coefficient could be accurately determined from the initial phase of the transient and close to the heat source. This opens the possibility of a new way to analyse results from transient experiments and thereby minimize effects of gravity and convection due to buoyancy.

Journal ArticleDOI
TL;DR: It is shown that global alignment can mostly arise solely from binary collisions.
Abstract: We have investigated the onset of collective motion in systems of model microswimmers, by performing a comprehensive analysis of the binary collision dynamics using three-dimensional direct numerical simulations (DNS) with hydrodynamic interactions. From this data, we have constructed a simplified binary collision model (BCM) which accurately reproduces the collective behavior obtained from the DNS for most cases. Thus, we show that global alignment can mostly arise solely from binary collisions. Although the agreement between both models (DNS and BCM) is not perfect, the parameter range in which notable differences appear is also that for which strong density fluctuations are present in the system (where pseudo-sound mound can be observed (N. Oyama et al., Phys. Rev. E 93, 043114 (2016))).

Journal ArticleDOI
TL;DR: It is found that the autocorrelation matrix of concentration fluctuations can be expressed as the sum of two exponentially decaying concentration modes, which, as a consequence of gravity, display a wave-number-dependent mixing.
Abstract: We discuss the gravity effects on the dynamics of composition fluctuations in a ternary mixture around the non-equilibrium quiescent state induced by thermodiffusion when subjected to a stationary temperature gradient. We found that the autocorrelation matrix of concentration fluctuations can be expressed as the sum of two exponentially decaying concentration modes. Without accounting for confinement, we obtained exact analytical expressions for the two decay rates which, as a consequence of gravity, display a wave-number-dependent mixing. The stability of the quiescent solution is also examined, as a function of the two solutal Rayleigh numbers used to express the decay rates. After having discussed the dynamics of the two concentration modes, we calculate the corresponding amplitudes. Consequences for optical experiments are discussed.

Journal ArticleDOI
TL;DR: The theoretical framework, based on the Navier-Stokes equations, with which one can describe curvature effects and also the well-known finite-size effects in the turbulent mean-velocity profile is discussed, confirming that the turbulent eddy viscosity must contain both curvature and finite- size contributions.
Abstract: Prandtl and von Karman have developed the famous log-law for the mean velocity profile for turbulent flow over a plate. The log-law has also been applied to turbulent pipe flow, though the wall surface is curved (in span-wise direction) and has finite diameter. Here we discuss the theoretical framework, based on the Navier-Stokes equations, with which one can describe curvature effects and also the well-known finite-size effects in the turbulent mean-velocity profile. When comparing with experimental data we confirm that the turbulent eddy viscosity must contain both curvature and finite-size contributions and that the usual ansatz for the turbulent eddy viscosity as being linear in the wall distance is insufficient, both for small and large wall distances. We analyze the experimental velocity profile in terms of an r-dependent generalized turbulent viscosity $ u_{turb} \equiv u_{\ast} a g(\rho /a)$ (with $\rho$ being the wall distance, a pipe radius, u * shear stress velocity, and g( $\rho$ /a) the nondimensionalized viscosity), which reflects the radially strongly varying radial eddy transport of the axial velocity. After the near wall linear viscous sublayer, which soon sees the pipe wall's curvature, a strong transport (eddy) activity steepens the profile considerably, leading to a maximum in g( $\rho$ /a) at about half radius, then decreasing again towards the pipe center. This reflects the smaller eddy transport effect near the pipe's center, where even in strongly turbulent flow (the so-called “ultimate state”) the profile remains parabolic. The turbulent viscous transport is strongest were the deviations of the profile from parabolic are strongest, and this happens in the range around half radius.

Journal ArticleDOI
TL;DR: This work discusses and clarify certain conceptual aspects concerning the latter type of approach, which arise due to ad hoc truncations of the underlying so-called activity function, which describes the distribution of chemical reactions across the surface of the particle.
Abstract: Colloids can achieve motility by promoting at their surfaces chemical reactions in the surrounding solution. A well-studied case is that of self-phoresis, in which motility arises due to the spatial inhomogeneities in the chemical composition of the solution and the distinct interactions of the solvent molecules and of the reaction products with the colloid. For simple models of such chemically active colloids, the steady-state motion in an unbounded solution can be derived analytically in closed form. In contrast, for such chemically active particles moving in the vicinity of walls, the derivation of closed-form and physically intuitive solutions of the equations governing their dynamics turns out to be a severe challenge even for simple models. Therefore, recent studies of these phenomena have employed numerical methods as well as approximate analytical approaches based on multipolar expansions. We discuss and clarify certain conceptual aspects concerning the latter type of approach, which arise due to ad hoc truncations of the underlying so-called activity function, which describes the distribution of chemical reactions across the surface of the particle.