scispace - formally typeset
Search or ask a question

Showing papers in "Experiments in Fluids in 2011"


Journal ArticleDOI
TL;DR: The dynamic mode decomposition is a data-decomposition technique that allows the extraction of dynamically relevant flow features from time-resolved experimental data and image-based flow visualizations and is demonstrated on data from a numerical simulation of a flame based on a variable-density jet and on experimentalData from a laminar axisymmetric water jet.
Abstract: The dynamic mode decomposition (DMD) is a data-decomposition technique that allows the extraction of dynamically relevant flow features from time-resolved experimental (or numerical) data. It is based on a sequence of snapshots from measurements that are subsequently processed by an iterative Krylov technique. The eigenvalues and eigenvectors of a low-dimensional representation of an approximate inter-snapshot map then produce flow information that describes the dynamic processes contained in the data sequence. This decomposition technique applies equally to particle-image velocimetry data and image-based flow visualizations and is demonstrated on data from a numerical simulation of a flame based on a variable-density jet and on experimental data from a laminar axisymmetric water jet. In both cases, the dominant frequencies are detected and the associated spatial structures are identified.

292 citations


Journal ArticleDOI
TL;DR: The new all-in-one DCT–PLS, based on a penalized least squares approach (PLS), combines the use of the discrete cosine transform (DCT) and the generalized cross-validation, thus allowing fast unsupervised smoothing of PIV data.
Abstract: Post-processing of PIV (particle image velocimetry) data typically contains three following stages: validation of the raw data, replacement of spurious and missing vectors, and some smoothing. A robust post-processing technique that carries out these steps simultaneously is proposed. The new all-in-one method (DCT–PLS), based on a penalized least squares approach (PLS), combines the use of the discrete cosine transform (DCT) and the generalized cross-validation, thus allowing fast unsupervised smoothing of PIV data. The DCT–PLS was compared with conventional methods, including the normalized median test, for post-processing of simulated and experimental raw PIV velocity fields. The DCT–PLS was shown to be more efficient than the usual methods, especially in the presence of clustered outliers. It was also demonstrated that the DCT–PLS can easily deal with a large amount of missing data. Because the proposed algorithm works in any dimension, the DCT–PLS is also suitable for post-processing of volumetric three-component PIV data.

213 citations


Journal ArticleDOI
TL;DR: In this paper, a broad overview of recent advances in visualization techniques suited to concentrated particle suspensions is presented, including particle image velocimetry (PIV) and laser Doppler velocity data acquisition (LDV).
Abstract: Optical measurement techniques such as particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) are now routinely used in experimental fluid mechanics to investigate pure fluids or dilute suspensions. For highly concentrated particle suspensions, material turbidity has long been a substantial impediment to these techniques, which explains why they have been scarcely used so far. A renewed interest has emerged with the development of specific methods combining the use of iso-index suspensions and imaging techniques. This review paper gives a broad overview of recent advances in visualization techniques suited to concentrated particle suspensions. In particular, we show how classic methods such as PIV, LDV, particle tracking velocimetry, and laser induced fluorescence can be adapted to deal with concentrated particle suspensions.

196 citations


Journal ArticleDOI
TL;DR: In this article, the experimental requirements for a reliable and unbiased measurement of the particle response time τ p and length ξ p based on a single-exponent decaying law were investigated.
Abstract: The experimental approach used for the evaluation of the particle response time across a stationary shock wave is assessed by means of PIV measurements. The study focuses on the experimental requirements for a reliable and unbiased measurement of the particle response time τ p and length ξ p based on a single-exponent decaying law. A numerical simulation of the particle response experiment returns the parameters governing the measurement: namely the normalized spatial and temporal resolution, shock strength, and digital resolution. Representing the velocity decay in logarithmic coordinates it is shown that measurements performed with laser pulse separation time up to τ p and interrogation window up to ξ p still yield unbiased results for the particle response. A set of experiments on the particle response across a planar oblique shock wave was conducted to verify the results from the numerical assessment. Liquid droplets of DEHS and solid tracer particles of silicon and titanium dioxide with different primary crystal size are compared. The resulting temporal response ranges from 2 to 3 μs, corresponding to values commonly reported in literature, to almost 0.3 μs when particles are properly dehydrated and a filter is applied before injection into the wind tunnel. It is the first experimental evidence of particle tracers with a measured response time lower than 0.4 μs. The same procedure is applied to attempt the measurement of individual particle tracers by particle tracking velocimetry to estimate the spread in the distribution of tracer time response. The latter analysis is limited by the particle image tracking precision error, which biases the results introducing a wider broadening of the particle velocity distribution.

191 citations


Journal ArticleDOI
TL;DR: Various tests on synthetic and experimental images, including a dataset of the 2nd PIV challenge, show that the accuracy of folki is found comparable to that of state-of-the-art FFT-based commercial softwares, while being 50 times faster.
Abstract: Our contribution deals with fast computation of dense two-component (2C) PIV vector fields using Graphics Processing Units (GPUs). We show that iterative gradient-based cross-correlation optimization is an accurate and efficient alternative to multi-pass processing with FFT-based cross-correlation. Density is meant here from the sampling point of view (we obtain one vector per pixel), since the presented algorithm, folki, naturally performs fast correlation optimization over interrogation windows with maximal overlap. The processing of 5 image pairs (1,376 × 1,040 each) is achieved in less than a second on a NVIDIA Tesla C1060 GPU. Various tests on synthetic and experimental images, including a dataset of the 2nd PIV challenge, show that the accuracy of folki is found comparable to that of state-of-the-art FFT-based commercial softwares, while being 50 times faster.

159 citations


Journal ArticleDOI
TL;DR: The results show that in case of high velocity gradients and heterogeneous seeding, the integrated algorithm improves the overall performance of the individual algorithms on which it is based, in terms of number of valid recovered vectors, with a lower sensitivity to the individual control parameters.
Abstract: An integrated cross-correlation/relaxation algorithm for particle tracking velocimetry is presented. The aim of this integration is to provide a flexible methodology able to analyze images with different seeding and flow conditions. The method is based on the improvement of the individual performance of both matching methods by combining their characteristics in a two-stage process. Analogous to the hybrid particle image velocimetry method, the combined algorithm starts with a solution obtained by the cross-correlation algorithm, which is further refined by the application of the relaxation algorithm in the zones where the cross-correlation method shows low reliability. The performance of the three algorithms, cross-correlation, relaxation method and the integrated cross-correlation/relaxation algorithm, is compared and analyzed using synthetic and large-scale experimental images. The results show that in case of high velocity gradients and heterogeneous seeding, the integrated algorithm improves the overall performance of the individual algorithms on which it is based, in terms of number of valid recovered vectors, with a lower sensitivity to the individual control parameters.

150 citations


Journal ArticleDOI
TL;DR: In this article, the relation between flow field and flame structure of a turbulent swirl flame is investigated using simultaneous particle image velocimetry (PIV) and planar laser-induced fluorescence of OH (OH-PLIF).
Abstract: The relation between flow field and flame structure of a turbulent swirl flame is investigated using simultaneous particle image velocimetry (PIV) and planar laser-induced fluorescence of OH (OH-PLIF). The measurements are performed in one axial and three transverse sections through the combustion chamber of a gas turbine model combustor, which is operated with methane and air under atmospheric pressure. Analysis of the velocity fields using proper orthogonal decomposition (POD) shows that the dominant unsteady flow structure is a so-called precessing vortex core (PVC). In each of the four sections, the PVC is represented by a characteristic pair of POD eigenmodes, and the phase angle of the precession can be determined for each instantaneous velocity field from its projection on this pair. Phase-conditioned averages of velocity field and OH distribution are thereby obtained and reveal a pronounced effect of the PVC in the form of convection-enhanced mixing. The increased mixing causes a rapid ignition of the fresh gas, and the swirling motion of the PVC leads to an enlarged flame surface due to flame roll-up. A three-dimensional representation shows that the PVC is accompanied by a co-precessing vortex in the outer shear layer, which, however, has no direct impact on the flame. As an alternative to phase averaging, a low-order representation of the phase-resolved dynamics is calculated based on the first pair of POD modes. It is found that small-scale structures are represented more accurately in the phase averages, whereas the low-order model has a considerable smoothing effect and therefore provides less detailed information. The findings demonstrate that the combined application of POD, PIV, and PLIF can provide detailed insights into flow–flame interaction in turbulent flames.

148 citations


Journal ArticleDOI
TL;DR: In this paper, a rod-airfoil air flow by time-resolved Tomographic Particle Image Velocimetry (TR-TOMO PIV) in thin-light volume configuration was investigated at the region close to the leading edge of a NACA0012 airfoil embedded in the von Karman wake of a cylindrical rod.
Abstract: This work investigates the rod-airfoil air flow by time-resolved Tomographic Particle Image Velocimetry (TR-TOMO PIV) in thin-light volume configuration. Experiments are performed at the region close to the leading edge of a NACA0012 airfoil embedded in the von Karman wake of a cylindrical rod. The 3D velocity field measured at 5 kHz is used to evaluate the instantaneous planar pressure field by integration of the pressure gradient field. The experimental data are treated with a discretized model based on multiple velocity measurements. The time separation used to evaluate the Lagrangian derivative along a fluid parcel trajectory has to be taken into account to reduce precision error. By comparing Lagrangian and Eulerian approaches, the latter is restricted to shorter time separations and is found not applicable to evaluate pressure gradient field if a relative precision error lower than 10% is required. Finally, the pressure evaluated from tomographic velocity measurements is compared to that obtained from simulated planar ones to discuss the effect of 3D flow phenomena on the accuracy of the proposed technique.

132 citations


Journal ArticleDOI
TL;DR: In this paper, three measurement techniques (focus beam reflectance measurement, two-dimensional optical reflectance measurements, and a fiber optical FBR sensor) are tested, and their results are compared with trustful image analysis results from an in situ microscope.
Abstract: An online measurement technique for drop size distribution in stirred tank reactors is needed but has not yet been developed. Different approaches and different techniques have been published as the new standard during the last decade. Three of them (focus beam reflectance measurement, two-dimensional optical reflectance measurement techniques and a fiber optical FBR sensor) are tested, and their results are compared with trustful image analysis results from an in situ microscope. The measurement of drop sizes in liquid/liquid distribution is a major challenge for all tested measurement probes, and none provides exact results for the tested system of pure toluene/water compared to an endoscope. Not only the size analysis but also the change of the size over time gives unreasonable results. The influence of the power input on the drop size distribution was the only reasonable observation in this study. The FBR sensor was not applicable at all to the used system. While all three probes are based on laser back scattering, the general question of the usability of this principle for measuring evolving drop size distributions in liquid/liquid system is asked. The exterior smooth surface of droplets in such systems is leading to strong errors in the measurement of the size of the drops. That leads to widely divergent results. A different measurement principle should be used for online measurements of drop size distributions than laser back scattering.

130 citations


Journal ArticleDOI
TL;DR: In this paper, the authors focus on the flow structures in the tip region of a water-jet pump rotor, including the tip-clearance flow and the rollup process of a tip leakage vortex (TLV).
Abstract: Particle image velocimetry (PIV) measurements at varying resolutions focus on the flow structures in the tip region of a water-jet pump rotor, including the tip-clearance flow and the rollup process of a tip leakage vortex (TLV). Unobstructed views of these regions are facilitated by matching the optical refractive index of the transparent pump with that of the fluid. High-magnification data reveal the flow non-uniformities and associated turbulence within the tip gap. Instantaneous data and statistics of spatial distributions and strength of vortices in the rotor passage reveal that the leakage flow emerges as a wall jet with a shear layer containing a train of vortex filaments extending from the tip of the blade. These vortices are entrained into the TLV, but do not have time to merge. TLV breakdown in the aft part of the blade passage further fragments these structures, increasing their number and reducing their size. Analogy is made between the circumferential development of the TLV in the blade passage and that of the starting jet vortex ring rollup. Subject to several assumptions, these flows display similar trends, including conditions for TLV separation from the shear layer feeding vorticity into it.

127 citations


Journal ArticleDOI
TL;DR: In this paper, the time evolution of vorticity components representing inclined hairpin-like legs was analyzed in a 3D Eulerian reference frame within time durations corresponding to 28?/U.
Abstract: Coherent structures and their time evolution in the logarithmic region of a turbulent boundary layer investigated by means of 3D space–time correlations and time-dependent conditional averaging techniques are the focuses of the present paper. Experiments have been performed in the water tunnel at TU Delft measuring the particle motion within a volume of a turbulent boundary layer flow along a flat plate at a free-stream velocity of 0.53 m/s at Re ? = 2,460 based on momentum thickness by using time-resolved tomographic particle image velocimetry (PIV) at 1 kHz sampling rate and particle tracking velocimetry (PTV). The obtained data enable an investigation into the flow structures in a 3D Eulerian reference frame within time durations corresponding to 28 ?/U. An analysis of the time evolution of conditional averages of vorticity components representing inclined hairpin-like legs and of Q2- and Q4-events has been performed, which gives evidence to rethink the early stages of the classical hairpin development model for high Reynolds number TBLs. Furthermore, a PTV algorithm has been applied on the time sequences of reconstructed 3D particle image distributions identifying thousands of particle trajectories that enable the calculation of probability distributions of the three components of Lagrangian accelerations.

Journal ArticleDOI
TL;DR: Two-dimensional flow over periodically arranged hills was investigated experimentally in a water channel as mentioned in this paper, where point-by-point 1D laser Doppler anemometry (LDA) measurements were undertaken at four Reynolds numbers.
Abstract: Two-dimensional flow over periodically arranged hills was investigated experimentally in a water channel. Two-dimensional particle image velocimetry (PIV) and one-dimensional laser Doppler anemometry (LDA) measurements were undertaken at four Reynolds numbers ( $$\text{5,600} \le Re \le \text{37,000}$$ ). Two-dimensional PIV field measurements were thoroughly validated by means of point-by-point 1D LDA measurements at certain positions of the flow. A detailed study of the periodicity and the homogeneity was undertaken, which demonstrates that the flow can be regarded as two-dimensional and periodic for $$Re \ge \text{10,000}$$ . We found a decreasing reattachment length with increasing Reynolds number. This is connected to a higher momentum in the near-wall zone close to flow separation which comes from the velocity speed up above the obstacle. This leads to a velocity overshoot directly above the hill crest which increases with Reynolds number as the inner layer depth decreases. The flow speed up above that layer is independent of the Reynolds number which supports the assumption of inviscid flow disturbance in the outer layer usually made in asymptotic theory for flow over small hills.

Journal ArticleDOI
TL;DR: In this article, a series of synthetic image-based simulations and practical experiments are performed on a high Reynolds number turbulent boundary layer at Reθ = 7,800 and two different approaches to Tomo-PIV are examined using a full-volume slab measurement and a thin-volume light sheet approach.
Abstract: To investigate the accuracy of tomographic particle image velocimetry (Tomo-PIV) for turbulent boundary layer measurements, a series of synthetic image-based simulations and practical experiments are performed on a high Reynolds number turbulent boundary layer at Reθ = 7,800. Two different approaches to Tomo-PIV are examined using a full-volume slab measurement and a thin-volume “fat” light sheet approach. Tomographic reconstruction is performed using both the standard MART technique and the more efficient MLOS-SMART approach, showing a 10-time increase in processing speed. Random and bias errors are quantified under the influence of the near-wall velocity gradient, reconstruction method, ghost particles, seeding density and volume thickness, using synthetic images. Experimental Tomo-PIV results are compared with hot-wire measurements and errors are examined in terms of the measured mean and fluctuating profiles, probability density functions of the fluctuations, distributions of fluctuating divergence through the volume and velocity power spectra. Velocity gradients have a large effect on errors near the wall and also increase the errors associated with ghost particles, which convect at mean velocities through the volume thickness. Tomo-PIV provides accurate experimental measurements at low wave numbers; however, reconstruction introduces high noise levels that reduces the effective spatial resolution. A thinner volume is shown to provide a higher measurement accuracy at the expense of the measurement domain, albeit still at a lower effective spatial resolution than planar and Stereo-PIV.

Journal ArticleDOI
TL;DR: A blood-mimicking fluid composed of water, glycerol, and sodium iodide was formulated for a range of refractive indices to match most common silicone elastomers, and an optimally matched BMF, suitable for use in a vascular phantom, was demonstrated.
Abstract: For accurate particle image velocimetry measurements in hemodynamics studies, it is important to use a fluid with a refractive index (n) matching that of the vascular models (phantoms) and ideally a dynamic viscosity matching human blood. In this work, a blood-mimicking fluid (BMF) composed of water, glycerol, and sodium iodide was formulated for a range of refractive indices to match most common silicone elastomers (n = 1.40–1.43) and with corresponding dynamic viscosity within the average cited range of healthy human blood (4.4 ± 0.5 cP). Both refractive index and viscosity were attained at room temperature (22.2 ± 0.2°C), which eliminates the need for a temperature-control system. An optimally matched BMF, suitable for use in a vascular phantom (n = 1.4140 ± 0.0008, Sylgard 184), was demonstrated with composition (by weight) of 47.38% water, 36.94% glycerol (44:56 glycerol–water ratio), and 15.68% sodium iodide salt, resulting in a dynamic viscosity of 4.31 ± 0.03 cP.

Journal ArticleDOI
TL;DR: In this paper, the modal structures associated with any frequency of the Fourier spectrum were investigated using time-resolved particle image velocimetry, showing that the measured frequencies are common to the entire flow, indicating some global organisation of the flow.
Abstract: Open-cavity flows are known to exhibit a few well-defined peaks in the power spectral distribution of velocity or pressure signals recorded close to the impinging corner. The measured frequencies are in fact common to the entire flow, indicating some global organisation of the flow. The modal structures, i.e. the spatial distribution of the most characteristic frequencies in the flow, are experimentally investigated using time-resolved particle image velocimetry. Each spatial point, of the resulting two-dimension-two-component (2D–2C) velocity fields, provides time-resolved series of the velocity components Vx and Vy, in a (x, y) streamwise plane orthogonal to cavity bottom. Each local time-series is Fourier-transformed, such as to provide the spectral distribution at any point of the PIV-plane. One finally obtains the spatial structure associated with any frequency of the Fourier spectrum. Some of the modal spatial structures are expected to represent the nonlinear saturation of the global modes, against which the stationary solution of the Navier–Stokes equations may have become linearly unstable. Following Rowley et al. (J Fluid Mech 641:115–127, 2009), our experimental modal structures may even correspond to the Koopman modes of this incompressible cavity flow.

Journal ArticleDOI
TL;DR: A novel camera technology for use in particle tracking velocimetry that consists of a dynamic vision sensor in which pixels operate in parallel, transmitting asynchronous events only when relative changes in intensity are encountered with a temporal resolution of 1 μs is presented.
Abstract: Optically based measurements in high Reynolds number fluid flows often require high-speed imaging techniques. These cameras typically record data internally and thus are limited by the amount of onboard memory available. A novel camera technology for use in particle tracking velocimetry is presented in this paper. This technology consists of a dynamic vision sensor in which pixels operate in parallel, transmitting asynchronous events only when relative changes in intensity of approximately 10% are encountered with a temporal resolution of 1 μs. This results in a recording system whose data storage and bandwidth requirements are about 100 times smaller than a typical high-speed image sensor. Post-processing times of data collected from this sensor also increase to about 10 times faster than real time. We present a proof-of-concept study comparing this novel sensor with a high-speed CMOS camera capable of recording up to 2,000 fps at 1,024 × 1,024 pixels. Comparisons are made in the ability of each system to track dense (ρ >1 g/cm3) particles in a solid–liquid two-phase pipe flow. Reynolds numbers based on the bulk velocity and pipe diameter up to 100,000 are investigated.

Journal ArticleDOI
TL;DR: Bias errors introduced in Tomographic-PIV velocity measurements by the coherent motion of ghost particles under some circumstances are discussed and guidelines to detect and avoid such bias errors are proposed.
Abstract: The paper discusses bias errors introduced in Tomographic-PIV velocity measurements by the coherent motion of ghost particles under some circumstances. It occurs when a ghost particle is formed from the same set of actual particles in both reconstructed volumes used in the cross-correlation analysis. The displacement of the resulting ghost particle pair is approximately the average displacement of the set of associated actual particles. The effect is further quantified in a theoretical analysis and in numerical simulations and illustrated in an actual experiment. It is shown that the bias error does not significantly affect the measured flow topology as deduced in an evaluation of the local velocity gradients. Instead, it leads to a systematic underestimation of the measured particle displacement gradient magnitude. This phenomenon is alleviated when the difference between particles displacement along the volume depth is increased beyond a particle image diameter, or when the reconstruction quality is increased or when the accuracy of the tomographic reconstruction is improved. Furthermore, guidelines to detect and avoid such bias errors are proposed.

Journal ArticleDOI
M. Voisine1, M. Voisine2, Lionel Thomas2, Jacques Borée2, P. Rey1 
TL;DR: In this article, the authors make use of PIV and high-speed PIV in a research engine of moderate tumbling ratio in order to analyze both the spatial structure of the flow and its temporal evolution during series of consecutive cycles.
Abstract: The aim of this paper is to make use of PIV and high-speed PIV in a research engine of moderate tumbling ratio in order to analyze both the spatial structure of the flow and its temporal evolution during series of consecutive cycles. Appropriate analyzing tools are introduced, and four different points are addressed: (1) the chain of events driving the generation of the three-dimensional mean tumbling motion is investigated; (2) a Lagrangian analysis of the roll-up of the tumbling jet in individual cycles demonstrates a strong cycle to cycle variation during the compression phase (the rms of the position of the jet front being approximately 10% of the piston stroke); (3) focussing on the “breakdown” phase, phase invariant proper orthogonal decomposition enables us to distinguish cycles according to their structure near top dead center (TDC). We show that when the coherent energy of the flow is conserved, there is no increase in the fluctuating kinetic energy; (4) finally, the phase-averaged Reynolds stresses is decomposed into a contribution of the in-cycle coherence and the turbulence carried by the flow states. Approximately 30% of the fluctuating kinetic energy is due to cycle to cycle fluctuations in this chamber near TDC.

Journal ArticleDOI
TL;DR: In this paper, the authors reconstruct the 3D flow structure and turbulence within the tip leakage vortex (TLV) of an axial waterjet pump rotor by matching the optical refractive index of the transparent pump with that of the fluid.
Abstract: Stereo particle image velocimetry measurements focus on the flow structure and turbulence within the tip leakage vortex (TLV) of an axial waterjet pump rotor. Unobstructed optical access to the sample area is achieved by matching the optical refractive index of the transparent pump with that of the fluid. Data obtained in closely spaced planes enable us to reconstruct the 3D TLV structure, including all components of the mean vorticity and strain-rate tensor along with the Reynolds stresses and associated turbulence production rates. The flow in the tip region is highly three-dimensional, and the characteristics of the TLV and leakage flow vary significantly along the blade tip chordwise direction. The TLV starts to roll up along the suction side tip corner of the blade, and it propagates within the passage toward the pressure side of the neighboring blade. A shear layer with increasing length connects the TLV to the blade tip and initially feeds vorticity into it. During initial rollup, the TLV involves entrainment of a few vortex filaments with predominantly circumferential vorticity from the blade tip. Being shed from the blade, these filaments also have high circumferential velocity and appear as swirling jets. The circumferential velocity in the TLV core is also substantially higher than that in the surrounding passage flow, but the velocity peak does not coincide with the point of maximum vorticity. When entrainment of filaments stops in the aft part of the passage, newly forming filaments wrap around the core in helical trajectories. In ensemble-averaged data, these filaments generate a vortical region that surrounds the TLV with vorticity that is perpendicular to that in the vortex core. Turbulence within the TLV is highly anisotropic and spatially non-uniform. Trends can be traced to high turbulent kinetic energy and turbulent shear stresses, e.g., in the shear layer containing the vortex filaments and the contraction region situated along the line where the leakage backflow meets the throughflow, causing separation of the boundary layer at the pump casing. Upon exposure to adverse pressure gradients in the aft part of the passage, at 0.65–0.7 chord fraction in the present conditions, the TLV bursts into a broad turbulent array of widely distributed vortex filaments.

Journal ArticleDOI
TL;DR: The waving wing experiment as mentioned in this paper is a 3D simplification of the flapping wing motion observed in nature, where the spanwise velocity gradient and wing starting and stopping acceleration are generated by rotational motion of a finite span wing.
Abstract: The waving wing experiment is a fully three-dimensional simplification of the flapping wing motion observed in nature. The spanwise velocity gradient and wing starting and stopping acceleration that exist on an insect-like flapping wing are generated by rotational motion of a finite span wing. The flow development around a waving wing at Reynolds number between 10,000 and 60,000 has been studied using flow visualization and high-speed PIV to capture the unsteady velocity field. Lift and drag forces have been measured over a range of angles of attack, and the lift curve shape was similar in all cases. A transient high-lift peak approximately 1.5 times the quasi-steady value occurred in the first chord length of travel, caused by the formation of a strong attached leading edge vortex. This vortex appears to develop and shed more quickly at lower Reynolds numbers. The circulation of the leading edge vortex has been measured and agrees well with force data.

Journal ArticleDOI
TL;DR: In this article, a passive flow control on a generic car model was experimentally studied, which consists of a deflector placed on the upper edge of the model rear window to disrupt the development of the counter-rotating longitudinal vortices appearing on the lateral edges of the rear window.
Abstract: A passive flow control on a generic car model was experimentally studied. This control consists of a deflector placed on the upper edge of the model rear window. The study was carried out in a wind tunnel at Reynolds numbers based on the model height of 3.1 × 105 and 7.7 × 105. The flow was investigated via standard and stereoscopic particle image velocimetry, Kiel pressure probes and surface flow visualization. The aerodynamic drag was measured using an external balance and calculated using a wake survey method. Drag reductions up to 9% were obtained depending on the deflector angle. The deflector increases the separated region on the rear window. The results show that when this separated region is wide enough, it disrupts the development of the counter-rotating longitudinal vortices appearing on the lateral edges of the rear window. The current study suggests that flow control on such geometries should consider all the flow structures that contribute to the model wake flow.

Journal ArticleDOI
TL;DR: In this paper, a model of a generic vehicle shape, the Ahmed body with a 25° slant, is equipped with an array of blowing steady microjets 6mm downstream of the separation line between the roof and the slanted rear window.
Abstract: A model of a generic vehicle shape, the Ahmed body with a 25° slant, is equipped with an array of blowing steady microjets 6 mm downstream of the separation line between the roof and the slanted rear window. The goal of the present study is to evaluate the effectiveness of this actuation method in reducing the aerodynamic drag, by reducing or suppressing the 3D closed separation bubble located on the slanted surface. The efficiency of this control approach is quantified with the help of aerodynamic load measurements. The changes in the flow field when control is applied are examined using PIV and wall pressure measurements and skin friction visualisations. By activating the steady microjet array, the drag coefficient was reduced by 9–14% and the lift coefficient up to 42%, depending on the Reynolds number. The strong modification of the flow topology under progressive flow control is particularly studied.

Journal ArticleDOI
TL;DR: In this article, a transverse jet is injected into a supersonic model inlet flow to induce unstart, and planar laser Rayleigh scattering from condensed CO2 particles is used to visualize flow dynamics during the unstart process.
Abstract: A transverse jet is injected into a supersonic model inlet flow to induce unstart. Planar laser Rayleigh scattering from condensed CO2 particles is used to visualize flow dynamics during the unstart process, while in some cases, wall pressure traces are simultaneously recorded. Studies conducted over a range of inlet configurations reveal that the presence of turbulent wall boundary layers strongly affect the unstart dynamics. It is found that relatively thick turbulent boundary layers in asymmetric wall boundary layer conditions prompt the formation of unstart shocks; in symmetric boundary conditions lead to the propagation of pseudo-shocks; and in both cases facilitate fast inlet unstart, when compared with thin, laminar boundary layers. Incident shockwaves and associated reflections are found to affect the speed of pressure disturbances. These disturbances, which induce boundary layer separation, are found to precede the formation of unstart shocks. The results confirm the importance of and need to better understand shock-boundary layer interactions in inlet unstart dynamics.

Journal ArticleDOI
TL;DR: In this paper, a simple modified actuator disk is used in a quasi-steady description of the net aerodynamic lift forces on several species of bat whose wakes are measured with time-resolved PIV.
Abstract: All animals flap their wings in powered flight to provide both lift and thrust, yet few human-engineered designs do so. When combined with flexible wing surfaces, the resulting unsteady fluid flows and interactions in flapping flight can be complex to describe, understand, and model. Here, a simple modified actuator disk is used in a quasi-steady description of the net aerodynamic lift forces on several species of bat whose wakes are measured with time-resolved PIV. The model appears to capture the time-averaged and instantaneous lift forces on the wings and body, and could be used as basis for comparing flapping flight efficiency of different animal species and micro air vehicle designs.

Journal ArticleDOI
TL;DR: In this article, a nano-scale thermal anemometry probe (NSTAP) was developed using a novel procedure based on deep reactive ion etching, which was then used to measure the streamwise velocity component of fully developed turbulent pipe flow, and the results were compared with data obtained using conventional hot-wire probes.
Abstract: A new nano-scale thermal anemometry probe (NSTAP) has been developed using a novel procedure based on deep reactive ion etching. The performance of the new probe is shown to be superior to that of the previous design by Bailey (J Fluid Mech 663:160–179, 2010). It is then used to measure the streamwise velocity component of fully developed turbulent pipe flow, and the results are compared with data obtained using conventional hot-wire probes. The NSTAP agrees well with the hot-wire at low Reynolds numbers, but it is shown that it has better spatial resolution and frequency response. The data demonstrate that significant spatial filtering effects can be seen in the hot-wire data for probes as small as 7 viscous units in length.

Journal ArticleDOI
TL;DR: An active turbulence generating grid, based on the rotating-vane design of Makita (1991), was developed for a large wind tunnel as discussed by the authors, which produces a closely uniform mean flow and homogeneous isotropic turbulence.
Abstract: An active turbulence generating grid, based on the rotating-vane design of Makita (1991), was developed for a large wind tunnel. At 2.14 m square, the grid is the largest of this type ever developed. To improve the isotropy of the turbulence generated, the grid was placed in the wind tunnel contraction. Measurements show that the grid produces a closely uniform mean flow and homogeneous isotropic turbulence to within two integral scales from the wall. By systematically varying the flow speed and parameters controlling the random motion of the vanes, grid turbulence with a wide variety of characteristics was produced and the dependence of those characteristics on the operating parameters of the grid revealed. Taylor Reynolds numbers of the grid turbulence varied from 100 to 1,360 and integral scales from 5 to almost 70 cm. The extreme cases represent some of the highest Reynolds number and largest scale homogeneous turbulent flows ever generated in a wind tunnel.

Journal ArticleDOI
TL;DR: In this paper, the interaction mechanisms of the vortices shed by a single-screw propeller with a rudder installed in its wake are addressed; in particular, following the works by Felli et al.
Abstract: In the present paper, the interaction mechanisms of the vortices shed by a single-screw propeller with a rudder installed in its wake are addressed; in particular, following the works by Felli et al. (Exp Fluids 6(1):1–11, 2006a, Exp Fluids 46(1):147–1641, 2009a, Proceedings of the 8th international symposium on particle image velocimetry: Piv09, Melbourne, 2009b), the attention is focused on the analysis of the evolution, instability, breakdown and recovering mechanisms of the propeller tip and hub vortices during the interaction with the rudder. To investigate these mechanisms in detail, a wide experimental activity consisting in time-resolved visualizations, velocity measurements by particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) along horizontal chordwise, vertical chordwise and transversal sections of the wake have been performed in the Cavitation Tunnel of the Italian Navy. Collected data allows to investigate the major flow features that distinguish the flow field around a rudder operating in the wake of a propeller, as, for example, the spiral breakdown of the vortex filaments, the rejoining mechanism of the tip vortices behind the rudder and the mechanisms governing the different spanwise misalignment of the vortex filaments in the pressure and suction sides of the appendage.

Journal ArticleDOI
TL;DR: In this paper, an open cavity with an aspect ratio between its length and depth of 2 at a Reynolds number of 2.4 9 104 and 3.0 9 104 based on the cavity length is considered.
Abstract: In this paper, we study the acoustic emissions of the flow over a rectangular cavity. Especially, we investigate the possibility of estimating the acoustic emission by analysis of PIV data. Such a possibility is appealing, since it would allow to directly relate the flow behavior to the aerodynamic noise production. This will help considerably in understanding the noise production mechanisms and to investigate the possible ways of reducing it. In this study, we consider an open cavity with an aspect ratio between its length and depth of 2 at a Reynolds number of 2.4 9 104 and 3.0 9 104 based on the cavity length. The study is carried out combining high speed two-dimensional PIV, wall pressure measurements and sound measurements. The pressure field is computed from the PIV data. Curle’s analogy is applied to obtain the acoustic pressure field. The pressure measurements on the wall of the cavity and the sound measurements are then used to validate the results obtained from PIV and check the range of validity of this approach. This study demonstrated that the technique is able to quantify the acoustic emissions from the cavity and is promising especially for capturing the tonal components on the sound emission.

Journal ArticleDOI
TL;DR: Ten questions are presented here as an avenue to discuss some of the arenas in which progress still is needed and in which the application of new technology will allow continued progress toward understanding the interaction between organisms and the aquatic medium in which they live and move.
Abstract: Recent experimental and computational studies of swimming hydrodynamics have contributed significantly to our understanding of how animals swim, but much remains to be done Ten questions are presented here as an avenue to discuss some of the arenas in which progress still is needed and as a means of considering the technical approaches to address these questions 1 What is the three-dimensional structure of propulsive surfaces? 2 How do propulsive surfaces move in three dimensions? 3 What are the hydrodynamic effects of propulsor deformation during locomotion? 4 How are locomotor kinematics and dynamics altered during unsteady conditions? 5 What is the three-dimensional structure of aquatic animal vortex wakes? 6 To what extent are observed propulsor deformations actively controlled? 7 What is the response of the body and fins of moving animals to external perturbations? 8 How can robotic models help us understand locomotor dynamics of organisms? 9 How do propulsive surfaces interact hydrodynamically during natural motions? 10 What new computational approaches are needed to better understand locomotor hydrodynamics? These ten questions point, not exclusively, toward areas in which progress would greatly enhance our understanding of the hydrodynamics of swimming organisms, and in which the application of new technology will allow continued progress toward understanding the interaction between organisms and the aquatic medium in which they live and move

Journal ArticleDOI
TL;DR: In this article, a planar laser Rayleigh scattering (PLRS) from condensed CO2 particles is used to visualize flow structure in a Mach 5 wind tunnel undergoing unstart, and detailed flow features such as laminar/turbulent boundary layers and shockwaves are readily illustrated by the technique.
Abstract: Planar laser Rayleigh scattering (PLRS) from condensed CO2 particles is used to visualize flow structure in a Mach 5 wind tunnel undergoing unstart. Detailed flow features such as laminar/turbulent boundary layers and shockwaves are readily illustrated by the technique. A downstream transverse air jet, inducing flow unchoking downstream of the jet, is injected into the free stream flow of the tunnel, resulting in tunnel unstart. Time sequential PLRS images reveal that the boundary layer growth/separation on a surface with a thick turbulent boundary layer, initiated by the jet injection, propagates upstream and produces an oblique unstart shock. The tunnel unstarts upon the arrival of the shock at the inlet. In contrast, earlier flow separation on the opposite surface, initially supporting a thin laminar boundary layer, is observed when a jet induced bow shock strikes that surface. The resulting disturbance to this boundary layer also propagates upstream and precedes the formation of an unstart shock.