Journal•ISSN: 0957-4174
Expert Systems With Applications
About: Expert Systems With Applications is an academic journal. The journal publishes majorly in the area(s): Fuzzy logic & Expert system. It has an ISSN identifier of 0957-4174. Over the lifetime, 15139 publication(s) have been published receiving 623085 citation(s).
Topics: Fuzzy logic, Expert system, Artificial neural network, Cluster analysis, Support vector machine
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: This paper surveys the application of data mining to traditional educational systems, particular web- based courses, well-known learning content management systems, and adaptive and intelligent web-based educational systems.
Abstract: Currently there is an increasing interest in data mining and educational systems, making educational data mining as a new growing research community. This paper surveys the application of data mining to traditional educational systems, particular web-based courses, well-known learning content management systems, and adaptive and intelligent web-based educational systems. Each of these systems has different data source and objectives for knowledge discovering. After preprocessing the available data in each case, data mining techniques can be applied: statistics and visualization; clustering, classification and outlier detection; association rule mining and pattern mining; and text mining. The success of the plentiful work needs much more specialized work in order for educational data mining to become a mature area.
1,256 citations
[...]
TL;DR: Experimental results show that the proposed algorithm takes a significantly reduced time in computation with comparable performance against the partitioning around medoids.
Abstract: This paper proposes a new algorithm for K-medoids clustering which runs like the K-means algorithm and tests several methods for selecting initial medoids. The proposed algorithm calculates the distance matrix once and uses it for finding new medoids at every iterative step. To evaluate the proposed algorithm, we use some real and artificial data sets and compare with the results of other algorithms in terms of the adjusted Rand index. Experimental results show that the proposed algorithm takes a significantly reduced time in computation with comparable performance against the partitioning around medoids.
1,246 citations
[...]
TL;DR: This research presents a genetic algorithm approach for feature selection and parameters optimization to solve the problem of optimizing parameters and feature subset without degrading the SVM classification accuracy.
Abstract: Support Vector Machines, one of the new techniques for pattern classification, have been widely used in many application areas. The kernel parameters setting for SVM in a training process impacts on the classification accuracy. Feature selection is another factor that impacts classification accuracy. The objective of this research is to simultaneously optimize the parameters and feature subset without degrading the SVM classification accuracy. We present a genetic algorithm approach for feature selection and parameters optimization to solve this kind of problem. We tried several real-world datasets using the proposed GA-based approach and the Grid algorithm, a traditional method of performing parameters searching. Compared with the Grid algorithm, our proposed GA-based approach significantly improves the classification accuracy and has fewer input features for support vector machines. q 2005 Elsevier Ltd. All rights reserved.
1,201 citations
[...]
TL;DR: A state-of-the-art literature survey is conducted to taxonomize the research on TOPSIS applications and methodologies and suggests a framework for future attempts in this area for academic researchers and practitioners.
Abstract: Multi-Criteria Decision Aid (MCDA) or Multi-Criteria Decision Making (MCDM) methods have received much attention from researchers and practitioners in evaluating, assessing and ranking alternatives across diverse industries. Among numerous MCDA/MCDM methods developed to solve real-world decision problems, the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) continues to work satisfactorily across different application areas. In this paper, we conduct a state-of-the-art literature survey to taxonomize the research on TOPSIS applications and methodologies. The classification scheme for this review contains 266 scholarly papers from 103 journals since the year 2000, separated into nine application areas: (1) Supply Chain Management and Logistics, (2) Design, Engineering and Manufacturing Systems, (3) Business and Marketing Management, (4) Health, Safety and Environment Management, (5) Human Resources Management, (6) Energy Management, (7) Chemical Engineering, (8) Water Resources Management and (9) Other topics. Scholarly papers in the TOPSIS discipline are further interpreted based on (1) publication year, (2) publication journal, (3) authors' nationality and (4) other methods combined or compared with TOPSIS. We end our review paper with recommendations for future research in TOPSIS decision-making that is both forward-looking and practically oriented. This paper provides useful insights into the TOPSIS method and suggests a framework for future attempts in this area for academic researchers and practitioners.
1,162 citations
[...]
TL;DR: In this study, TOPSIS method combined with intuitionistic fuzzy set is proposed to select appropriate supplier in group decision making environment and Intuitionistic fuzzy weighted averaging (IFWA) operator is utilized to aggregate individual opinions of decision makers for rating the importance of criteria and alternatives.
Abstract: Supplier selection, the process of finding the right suppliers who are able to provide the buyer with the right quality products and/or services at the right price, at the right time and in the right quantities, is one of the most critical activities for establishing an effective supply chain. On the other hand, it is a hard problem since supplier selection is typically a multi criteria group decision-making problem involving several conflicting criteria on which decision maker's knowledge is usually vague and imprecise. In this study, TOPSIS method combined with intuitionistic fuzzy set is proposed to select appropriate supplier in group decision making environment. Intuitionistic fuzzy weighted averaging (IFWA) operator is utilized to aggregate individual opinions of decision makers for rating the importance of criteria and alternatives. Finally, a numerical example for supplier selection is given to illustrate application of intuitionistic fuzzy TOPSIS method.
1,087 citations