scispace - formally typeset
Search or ask a question

Showing papers in "Fems Microbiology Letters in 2006"


Journal ArticleDOI
TL;DR: Results suggest that ISAba1 is providing the promoter for blaOXA-51-like and, probably, for blasOxA-23-like, which are likely to be the next generation of Acinetobacter baumannii isolates.
Abstract: ISAba1 was found in all widespread clones of Acinetobacter baumannii in the United Kingdom. All isolates studied had a blaOXA-51-like carbapenemase gene; some also had blaOXA-23-like and/or blaOXA-58-like. Among isolates with blaOXA-51-like as sole carbapenemase gene, only those with ISAba1 adjacent to blaOXA-51-like were carbapenem resistant. Minor differences in blaOXA-51-like sequence were observed in resistant and susceptible isolates. Isolates with blaOXA-23-like in addition were consistently resistant to carbapenems; in all of these ISAba1 lay upstream of blaOXA-23-like, but was not associated with blaOXA-51-like. These results suggest that ISAba1 is providing the promoter for blaOXA-51-like and, probably, for blaOXA-23-like.

704 citations


Journal ArticleDOI
TL;DR: In the conventional view of prokaryotic existence, bacteria live unicellularly, with responses to external stimuli limited to the detection of chemical and physical signals of environmental origin, this view of bacteriology is now recognized to be overly simplistic.
Abstract: In the conventional view of prokaryotic existence, bacteria live unicellularly, with responses to external stimuli limited to the detection of chemical and physical signals of environmental origin. This view of bacteriology is now recognized to be overly simplistic, because bacteria communicate with each other through small 'hormone-like' organic compounds referred to as autoinducers. These bacterial cell-to-cell signaling systems were initially described as mechanisms through which bacteria regulate gene expression via cell density and, therefore, they have been collectively termed quorum sensing. The functions controlled by quorum sensing are varied and reflect the needs of a particular species of bacteria to inhabit a given niche. Three major quorum-sensing circuits have been described: one used primarily by Gram-negative bacteria, one used primarily by Gram-positive bacteria, and one that has been proposed to be universal.

385 citations


Journal ArticleDOI
TL;DR: Pasteurella multocida was first shown to be the causative agent of fowl cholera by Louis Pasteur in 1881 and a number of other virulence factors have been identified by both directed and random mutagenesis, including PMT, putative surface adhesins and iron acquisition proteins.
Abstract: Pasteurella multocida was first shown to be the causative agent of fowl cholera by Louis Pasteur in 1881. Since then, this Gram-negative bacterium has been identified as the causative agent of many other economically important diseases in a wide range of hosts. The mechanisms by which these bacteria can invade the mucosa, evade innate immunity and cause systemic disease are slowly being elucidated. Key virulence factors identified to date include capsule and lipopolysaccharide. The capsule is clearly involved in bacterial avoidance of phagocytosis and resistance to complement, while complete lipopolysaccharide is critical for bacterial survival in the host. A number of other virulence factors have been identified by both directed and random mutagenesis, including Pasteurella multocida toxin (PMT), putative surface adhesins and iron acquisition proteins. However, it is likely that many key virulence factors are yet to be identified, including those required for initial attachment and invasion of host cells and for persistence in a relatively nutrient poor and hostile environment.

343 citations


Journal ArticleDOI
TL;DR: It could be concluded that under the growth conditions tested, the strong antimicrobial activity of L. rhamnosus GG against Salmonella was mediated by lactic acid.
Abstract: Spent culture supernatant (SCS) of the probiotic Lactobacillus rhamnosus GG had been reported to exert antibacterial activity against Salmonella typhimurium. However, the chemical identity of the antimicrobial compound(s) responsible remained unknown. A survey of the antimicrobial compounds produced by L. rhamnosus GG was performed. Lactobacillus rhamnosus GG produced a low-molecular weight, heat-stable, non-proteinaceous bactericidal substance, active at acidic pH against a wide range of bacterial species. SCS of L. rhamnosus GG grown in MRS medium contained five compounds that could meet the above description, if present at the appropriate concentration. Based on different experimental approaches, it could be concluded that under the growth conditions tested, the strong antimicrobial activity of L. rhamnosus GG against Salmonella was mediated by lactic acid.

298 citations


Journal ArticleDOI
TL;DR: An atlA deletion mutant is created in S. aureus that formed large cell clusters and was biofilm-negative, and the first evidence that the amidase indeed cleaves the amide bond between N-acetyl muramic acid and L-alanine is provided.
Abstract: The major autolysin of Staphylococcus aureus (AtlA) and of Staphylococcus epidermidis (AtlE) are well-studied enzymes. Here we created an atlA deletion mutant in S. aureus that formed large cell clusters and was biofilm-negative. In electron micrographs, the mutant cells were distinguished by rough outer cell surface. The mutant could be complemented using the atlE gene from S. epidermidis. To study the role of the repetitive sequences of atlE, we expressed in Escherichia coli the amidase domain encoded by the gene, carrying no repeat regions (amiE) or two repeat regions (amiE-R1,2), or the three repeat regions alone (R1,2,3) as N-terminal His-tag fusion proteins. Only slight differences in the cell wall lytic activity between AmiE and AmiE-R1,2 were observed. The repetitive sequences exhibit a good binding affinity to isolated peptidoglycan and might contribute to the targeting of the amidase to the substrate. AmiE and AmiE-R1,2 have a broad substrate specificity as shown by similar activities with peptidoglycan lacking wall teichoic acid, O-acetylation, or both. As the amidase activity of AtlA and AtlE has not been proved biochemically, we used purified AmiE-R1,2 to determine the exact peptidoglycan cleavage site. We provide the first evidence that the amidase indeed cleaves the amide bond between N-acetyl muramic acid and L-alanine.

277 citations


Journal ArticleDOI
TL;DR: This review focuses on recent evidence that identifies potential extracellular and cellular mechanisms that may be involved in the tolerance of ectomycorrhizal fungi to excess metals in their environment.
Abstract: This review focuses on recent evidence that identifies potential extracellular and cellular mechanisms that may be involved in the tolerance of ectomycorrhizal fungi to excess metals in their environment. It appears likely that mechanisms described in the nonmycorrhizal fungal species are used in the ectomycorrhizal fungi as well. These include mechanisms that reduce uptake of metals into the cytosol by extracellular chelation through extruded ligands and binding onto cell-wall components. Intracellular chelation of metals in the cytosol by a range of ligands (glutathione, metallothioneins), or increased efflux from the cytosol out of the cell or into sequestering compartments are also key mechanisms conferring tolerance. Free-radical scavenging capacities through the activity of superoxide dismutase or production of glutathione add another line of defence against the toxic effect of metals.

259 citations


Journal ArticleDOI
TL;DR: Recent progress is discussed, particularly newly published structures obtained by X-ray crystallography and electron microscopy that have increased the understanding of how the type II secretion apparatus functions and the role that individual proteins play in this complex system.
Abstract: Gram-negative bacteria use the type II secretion system to transport a large number of secreted proteins from the periplasmic space into the extracellular environment. Many of the secreted proteins are major virulence factors in plants and animals. The components of the type II secretion system are located in both the inner and outer membranes where they assemble into a multi-protein, cell-envelope spanning, complex. This review discusses recent progress, particularly newly published structures obtained by X-ray crystallography and electron microscopy that have increased our understanding of how the type II secretion apparatus functions and the role that individual proteins play in this complex system.

258 citations


Journal ArticleDOI
TL;DR: Virulence elements of EAEC are reviewed, an AraC homolog termed AggR regulates several genes contributing to fimbrial biogenesis in 'typical EAEC strains' and on-going areas of research in EAEC pathogenesis are presented.
Abstract: Enteroaggregative Escherichia coli (EAEC) is emerging as a significant diarrheal pathogen in multiple population groups. Although most commonly associated with pediatric diarrhea in developing countries, EAEC is also linked to diarrhea in adults including HIV-positive patients and travelers and has been a cause of food-borne outbreaks in the industrialized world. Current data suggest that one set of virulence elements is not associated with all EAEC strains, but that combinations of multiple factors prevail. Pathogenesis is believed to be initiated with adherence to the terminal ileum and colon in an aggregative, stacked-brick-type pattern by means of one of several different hydrophobic aggregative adherence fimbriae. Some strains of EAEC may then elaborate cytotoxins including the plasmid-encoded toxin and the enterotoxins, EAST1 and ShET1. An AraC homolog termed AggR regulates several genes contributing to fimbrial biogenesis in 'typical EAEC strains'. AggR has now also been shown to regulate genes on a chromosomal island. Sequencing of the EAEC type strain 042 completed at the Sanger Center has revealed two other chromosomal islands that are being explored for their pathogenetic potential. This article reviews these virulence elements and presents on-going areas of research in EAEC pathogenesis.

250 citations


Journal ArticleDOI
TL;DR: In this article, the authors analyzed the bactericidal effect of illuminated TiO2 in NaCl-KCl or sodium phosphate solutions, and found that adsorption of bacteria on the catalyst occurred immediately in the NaCl KCl solution, whereas it was delayed in the sodium phosphate solution.
Abstract: The bactericidal effect of photocatalysis with TiO2 is well recognized, although its mode of action is still poorly characterized. It may involve oxidation, as illuminated TiO2 generates reactive oxygen species. Here we analyze the bactericidal effect of illuminated TiO2 in NaCl–KCl or sodium phosphate solutions. We found that adsorption of bacteria on the catalyst occurred immediately in NaCl–KCl solution, whereas it was delayed in the sodium phosphate solution. We also show that the rate of adsorption of cells onto TiO2 is positively correlated with its bactericidal effect. Importantly, adsorption was consistently associated with a reduction or loss of bacterial membrane integrity, as revealed by flow cytometry. Our work suggests that adsorption of cells onto aggregated TiO2, followed by loss of membrane integrity, is key to the bactericidal effect of photocatalysis.

250 citations


Journal ArticleDOI
TL;DR: Proanthocyanidins and flavonols are the active constituents of cranberry against S. mutans, and biofilm development and acidogenicity were significantly affected by topical applications of PAC and FLAV.
Abstract: Cranberry fruit is a rich source of polyphenols, and has shown biological activities against Streptococcus mutans. In the present study, we examined the influence of extracts of flavonols (FLAV), anthocyanins (A) and proanthocyanidins (PAC) from cranberry on virulence factors involved in Streptococcus mutans biofilm development and acidogenicity. PAC and FLAV, alone or in combination, inhibited the surface-adsorbed glucosyltransferases and F-ATPases activities, and the acid production by S. mutans cells. Furthermore, biofilm development and acidogenicity were significantly affected by topical applications of PAC and FLAV (P<0.05). Anthocyanins were devoid of any significant biological effects. The flavonols are comprised of mostly quercetin glycosides, and the PAC are largely A-type oligomers of epicatechin. Our data show that proanthocyanidins and flavonols are the active constituents of cranberry against S. mutans.

247 citations


Journal ArticleDOI
TL;DR: The surfaceome is reviewed exhaustively, reviewing exhaustively the current molecular mechanisms involved in protein attachment within the cell envelope of Gram-positive bacteria, from single protein to macromolecular protein structure.
Abstract: In the course of evolution, Gram-positive bacteria, defined here as prokaryotes from the domain Bacteria with a cell envelope composed of one biological membrane (monodermita) and a cell wall composed at least of peptidoglycan and covalently linked teichoic acids, have developed several mechanisms permitting to a cytoplasmic synthesized protein to be present on the bacterial cell surface. Four major types of cell surface displayed proteins are currently recognized: (i) transmembrane proteins, (ii) lipoproteins, (iii) LPXTG-like proteins and (iv) cell wall binding proteins. The subset of proteins exposed on the bacterial cell surface, and thus interacting with extracellular milieu, constitutes the surfaceome. Here, we review exhaustively the current molecular mechanisms involved in protein attachment within the cell envelope of Gram-positive bacteria, from single protein to macromolecular protein structure.

Journal ArticleDOI
TL;DR: An effective chlorpyrifos-degrading bacterium was isolated from the sludge of the wastewater treating system of an organophosphorus pesticides manufacturer and identified as the genus Stenotrophomonas.
Abstract: An effective chlorpyrifos-degrading bacterium (named strain YC-1) was isolated from the sludge of the wastewater treating system of an organophosphorus pesticides manufacturer. Based on the results of phenotypic features, phylogenetic similarity of 16S rRNA gene sequences and BIOLOG test, strain YC-1 was identified as the genus Stenotrophomonas. The isolate utilized chlorpyrifos as the sole source of carbon and phosphorus for its growth and hydrolyzed chlorpyrifos to 3,5,6-trichloro-2-pyridinol. Parathion, methyl parathion, and fenitrothion also could be degraded by strain YC-1 when provided as the sole source of carbon and phosphorus. The gene encoding the organophosphorus hydrolase was cloned using a PCR cloning strategy based on the known methyl parathion degrading (mpd) gene of Plesiomonas sp. M6. Sequence blast result indicated this gene has 99% similar to mpd. The inoculation of strain YC-1 (10(6) cells g(-1)) to soil treated with 100 mg kg(-1) chlorpyrifos resulted in a higher degradation rate than in noninoculated soils. Theses results highlight the potential of this bacterium to be used in the cleanup of contaminated pesticide waste in the environment.

Journal ArticleDOI
TL;DR: This minireview is a rather personal look at the development of the method and its various modifications and other scientific offspring, with the perspective of a quarter-century.
Abstract: Twenty-five years ago this past autumn, we published a short article entitled 'Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity' in Volume 9 of FEMS Microbiology Letters. Together with my Ph.D. supervisors, Eugene Rosenberg and David Gutnick, we proposed a method of measuring bacterial cell surface hydrophobicity based on bacterial adherence to hydrocarbon ('BATH', later known as 'MATH', for microbial adhesion to hydrocarbon). The method became popular soon after it was published, and the paper was, for at least the following decade, the Journal's most cited article. It became an ISI 'citation classic' in 1991. This minireview is a rather personal look at the development of the method and its various modifications and other scientific offspring, with the perspective of a quarter-century.

Journal ArticleDOI
TL;DR: A molecular assay that targets all toxins known to be involved in food poisoning in a single reaction, using only four different sets of primers was successfully applied to characterize strains from food and clinical diagnostic labs as well as for the toxin gene profiling of B. cereus isolated from silo tank populations.
Abstract: Very different toxins are responsible for the two types of gastrointestinal diseases caused by Bacillus cereus: the diarrhoeal syndrome is linked to nonhemolytic enterotoxin NHE, hemolytic enterotoxin HBL, and cytotoxin K, whereas emesis is caused by the action of the depsipeptide toxin cereulide. The recently identified cereulide synthetase genes permitted development of a molecular assay that targets all toxins known to be involved in food poisoning in a single reaction, using only four different sets of primers. The enterotoxin genes of 49 strains, belonging to different phylogenetic branches of the B. cereus group, were partially sequenced to encompass the molecular diversity of these genes. The sequence alignments illustrated the high molecular polymorphism of B. cereus enterotoxin genes, which is necessary to consider when establishing PCR systems. Primers directed towards the enterotoxin complex genes were located in different CDSs of the corresponding operons to target two toxin genes with one single set of primers. The specificity of the assay was assessed using a panel of B. cereus strains with known toxin profiles and was successfully applied to characterize strains from food and clinical diagnostic labs as well as for the toxin gene profiling of B. cereus isolated from silo tank populations.

Journal ArticleDOI
TL;DR: The data support the use of quantitative real-time-PCR chain reaction for the analysis of the antimicrobial resistance gene expression in P. aeruginosa, and expression levels of ampC and oprD genes paralleled beta-lactamase activity and OprD protein levels, respectively.
Abstract: In Pseudomonas aeruginosa many of the clinically relevant resistance mechanisms result from changes in gene expression as exemplified by the Mex drug efflux pumps, the AmpC beta-lactamase and the carbapenem-specific porin OprD. We used quantitative real-time-PCR to analyze the expression of these genes in susceptible and antibiotic-resistant laboratory and clinical strains. In nalB mutants, which overexpress OprM, we observed a four- to eightfold increase in the expression of mexA, mexB, and oprM genes. MexX and mexY genes were induced eight to 12 times in the presence of 2 mg L(-1) tetracycline. The mexC/oprJ and mexE/oprN gene expression levels were increased 30- to 250-fold and 100- to 760-fold in nfxB and nfxC mutants, respectively. We further found that in defined laboratory strains expression levels of ampC and oprD genes paralleled beta-lactamase activity and OprD protein levels, respectively. Our data support the use of quantitative real-time-PCR chain reaction for the analysis of the antimicrobial resistance gene expression in P. aeruginosa.

Journal ArticleDOI
TL;DR: Novel evidence is provided that under laboratory conditions soil bacteria differ in their ability to colonize vital and nonvital hyphae and that this can also be influenced by the arbuscular mycorrhizal fungal species involved.
Abstract: Attachment of certain bacteria to living arbuscular mycorrhizal fungal extraradical hyphae may be an important prerequisite for interactions between these microorganisms, with implications for nutrient supply and plant health. The attachment of five different strains of gfp-tagged soil bacteria (Paenibacillus brasilensis PB177 (pnf8), Bacillus cereus VA1 (pnf8), Pseudomonas fluorescens SBW25 :: gfp/lux, Arthrobacter chlorophenolicus A6G, and Paenibacillus peoriae BD62 (pnf8)) to vital and nonvital extraradical hyphae of the arbuscular mycorrhizal fungi Glomus sp. MUCL 43205 and Glomus intraradices MUCL 43194 was examined. Arthrobacter chlorophenolicus did not attach to hyphae, whereas the other bacterial strains did to a varying degree. Only P. brasilensis showed greater attachment to vital hyphae than nonvital hyphae of both Glomus species tested. Pseudomonas fluorescens showed a higher attachment to vital compared with nonvital Glomus sp. MUCL 43205 hyphae, whereas this relationship was opposite for attachment to G. intraradices. Both B. cereus and P. peoriae showed higher attachment to nonvital hyphae. This study provides novel evidence that under laboratory conditions soil bacteria differ in their ability to colonize vital and nonvital hyphae and that this can also be influenced by the arbuscular mycorrhizal fungal species involved. The significance of bacterial attachment to mycorrhizal fungal extraradical hyphae is discussed.

Journal ArticleDOI
Jinhee Cho1, Dongyun Lee1, Changnam Yang, Jongin Jeon, Jeongho Kim1, Hongui Han1 
TL;DR: It is suggested that a short incubation at 15 degrees C enhances the growth of the less psychrophilic Leuconostoc species, including Lc.
Abstract: Lactic acid bacteria are known to perform significant roles in the fermentation of kimchi, a fermented cabbage product. However, the microbial population dynamics inherent to kimchi fermentation remain to be clearly elucidated. In this study, we have characterized the microbial dynamics via the identification of a total of 970 bacterial isolates, representing 15 species of the genera Lactobacillus, Leuconostoc, and Weissella, all of which were primarily identified by PCR-based restriction enzyme analysis. These population dynamics appear to be influenced markedly by fermentation temperature. Distinct biphasic microbial growth was observed with preliminary 2-day incubation at 15°C, conducted before main fermentation at −1°C. Leuconostoc citreum, as well as Leuconostoc gasicomitatum, predominated during the first growth phase, whereas Weissella koreensis predominated during the second phase. By way of contrast, with preliminary 4-day incubation at 10°C, only W. koreensis grew rapidly from the beginning of the process. Therefore, our findings suggest that a short incubation at 15°C enhances the growth of the less psychrophilic Leuconostoc species, including Lc. citreum, thus delaying the growth of the predominant W. koreensis, which is a more adaptive species at −1°C.

Journal ArticleDOI
TL;DR: The present investigation, while likely representing a significant step forward in understanding the arbuscular mycorrhizal fungus symbioses, also confirms that its optimal establishing and functioning might rely on many, as yet unidentified factors.
Abstract: Two isolates of Paenibacillus validus (DSM ID617 and ID618) stimulated growth of the arbuscular mycorrhizal fungus Glomus intraradices Sy167 up to the formation of fertile spores, which recolonize carrot roots. Thus, the fungus was capable of completing its life cycle in the absence of plant roots, but relied instead on the simultaneous growth of bacteria. The supernatant of a mixed batch culture of the two P. validus isolates contained raffinose and another, unidentified trisaccharide. Among the oligosaccharides tested, raffinose was most effective in stimulating hyphal mass formation on plates but could not promote growth to produce fertile spores. A suppressive subtractive hybridization library followed by reverse Northern analyses indicated that several genes with products involved in signal transduction are differentially expressed in G. intraradices SY 167 when grown in coculture with P. validus (DSM 3037). The present investigation, while likely representing a significant step forward in understanding the arbuscular mycorrhizal fungus symbioses, also confirms that its optimal establishing and functioning might rely on many, as yet unidentified factors.

Journal ArticleDOI
TL;DR: Specific primers have been developed to identify many morphologically similar species, the distribution of T. magnatum has been followed in a selected truffle-ground, the phylogeography of T.
Abstract: Truffles are hypogeous fungi which live in symbiosis with plant host roots in order to accomplish their life cycle. Some species, such as Tuber magnatum Pico, the 'white truffle', and Tuber melanosporum Vittad., the 'black truffle', are highly appreciated in many countries because of their special taste and smell. The great demand for the black and white truffles, the increasing attention towards other species of local interest for the rural economy (such as T. aestivum) together with a drop in productivity, have stimulated researchers to develop projects for a better understanding of the ecology of truffles by exploiting the new approaches of environmental microbiology and molecular ecology. Specific primers have been developed to identify many morphologically similar species, the distribution of T. magnatum has been followed in a selected truffle-ground, the phylogeography of T. melanosporum and T. magnatum has been traced, and the microorganisms associated with the truffles and their habitats have been identified.

Journal ArticleDOI
TL;DR: AR-encoding plasmids from several food-borne commensals were transmitted to Streptococcus mutans via natural gene transformation under laboratory conditions, suggesting the possible transfer of AR genes from food commensal to human residential bacteria via horizontal gene transfer.
Abstract: The rapid emergence of antibiotic-resistant (ART) pathogens is a major threat to public health. While the surfacing of ART food-borne pathogens is alarming, the magnitude of the antibiotic resistance (AR) gene pool in food-borne commensal microbes is yet to be revealed. Incidence of ART commensals in selected retail food products was examined in this study. The presence of 10(2)-10(7) CFU of ART bacteria per gram of foods in many samples, particularly in ready-to-eat, 'healthy' food items, indicates that the ART bacteria are abundant in the food chain. AR-encoding genes were detected in ART isolates, and Streptococcus thermophilus was found to be a major host for AR genes in cheese microbiota. Lactococcus lactis and Leuconostoc sp. isolates were also found carrying AR genes. The data indicate that food could be an important avenue for ART bacterial evolution and dissemination. AR-encoding plasmids from several food-borne commensals were transmitted to Streptococcus mutans via natural gene transformation under laboratory conditions, suggesting the possible transfer of AR genes from food commensals to human residential bacteria via horizontal gene transfer.

Journal ArticleDOI
TL;DR: The known virulence factors of ETEC are reviewed and the future for combating this major disease is highlighted.
Abstract: Enterotoxigenic Escherichia coli (ETEC) is the most common cause of food and water-borne E. coli-mediated human diarrhoea worldwide. The incidence in developing countries is estimated at 650 million cases per year, resulting in 800 000 deaths, primarily in children under the age of five. ETEC is also the most common cause of diarrhoea among travellers, including the military, from industrialized nations to less developed countries. In addition, ETEC is a major pathogen of animals, being responsible for scours in cattle and neonatal and postweaning diarrhoea in pigs and resulting in significant financial losses. Studies on the pathogenesis of ETEC infections have concentrated on the plasmid-encoded heat-stable and heat-labile enterotoxins and on the plasmid-encoded antigenically variable colonization factors. Relatively little work has been carried out on chromosomally encoded virulence factors. Here, we review the known virulence factors of ETEC and highlight the future for combating this major disease.

Journal ArticleDOI
TL;DR: Two distinct phages, as defined by plaque morphology, structure and host range, were obtained from a single sample of screened sewage and phage FGCSSa1 had the broadest host range infecting six of eight Salmonella isolates and neither of two Escherichia coli isolates.
Abstract: Bacteriophages infecting Salmonella spp. were isolated from sewage using soft agar overlays containing three Salmonella serovars and assessed with regard to their potential to control food-borne salmonellae. Two distinct phages, as defined by plaque morphology, structure and host range, were obtained from a single sample of screened sewage. Phage FGCSSa1 had the broadest host range infecting six of eight Salmonella isolates and neither of two Escherichia coli isolates. Under optimal growth conditions for S. Enteritidis PT160, phage infection resulted in a burst size of 139 PFU but was apparently inactive at a temperature typical of stored foods (5 degrees C), even at multiplicity of infection values in excess of 10 000. While neither isolate had characteristics that would make them candidates for biocontrol of Salmonella spp. in foods, phage FGCSSa1 behaved unusually when grown on two Salmonella serotypes at 37 degrees C in that the addition of phages appeared to retard growth of the host, presumably by the lysis of a fraction of the host cell population.

Journal ArticleDOI
TL;DR: Intramembrane-sensing HK (IM-HK) are characterized by their short input domain, consisting solely of two putative transmembane helices, indicative for a sensing process at or from within the membrane interface.
Abstract: Two-component signal-transducing systems (TCS) consist of a histidine kinase (HK) that senses a specific environmental stimulus, and a cognate response regulator (RR) that mediates the cellular response. Most HK are membrane-anchored proteins harboring two domains: An extracytoplasmic input and a cytoplasmic transmitter (or kinase) domain, separated by transmembrane helices that are crucial for the intramolecular information flow. In contrast to the cytoplasmic domain, the input domain is highly variable, reflecting the plethora of different signals sensed. Intramembrane-sensing HK (IM-HK) are characterized by their short input domain, consisting solely of two putative transmembane helices. They lack an extracytoplasmic domain, indicative for a sensing process at or from within the membrane interface. Most proteins sharing this domain architecture are found in Firmicutes bacteria. Two major groups can be differentiated based on sequence similarity and genomic context: (1) BceS-like IM-HK that are functionally and genetically linked to ABC transporters, and (2) LiaS-like IM-HK, as part of three-component systems. Most IM-HK sense cell envelope stress, and identified target genes are often involved in maintaining cell envelope integrity, mediating antibiotic resistance, or detoxification processes. Therefore, IM-HK seem to constitute an important mechanism of cell envelope stress response in low G+C Gram-positive bacteria.

Journal ArticleDOI
TL;DR: The formation of extracellular bacterial DNA as a spatial structure is reported in an aquatic bacterium isolated, which produced a stable filamentous network ofextracellular DNA.
Abstract: It is generally assumed that nucleic acids are localized inside of living cells and that their primary function is the storage of information. In contrast, extracellular DNA is mainly considered as a remnant of lysed cells. Here, we report the formation of extracellular bacterial DNA as a spatial structure. An aquatic bacterium, strain F8, was isolated, which produced a stable filamentous network of extracellular DNA. Different staining and enzymatic techniques confirmed that it was DNA. We were able to amplify the 16S rRNA gene from the extracellular DNA. Restriction endonuclease cleavage and randomly amplified polymorphic DNA analysis of extracellular and genomic DNAs revealed major similarities, but also some differences in both sequences. Our data demonstrate a new function and relevance for extracellular DNA.

Journal ArticleDOI
TL;DR: The present work provides the first evidence for the identity of the glomalin protein in the model AMF G. intraradices, thus facilitating further characterization of this protein, which is of great interest in soil ecology.
Abstract: Work on glomalin-related soil protein produced by arbuscular mycorrhizal (AM) fungi (AMF) has been limited because of the unknown identity of the protein. A protein band cross-reactive with the glomalin-specific antibody MAb32B11 from the AM fungus Glomus intraradices was partially sequenced using tandem liquid chromatography-mass spectrometry. A 17 amino acid sequence showing similarity to heat shock protein 60 (hsp 60) was obtained. Based on degenerate PCR, a full-length cDNA of 1773 bp length encoding the hsp 60 gene was isolated from a G. intraradices cDNA library. The ORF was predicted to encode a protein of 590 amino acids. The protein sequence had three N-terminal glycosylation sites and a string of GGM motifs at the C-terminal end. The GiHsp 60 ORF had three introns of 67, 76 and 131 bp length. The GiHsp 60 was expressed using an in vitro translation system, and the protein was purified using the 6xHis-tag system. A dot-blot assay on the purified protein showed that it was highly cross-reactive with the glomalin-specific antibody MAb32B11. The present work provides the first evidence for the identity of the glomalin protein in the model AMF G. intraradices, thus facilitating further characterization of this protein, which is of great interest in soil ecology.

Journal ArticleDOI
TL;DR: Evidence is provided that intermediates of the fatty acid beta-oxidation can be directed to PHA synthesis and that 3-hydroxydecanoyl-CoA is the main substrate for PHA synthase PhaC1 from P. aeruginosa.
Abstract: The potential of the production of polyhydroxyalkanoates (PHA), consisting of medium-chain-length (MCL) hydroxyfatty acids (C5–C14), in recombinant Escherichia coli was investigated. E. coli mutants affected in fatty acid degradation and fatty acid de novo synthesis were employed. We established the functional expression of the Pseudomonas aeruginosa PHA synthase gene phaC1. The coding region of phaC1 was subcloned via PCR into vector pBluescript SK−. The resulting plasmid pBHR71 enabled functional expression of phaC1 under lac promoter control and conferred synthesis and accumulation of PHA to various strains of E. coli. PHA synthesis was analysed with respect to the carbon source in various E. coli fad and fab mutants. This study provided evidence that intermediates of the fatty acid β-oxidation can be directed to PHA synthesis and that 3-hydroxydecanoyl-CoA is the main substrate for PHA synthase PhaC1 from P. aeruginosa. The E. coli fadB mutant LS1298 containing plasmid pBHR71 and cultivated in LB medium containing 0.5% (w/v) decanoate revealed the strongest accumulation of PHA contributing to about 21% of the cellular dry weight, which was composed of 2.5 mol% 3-hydroxyhexanoate, 20 mol% 3-hydroxyoctanoate, 72.5 mol% 3-hydroxydecanoate and 5 mol% 3-hydroxydodecanoate.

Journal ArticleDOI
TL;DR: This review covers enteropathogenic Escherichia coli (EPEC) and E. coli (EHEC) infections, focusing on differences in their virulence factors and regulation.
Abstract: This review covers enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) infections, focusing on differences in their virulence factors and regulation. While Shiga-toxin expression from integrated bacteriophages sets EHEC apart from EPEC, EHEC infections often originate from asymptomatic carriage in ruminants whereas human EPEC are considered to be overt pathogens and more host-restricted. In part, these differences reflect variation in adhesin repertoire, type III-secreted effectors and the way in which these factors are regulated.

Journal ArticleDOI
TL;DR: In E. faecium while esp was found in isolates from either source, the presence of both esp and biofilm together was only found in strains from clinical settings, suggesting that there exists a synergy between these factors which serves as an advantage for the process of infection.
Abstract: One-hundred and twenty-eight enterococcal isolates were examined for their ability to form biofilm in relation to the presence of the gene encoding the enterococcal surface protein (esp), production of gelatinase and to the source of isolation. Neither esp nor gelatinase seemed to be required for biofilm formation: both Enterococcus faecalis and Enterococcus faecium did not show a correlation between the presence of either esp or the production of gelatinase and biofilm formation. However, in E. faecium while esp was found in isolates from either source, the presence of both esp and biofilm together was only found in strains from clinical settings, suggesting that there exists a synergy between these factors which serves as an advantage for the process of infection.

Journal ArticleDOI
TL;DR: Comparison of invaded and uninvaded zones of the marsh indicated that the invaded zone showed significantly lower plant diversity, as well as significantly higher aboveground plant biomass and soil organic matter, which suggests that Typhaxglauca invasion may be impacting the wetland's ability to remove nutrients.
Abstract: Sediments from Cheboygan Marsh, a coastal freshwater wetland on Lake Huron that has been invaded by an emergent exotic plant, Typha × glauca , were examined to assess the effects of invasion on wetland nutrient levels and sediment microbial communities. Comparison of invaded and uninvaded zones of the marsh indicated that the invaded zone showed significantly lower plant diversity, as well as significantly higher aboveground plant biomass and soil organic matter. The sediments in the invaded zone also showed dramatically higher concentrations of soluble nutrients, including greater than 10-fold higher soluble ammonium, nitrate, and phosphate, which suggests that Typha × glauca invasion may be impacting the wetland's ability to remove nutrients. Terminal restriction fragment length polymorphism analyses revealed significant differences in the composition of total bacterial communities (based on 16S-rRNA genes) and denitrifier communities (based on nirS genes) between invaded and uninvaded zones. This shift in denitrifiers in the sediments may be ecologically significant due to the critical role that denitrifying bacteria play in removal of nitrogen by wetlands.

Journal ArticleDOI
TL;DR: It is shown that certain clinical isolates of coagulase-negative staphylococci produce biofilms that do not contain detectable amounts of poly-N-acetyl-(1-->6)-beta-D-glucosamine, and in contrast to that of S. epidermidis RP62A, theseBiofilms are not detached with metaperiodate, while proteinase K causes their partial dispersal.
Abstract: Staphylococcus aureus and coagulase-negative staphylococci, primarily Staphylococcus epidermidis, are recognized as a major cause of nosocomial infections associated with the use of implanted medical devices. The capacity of S. epidermidis to form biofilms, allowing it to evade host immune defence mechanisms and antibiotic therapy, is considered to be crucial in colonizing the surfaces of medical implants and dissemination of infection. It has previously been demonstrated that the biofilm of a model strain S. epidermidis RP62A comprises two carbohydrate-containing moieties, a polysaccharide having a structure of a linear poly-N-acetyl-(1-->6)-beta-D-glucosamine and teichoic acid. In the present paper we show that, unlike this model strain, certain clinical isolates of coagulase-negative staphylococci produce biofilms that do not contain detectable amounts of poly-N-acetyl-(1-->6)-beta-D-glucosamine. In contrast to that of S. epidermidis RP62A, these biofilms are not detached with metaperiodate, while proteinase K causes their partial dispersal.