scispace - formally typeset
Search or ask a question

Showing papers in "Fems Microbiology Letters in 2012"


Journal ArticleDOI
TL;DR: The present review discusses the invasive and evasive strategies of P. gingivalis and the role of its major virulence factors in these, namely lipopolysaccharide, capsule, gingipains and fimbriae.
Abstract: Porphyromonas gingivalis is a Gram-negative oral anaerobe that is involved in the pathogenesis of periodontitis, an inflammatory disease that destroys the tissues supporting the tooth, eventually leading to tooth loss. Porphyromonas gingivalis has can locally invade periodontal tissues and evade the host defence mechanisms. In doing so, it utilizes a panel of virulence factors that cause deregulation of the innate immune and inflammatory responses. The present review discusses the invasive and evasive strategies of P. gingivalis and the role of its major virulence factors in these, namely lipopolysaccharide, capsule, gingipains and fimbriae. Moreover, the role of P. gingivalis as a 'keystone' biofilm species in orchestrating a host response, is highlighted.

420 citations


Journal ArticleDOI
TL;DR: The paper reviews the current scenario of probiotics and their prospective potential applications for functional foods for better health and nutrition of the society.
Abstract: In the industrialized world, functional foods have become a part of an everyday diet and are demonstrated to offer potential health benefits beyond the widely accepted nutritional effects. Currently, the most important and frequently used functional food compounds are probiotics and prebiotics, or they are collectively known as ‘synbiotics’. Moreover, with an already healthy image, dairy products appear to be an excellent mean for inventing nutritious foods. Such probiotic dairy foods beneficially affect the host by improving survival and implantation of live microbial dietary supplements in the gastrointestinal flora, by selectively stimulating the growth or activating the catabolism of one or a limited number of health-promoting bacteria in the intestinal tract, and by improving the gastrointestinal tract's microbial balance. Hence, the paper reviews the current scenario of probiotics and their prospective potential applications for functional foods for better health and nutrition of the society.

362 citations


Journal ArticleDOI
TL;DR: The bioinformatics-based methodologies commonly used to locate HGT in fungal genomes are described and the possible mechanisms involved in transferring genetic material laterally into fungal species are investigated.
Abstract: Horizontal gene transfer (HGT) is frequently observed in prokaryotes and until recently was assumed to be of limited importance to eukaryotes. However, there is an increasing body of evidence to suggest that HGT is an important mechanism in eukaryotic genome evolution, particularly in unicellular organisms. The transfer of individual genes, gene clusters or entire chromosomes can have significant impacts on niche specification, disease emergence or shift in metabolic capabilities. In terms of genomic sequencing, the fungal kingdom is one of the most densely sampled eukaryotic lineages and is at the forefront of eukaryote comparative genomics and enables us to use fungi to study eukaryotic evolutionary mechanisms including HGT. This review describes the bioinformatics-based methodologies commonly used to locate HGT in fungal genomes and investigates the possible mechanisms involved in transferring genetic material laterally into fungal species. I will highlight a number of fungal HGT events and discuss the impact they have played on fungal evolution and discuss the implications HGT may have on the fungal tree of life.

248 citations


Journal ArticleDOI
TL;DR: The findings provide evidence for niche differentiation in aquatic environments and reduce support for photoinhibition as an explanation for nitrite maxima in the ocean.
Abstract: Inhibition by light potentially influences the distribution of ammonia oxidizers in aquatic environments and is one explanation for nitrite maxima near the base of the euphotic zone of oceanic waters. Previous studies of photoinhibition have been restricted to bacterial ammonia oxidizers, rather than archaeal ammonia oxidizers, which dominate in marine environments. To compare the photoinhibition of bacterial and archaeal ammonia oxidizers, specific growth rates of two ammonia-oxidizing archaea (Nitrosopumilus maritimus and Nitrosotalea devanaterra) and bacteria (Nitrosomonas europaea and Nitrosospira multiformis) were determined at different light intensities under continuous illumination and light/dark cycles. All strains were inhibited by continuous illumination at the highest intensity (500 μE m−2 s−1). At lower light intensities, archaeal growth was much more photosensitive than bacterial growth, with greater inhibition at 60 μE m−2 s−1 than at 15 μE m−2 s−1, where bacteria were unaffected. Archaeal ammonia oxidizers were also more sensitive to cycles of 8-h light/16-h darkness at two light intensities (60 and 15 μE m−2 s−1) and, unlike bacterial strains, showed no evidence of recovery during dark phases. The findings provide evidence for niche differentiation in aquatic environments and reduce support for photoinhibition as an explanation of nitrite maxima in the ocean.

239 citations


Journal ArticleDOI
TL;DR: The results demonstrate that storage conditions of fecal samples may adversely affect the determined Firmicutes to Bacteroidetes ratio, which is a frequently used biomarker in gut microbiology.
Abstract: Freezing stool samples prior to DNA extraction and downstream analysis is widely used in metagenomic studies of the human microbiota but may affect the inferred community composition. In this study, DNA was extracted either directly or following freeze storage of three homogenized human fecal samples using three different extraction methods. No consistent differences were observed in DNA yields between extractions on fresh and frozen samples; however, differences were observed between extraction methods. Quantitative PCR analysis was subsequently performed on all DNA samples using six different primer pairs targeting 16S rRNA genes of significant bacterial groups, and the community composition was evaluated by comparing specific ratios of the calculated abundances. In seven of nine cases, the Firmicutes to Bacteroidetes 16S rRNA gene ratio was significantly higher in fecal samples that had been frozen compared to identical samples that had not. This effect was further supported by qPCR analysis of bacterial groups within these two phyla. The results demonstrate that storage conditions of fecal samples may adversely affect the determined Firmicutes to Bacteroidetes ratio, which is a frequently used biomarker in gut microbiology.

214 citations


Journal ArticleDOI
TL;DR: Recent advances in the understanding of physiological properties of A. brasilense that are important for rhizosphere performance and successful interactions with plant roots are focused on.
Abstract: Azospirillum brasilense is a plant growth promoting rhizobacterium (PGPR) that is being increasingly used in agriculture in a commercial scale. Recent research has elucidated key properties of A. brasilense that contribute to its ability to adapt to the rhizosphere habitat and to promote plant growth. They include synthesis of the auxin indole-3-acetic acid, nitric oxide, carotenoids, and a range of cell surface components as well as the ability to undergo phenotypic variation. Storage and utilization of polybetahydroxyalkanoate polymers are important for the shelf life of the bacteria in production of inoculants, products containing bacterial cells in a suitable carrier for agricultural use. Azospirillum brasilense is able to fix nitrogen, but despite some controversy, as judging from most systems evaluated so far, contribution of fixed nitrogen by this bacterium does not seem to play a major role in plant growth promotion. In this review, we focus on recent advances in the understanding of physiological properties of A. brasilense that are important for rhizosphere performance and successful interactions with plant roots.

196 citations


Journal ArticleDOI
TL;DR: Results showed that anammox and n-damo bacteria co-occurred in the paddy soil and both of them were abundant in deep layers and the community structures changed along depths in the soil core.
Abstract: The anaerobic ammonium-oxidizing (anammox) and nitrite-dependent anaerobic methane-oxidizing (n-damo) bacteria in a paddy soil core (0-100 cm) were investigated with newly designed primers targeting the hydrazine synthase β-subunit (hzsB) of anammox bacteria and the recently published primers targeting the pmoA and 16S rRNA genes of n-damo bacteria. The hzsB gene was identified as a proper biomarker to explore the anammox bacterial biodiversity and abundance in soil. The anammox bacteria were present throughout the soil core with the highest abundance of 2.7 × 10(6) hzsB copies g(-1) dry soil at 40-50 cm and were not detectable below 70 cm. Sequences related to at least three species of known anammox bacteria, 'Brocadia anammoxidans', 'Brocadia fulgida', and 'Jettenia asiatica' were detected. By combining the analysis of pmoA and 16S rRNA genes, the n-damo bacteria were observed to be present in 30-70 cm with abundance from 6.5 × 10(3) (60-70 cm) to 7.5 × 10(4) (30-40 cm) copies g(-1) dry soil. The pmoA sequences retrieved from different depths closely related to each other and formed a unique clade. Our results showed that anammox and n-damo bacteria co-occurred in the paddy soil. Both of them were abundant in deep layers (30-60 cm) and the community structures changed along depths in the soil core.

194 citations


Journal ArticleDOI
TL;DR: A new model is emerging in which the Cpx response integrates diverse signals and promotes cell survival by protecting the envelope in multiple ways, including other aspects of envelope maintenance, communication with other regulatory pathways, and pathogenesis.
Abstract: To detect and effectively respond to damage to the cell envelope, Gram-negative bacteria possess multiple envelope stress responses. Among these, the CpxAR two-component system has been shown to sense the presence of misfolded periplasmic proteins and increase the production of envelope-localized protein folding and degrading factors in response. However, recent studies have revealed that additional parameters, such as adhesion and central metabolism, can also be sensed by the Cpx signalling system. The discovery that the Cpx regulon contains dozens to hundreds of genes indicates that the cellular functions of the Cpx response are also likely much broader than previously realized. These newly recognized functions include other aspects of envelope maintenance, communication with other regulatory pathways, and pathogenesis. A new model is emerging in which the Cpx response integrates diverse signals and promotes cell survival by protecting the envelope in multiple ways.

177 citations


Journal ArticleDOI
TL;DR: The recent discovery of a new group of extremely halophilic Euryarchaeota, the yet uncultured Nanohaloarchaea, shows that the archaeal diversity and metabolic variability in hypersaline environments is higher than hitherto estimated.
Abstract: Archaea that live at high salt concentrations are a phylogenetically diverse group of microorganisms. They include the heterotrophic haloarchaea (class Halobacteria) and some methanogenic Archaea, and they inhabit both oxic and anoxic environments. In spite of their common hypersaline environment, halophilic archaea are surprisingly diverse in their nutritional demands, range of carbon sources degraded (including hydrocarbons and aromatic compounds) and metabolic pathways. The recent discovery of a new group of extremely halophilic Euryarchaeota, the yet uncultured Nanohaloarchaea, shows that the archaeal diversity and metabolic variability in hypersaline environments is higher than hitherto estimated.

168 citations


Journal ArticleDOI
TL;DR: The diversity of the equine fecal bacterial community was evaluated using pyrosequencing of 16S rRNA gene amplicons and the less abundant Actinobacteria, Cyanob bacteria, and TM7 phyla presented here have not been previously described in the gut contents or feces of horses.
Abstract: The diversity of the equine fecal bacterial community was evaluated using pyrosequencing of 16S rRNA gene amplicons. Fecal samples were obtained from horses fed cool-season grass hay. Fecal bacteria were characterized by amplifying the V4 region of bacterial 16S rRNA gene. Of 5898 mean unique sequences, a mean of 1510 operational taxonomic units were identified in the four fecal samples. Equine fecal bacterial richness was higher than that reported in humans, but lower than that reported in either cattle feces or soil. Bacterial classified sequences were assigned to 16 phyla, of which 10 were present in all samples. The largest number of reads belonged to Firmicutes (43.7% of total bacterial sequences), Verrucomicrobia (4.1%), Proteobacteria (3.8%), and Bacteroidetes (3.7%). The less abundant Actinobacteria, Cyanobacteria, and TM7 phyla presented here have not been previously described in the gut contents or feces of horses. Unclassified sequences represented 38.1% of total bacterial sequences; therefore, the equine fecal microbiome diversity is likely greater than that described. This is the first study to characterize the fecal bacterial community in horses by the use of 16S rRNA gene amplicon pyrosequencing, expanding our knowledge of the fecal microbiota of forage-fed horses.

146 citations


Journal ArticleDOI
TL;DR: These mechanisms play an important role in bacterial resistance to host-derived AMPs that are encountered during the course of infection and should be taken into consideration in the development and use of AMPs as anti-infective agents.
Abstract: Antimicrobial peptides (AMPs) are present in virtually all organisms and are an ancient and critical component of innate immunity. In mammals, AMPs are present in phagocytic cells, on body surfaces such as skin and mucosa, and in secretions and body fluids such as sweat, saliva, urine, and breast milk, consistent with their role as part of the first line of defense against a wide range of pathogenic microorganisms including bacteria, viruses, and fungi. AMPs are microbicidal and have also been shown to act as immunomodulators with chemoattractant and signaling activities. During the co-evolution of hosts and bacterial pathogens, bacteria have developed the ability to sense and initiate an adaptive response to AMPs to resist their bactericidal activity. Here, we review the various mechanisms used by Gram-negative bacteria to sense and resist AMP-mediated killing. These mechanisms play an important role in bacterial resistance to host-derived AMPs that are encountered during the course of infection. Bacterial resistance to AMPs should also be taken into consideration in the development and use of AMPs as anti-infective agents, for which there is currently a great deal of academic and commercial interest.

Journal ArticleDOI
TL;DR: The in silico predicted secretome of Trichoderma is presented, and – in addition to the unique features of carbohydrate active enzymes – the importance of such protein families as proteases, oxidative enzymes, and small cysteine-rich proteins, all of that received little attention in Trichodma genetics so far are demonstrated.
Abstract: Mycotrophic species of Trichoderma are among the most common fungi isolated from free soil, dead wood and as parasites on sporocarps of other fungi (mycoparasites). In addition, they undergo various other biotrophic associations ranging from rhizosphere colonization and endophytism up to facultative pathogenesis on such animals as roundworms and humans. Together with occurrence on a variety of less common substrata (marine invertebrates, artificial materials, indoor habitats), these lifestyles illustrate a wealthy opportunistic potential of the fungus. One tropical species, Trichoderma reesei , has become a prominent producer of cellulases and hemicellulases, whereas several other species are applied in agriculture for the biological control of phytopathogenic fungi. The sequencing of the complete genomes of the three species ( T. reesei, T. virens , and T. atroviride ) has led to a deepened understanding of Trichoderma lifestyle and its molecular physiology. In this review, we present the in silico predicted secretome of Trichoderma , and – in addition to the unique features of carbohydrate active enzymes – demonstrate the importance of such protein families as proteases, oxidative enzymes, and small cysteine-rich proteins, all of that received little attention in Trichoderma genetics so far. We also discuss the link between Trichoderma secretome and biology of the fungus.

Journal ArticleDOI
TL;DR: Current structural and functional studies provide the first insights into how CpxP inhibits CpxA and serves as sensor for misfolded pilus subunits, pH and salt, and reflect on the current knowledge on signal integration by the Cpx-envelope stress system.
Abstract: The Cpx-envelope stress system coordinates the expression and assembly of surface structures important for the virulence of Gram-negative pathogenic bacteria. It is comprised of the membrane-anchored sensor kinase CpxA, the cytosolic response regulator CpxR and the accessory protein CpxP. Characteristic of the group of two-component systems, the Cpx system responds to a broad range of stimuli including pH, salt, metals, lipids and misfolded proteins that cause perturbation in the envelope. Moreover, the Cpx system has been linked to inter-kingdom signalling and bacterial cell death. However, although signal specificity has been assumed, for most signals the mechanism of signal integration is not understood. Recent structural and functional studies provide the first insights into how CpxP inhibits CpxA and serves as sensor for misfolded pilus subunits, pH and salt. Here, we summarize and reflect on the current knowledge on signal integration by the Cpx-envelope stress system.

Journal ArticleDOI
TL;DR: This review focuses on plant pathogenic bacteria of the genus Pseudomonas and the ways in which they overcome the challenges posed by ROS, and explores the ways that pseudomonads may exploit plant ROS generation for their own purposes.
Abstract: Reactive oxygen species (ROS) are a key feature of plant (and animal) defences against invading pathogens. As a result, plant pathogens must be able to either prevent their production or tolerate high concentrations of these highly reactive chemicals. In this review, we focus on plant pathogenic bacteria of the genus Pseudomonas and the ways in which they overcome the challenges posed by ROS. We also explore the ways in which pseudomonads may exploit plant ROS generation for their own purposes and even produce ROS directly as part of their infection mechanisms.

Journal ArticleDOI
TL;DR: K. pneumoniae produces OMVs like other pathogenic Gram-negative bacteria and these vesicles induced expression of proinflammatory cytokine genes such as interleukin (IL)-1β and IL-8 in epithelial cells and are a molecular complex that induces the innate immune response.
Abstract: Outer membrane vesicles (OMVs) derived from pathogenic Gram-negative bacteria are an important vehicle for delivery of effector molecules to host cells, but the production of OMVs from Klebsiella pneumoniae, an opportunistic pathogen of both nosocomial and community-acquired infections, and their role in bacterial pathogenesis have not yet been determined. In the present study, we examined the production of OMVs from K. pneumoniae and determined the induction of the innate immune response against K. pneumoniae OMVs. Klebsiella pneumoniae ATCC 13883 produced and secreted OMVs during in vitro culture. Proteomic analysis revealed that 159 different proteins were associated with K. pneumoniae OMVs. Klebsiella pneumoniae OMVs did not inhibit cell growth or induce cell death. However, these vesicles induced expression of proinflammatory cytokine genes such as interleukin (IL)-1β and IL-8 in epithelial cells. An intratracheal challenge of K. pneumoniae OMVs in neutropenic mice resulted in severe lung pathology similar to K. pneumoniae infection. In conclusion, K. pneumoniae produces OMVs like other pathogenic Gram-negative bacteria and K. pneumoniae OMVs are a molecular complex that induces the innate immune response.

Journal ArticleDOI
TL;DR: The results suggest that aerobic DDBs are distributed within at least two phylogenetically restricted genera, suggesting independent evolution of the DON-degradation mechanisms.
Abstract: The mycotoxin deoxynivalenol (DON), a secondary metabolite produced by species of the plant pathogen Fusarium, causes serious problems in cereal crop production because of its toxicity towards humans and livestock. A biological approach for the degradation of DON using a DON-degrading bacterium (DDB) appears to be promising, although information about DDBs is limited. We isolated 13 aerobic DDBs from a variety of environmental samples, including field soils and wheat leaves. Of these 13 strains, nine belonged to the Gram-positive genus Nocardioides and other four to the Gram-negative genus Devosia. The degradation phenotypes of the two Gram types were clearly different; all washed cells of the 13 strains degraded 100 μg mL(-1) DON to below the detection limit (0.5 μg mL(-1)), but the conditions inducing the DON-degrading activities differed between the two Gram types. The HPLC profiles of the DON metabolites were also distinct between the two genera, although all strains produced 3-epi-deoxynivalenol. The Gram-positive strains showed DON assimilation in media containing DON as a carbon source, whereas the Gram-negatives did not. Our results suggest that aerobic DDBs are distributed within at least two phylogenetically restricted genera, suggesting independent evolution of the DON-degradation mechanisms.

Journal ArticleDOI
Jin-Hyung Lee1, Yong-Guy Kim1, Moo Hwan Cho1, Jung-Ae Kim1, Jintae Lee1 
TL;DR: 7-fluoroindole (7FI) was identified as a compound that inhibits biofilm formation and blood hemolysis without inhibiting the growth of planktonic P. aeruginosa cells and is a potential candidate for use in an antivirulence approach against persistent P.
Abstract: The emergence of antibiotic resistance has necessitated new therapeutic approaches for combating persistent bacterial infection. An alternative approach is regulation of bacterial virulence instead of growth suppression, which can readily lead to drug resistance. The virulence of the opportunistic human pathogen Pseudomonas aeruginosa depends on a large number of extracellular factors and biofilm formation. Thirty-one natural and synthetic indole derivatives were screened. 7-fluoroindole (7FI) was identified as a compound that inhibits biofilm formation and blood hemolysis without inhibiting the growth of planktonic P. aeruginosa cells. Moreover, 7FI markedly reduced the production of quorum-sensing (QS)-regulated virulence factors 2-heptyl-3-hydroxy-4(1H)-quinolone, pyocyanin, rhamnolipid, two siderophores, pyoverdine and pyochelin. 7FI clearly suppressed swarming motility, protease activity and the production of a polymeric matrix in P. aeruginosa. However, unlike natural indole compounds, synthetic 7FI did not increase antibiotic resistance. Therefore, 7FI is a potential candidate for use in an antivirulence approach against persistent P. aeruginosa infection.

Journal ArticleDOI
TL;DR: The results show a metal-dependent mechanism of CusS activation and suggest an absolute requirement for CUSS in Cu(I) and Ag(I)-dependent upregulation of cusCFBA expression in E. coli.
Abstract: Two-component systems are widely used by bacteria to mediate adaptive responses to a variety of environmental stimuli. The CusR/CusS two-component system in Escherichia coli induces expression of genes involved in metal efflux under conditions of elevated Cu(I) and Ag(I) concentrations. As seen in most prototypical two-component systems, signal recognition and transmission is expected to occur by ligand binding in the periplasmic sensor domain of the histidine kinase CusS. Although discussed in the extant literature, little experimental evidence is available to establish the role of CusS in metal homeostasis. In this study, we show that the cusS gene is required for Cu(I) and Ag(I) resistance in E. coli and that CusS is linked to the expression of the cusCFBA genes. These results show a metal-dependent mechanism of CusS activation and suggest an absolute requirement for CusS in Cu(I)- and Ag(I)-dependent upregulation of cusCFBA expression in E. coli.

Journal ArticleDOI
TL;DR: The supernatants of 28 bacteria screened identified that LasB elastase is a major antibiofilm protease in P. aeruginosa against S. aureus, and accelerated the expression of its own protease genes in the presence of exogenous protease, leading to the rapid dispersal of its biofilm.
Abstract: Bacterial biofilms are associated with the persistent infections because of their high tolerance to antimicrobial agents. Hence, controlling pathogenic biofilm formation is important in bacteria-related diseases. Staphylococcus aureus is a versatile human pathogen that readily forms biofilms on human tissues and diverse medical devices. As S. aureus can be naturally found in multi-species communities, the supernatants of 28 bacteria were screened to identify new biofilm inhibitory components against S. aureus. The culture supernatant (1%, v/v) of Pseudomonas aeruginosa PAO1 inhibited S. aureus biofilm formation more than 90% without affecting its planktonic cell growth. The P. aeruginosa supernatant contained a high protease activity, which both inhibited S. aureus biofilm formation and detached pre-existing biofilms. An examination of 13 protease-deficient P. aeruginosa mutants identified that LasB elastase is a major antibiofilm protease in P. aeruginosa against S. aureus. Transcriptional analyses showed that P. aeruginosa supernatant induced the expression of endogenous protease genes (aur, clp, scpA, splA, and sspA) and other regulatory genes (agrA, hla, and saeS). Additionally, exogenous proteinase K clearly enhanced the protease activity of S. aureus. Hence, S. aureus accelerated the expression of its own protease genes in the presence of exogenous protease, leading to the rapid dispersal of its biofilm.

Journal ArticleDOI
TL;DR: The results suggest that the A3aPro-LAMP assay reported here can be used for the visual detection of P. sojae in plants and production fields.
Abstract: Phytophthora sojae is a devastating pathogen that causes soybean Phytophthora root rot. This study reports the development of a loop-mediated isothermal amplification (LAMP) assay targeting the A3aPro element for visual detection of P. sojae . The A3aPro -LAMP assay efficiently amplified the target element in < 80 min at 64 °C and was evaluated for specificity and sensitivity. The specificity was evaluated against P. sojae , Phytophthora spp., Pythium spp., and true fungi isolates. Magnesium pyrophosphate resulting from the LAMP of P. sojae could be detected by real-time measurement of turbidity. Phytophthora sojae DNA products were visualized as a ladder-like banding pattern on 2% gel electrophoresis. A positive colour (sky blue) was only observed in the presence of P. sojae with the addition of hydroxynaphthol blue prior to amplification, whereas none of other isolates showed a colour change. The detection limit of the A3aPro -specific LAMP assay for P. sojae was 10 pg µL−1 of genomic DNA per reaction. The assay also detected P. sojae from diseased soybean tissues and residues. These results suggest that the A3aPro -LAMP assay reported here can be used for the visual detection of P. sojae in plants and production fields.

Journal ArticleDOI
TL;DR: Efficient transduction of penicillinase and tetracycline resistance plasmids by bacteriophages φ80α and φJB between clinical isolates belonging to the USA300 clone proves transduction is an effective mechanism for spreading plasmid within the clone.
Abstract: The epidemic community-associated methicillin-resistant clone Staphylococcus aureus USA300 is a major source of skin and soft tissue infections and involves strains with a diverse set of resistance genes. In this study, we report efficient transduction of penicillinase and tetracycline resistance plasmids by bacteriophages phi80alpha and phiJB between clinical isolates belonging to the USA300 clone. High transduction frequencies (10-5 to 10-6 CFU/PFU) were observed using phages propagated on donor strains as well as prophages induced from donors by ultraviolet light. Quantitative real-time PCR was employed to detect penicillinase plasmids in transducing phage particles and determine the ratio of transducing particles in phage lysates to infectious phage particles (determined as approximately 1:1700). Successful transfer of plasmids between strains in USA300 clone proves transduction is an effective mechanism for spreading plasmids within the clone. Such events contribute to its evolution and to emergence of new multiple drug-resistant strains of this successful clone.

Journal ArticleDOI
TL;DR: The results exemplify the fact that current 16S RNA gene sequence databases might lack resolution within many taxonomic groups and emphasize the necessity for a standardized and functional primer validation protocol.
Abstract: In this study, two highly specific quantitative PCR assays targeting the bacterial genera Burkholderia and Pseudomonas were developed and evaluated on soil samples. The primers were targeting different multivariate regions of the 16S rRNA gene and designed to be compatible with quantitative PCR and the high throughput 454 pyrosequencing technique. The developed assays were validated using the standard methods. All tests with the new developed assays showed very high specificity. Pyrosequencing was used for direct analysis of the PCR product and applied as a specificity measurement of the primers. The Pseudomonas primers showed a 99% primer specificity, which covered 200 different Pseudomonas sequence clusters in 0.5 g of soil. In contrast to that the same approach using the genus-specific Burkholderia primers showed only 8% primer specificity. This discrepancy in primer specificity between the normal procedures compared with pyrosequencing illustrates that the common validation procedures for quantitative PCR primers may be misleading. Our results exemplify the fact that current 16S RNA gene sequence databases might lack resolution within many taxonomic groups and emphasize the necessity for a standardized and functional primer validation protocol. A possible solution to this could be to supplement the normal verification of quantitative PCR assays with a pyrosequencing approach.

Journal ArticleDOI
TL;DR: Statistical analysis of the data revealed the influence of L60 and L23 on growth parameters and aflatoxin B production, which is important given that these aflatoxicogenic fungi are natural contaminants of feed used for animal production, and could be effectively controlled by Lactobacillian strains with probiotic properties.
Abstract: Aflatoxin (highly toxic and carcinogenic secondary metabolites produced by fingi) contamination is a serious problem worldwide. Modern agriculture and animal production systems need to use high-quality and mycotoxin-free feedstuffs. The use of microorganisms to preserve food has gained importance in recent years due to the demand for reduced use of chemical preservatives by consumers. Lactic acid bacteria are known to produce various antimicrobial compounds that are considered to be important in the biopreservation of food and feed. Lactobacillus rhamnosus L60 and Lactobacillus fermentum L23 are producers of secondary metabolites, such as organic acids, bacteriocins and, in the case of L60, hydrogen peroxide. The antifungal activity of lactobacilli strains was determined by coculture with Aspergillus section Flavi strains by two qualitative and one quantitative methods. Both L23 and L60 completely inhibited the fungal growth of all aflatoxicogenic strains assayed. Aflatoxin B1 production was reduced 95.7–99.8% with L60 and 27.5–100% with L23. Statistical analysis of the data revealed the influence of L60 and L23 on growth parameters and aflatoxin B1 production. These results are important given that these aflatoxicogenic fungi are natural contaminants of feed used for animal production, and could be effectively controlled by Lactobacillus L60 and L23 strains with probiotic properties.

Journal ArticleDOI
TL;DR: This study developed and validated a high-throughput real-time quantitative PCR-based analysis platform, termed 'GUt Low-Density Array' (GULDA), designed for simultaneous analysis of the change in the abundance of 31 different microbial 16S rRNA gene targets in fecal samples obtained from individuals at various points in time.
Abstract: Alterations in the human gut microbiota caused, for example, by diet, functional foods, antibiotics, or occurring as a function of age are now known to be of relevance for host health. Therefore, there is a strong need for methods to detect such alterations in a rapid and comprehensive manner. In the present study, we developed and validated a high-throughput real-time quantitative PCR-based analysis platform, termed 'GUt Low-Density Array' (GULDA). The platform was designed for simultaneous analysis of the change in the abundance of 31 different microbial 16S rRNA gene targets in fecal samples obtained from individuals at various points in time. The target genes represent important phyla, genera, species, or other taxonomic groups within the five predominant bacterial phyla of the gut, Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Verrucomicrobia and also Euryarchaeota. To demonstrate the applicability of GULDA, analysis of fecal samples obtained from six healthy infants at both 9 and 18 months of age was performed and showed a significant increase over time of the relative abundance of bacteria belonging to Clostridial cluster IV (Clostridia leptum group) and Bifidobacterium bifidum and concurrent decrease in the abundance of Clostridium butyricum and a tendency for decrease in Enterobacteriaceae over the 9-month period.

Journal ArticleDOI
TL;DR: The results showed that functional metagenomics is a useful tool for the identification of new ARGs against seven antibiotics and showed that only the N-terminus conferred kanamycin resistance.
Abstract: The human gut microbiota has a high density of bacteria that are considered a reservoir for antibiotic resistance genes (ARGs). In this study, one fosmid metagenomic library generated from the gut microbiota of four healthy humans was used to screen for ARGs against seven antibiotics. Eight new ARGs were obtained: one against amoxicillin, six against d-cycloserine, and one against kanamycin. The new amoxicillin resistance gene encodes a protein with 53% identity to a class D β-lactamase from Riemerella anatipestifer RA-GD. The six new d-cycloserine resistance genes encode proteins with 73–81% identity to known d-alanine-d-alanine ligases. The new kanamycin resistance gene encodes a protein of 274 amino acids with an N-terminus (amino acids 1–189) that has 42% identity to the 6′-aminoglycoside acetyltransferase [AAC(6′)] from Enterococcus hirae and a C-terminus (amino acids 190–274) with 35% identity to a hypothetical protein from Clostridiales sp. SSC/2. A functional study on the novel kanamycin resistance gene showed that only the N-terminus conferred kanamycin resistance. Our results showed that functional metagenomics is a useful tool for the identification of new ARGs.

Journal ArticleDOI
TL;DR: Under bile-stressed growth conditions, early biofilm formation is associated with an increase in hydrophobic cell surface proteins and high CRB, and late mature biofilm contained more carbohydrates, as shown by crystal violet staining.
Abstract: Seventeen Lactobacillus strains were tested for cell surface hydrophobicity (CSH) using the salt aggregation test (SAT) and Congo red binding (CRB) assay. CRB was dependent on pH and ionic strength and was protease-sensitive. In the presence of 100 μg mL(-1) cholesterol, the CRB was significantly reduced. Autoaggregating (AA) Lactobacillus crispatus strains showed 50% more CRB than the reference strain, the curli-producing Escherichia coli MC4 100. CRB of L. crispatus 12005, L. paracasei F8, L. plantarum F44 and L. paracasei F19 were enhanced when grown in Man Rogosa Sharpe (MRS) broth with 0.5% taurocholic acid (TA) or 5% porcine bile (PB) (P < 0.05). CSH was also enhanced for the non-AA strains L. plantarum F44, L. paracasei F19 and L. rhamnosus GG when grown in MRS broth with 0.5% TA, 5% PB or 0.25% mucin, with enhanced biofilm formation in MRS broth with bile (P < 0.05). Two AA strains, L. crispatus 12005 and L. paracasei F8, developed biofilm independent of bile or mucin. In summary, under bile-stressed growth conditions, early (24-h cultures) biofilm formation is associated with an increase in hydrophobic cell surface proteins and high CRB. Late mature (72-h culture) biofilm contained more carbohydrates, as shown by crystal violet staining.

Journal ArticleDOI
TL;DR: The high abundance and discrete size of the subset of registered msRNAs suggest their functional significance, although the precise biological role of the RNA species revealed in S. mutans, which is one of the principle causative agents of dental caries, has to be elucidated.
Abstract: MicroRNAs (miRNAs) are important modulators of gene expression in eukaryotic cells. However RNAs of the same size in bacteria have not been specifically discussed previously. Here, we provide a library of miRNA-size RNAs (msRNAs), which were registered by deep sequencing in Streptococcus mutans. Bioinformatic analysis of the whole set revealed more than 900 individual msRNA species. The cellular content of selected msRNAs was verified by quantitative RT-PCR and Northern blotting. The high abundance and discrete size of the subset of registered msRNAs suggest their functional significance, although the precise biological role of the RNA species revealed in S. mutans, which is one of the principle causative agents of dental caries, has to be elucidated.

Journal ArticleDOI
TL;DR: A real-time PCR procedure targeting the gene of the molecular cochaperon DnaJ (dnaJ) was developed for specific detection of strains belonging to the Enterobacter cloacae group and its combination with the MALDI-TOF MS is an appropriate method for identification of the six species of the E. cloacae complex.
Abstract: A real-time PCR procedure targeting the gene of the molecular cochaperon DnaJ (dnaJ) was developed for specific detection of strains belonging to the Enterobacter cloacae group. The inclusivity and exclusivity of the real-time PCR assay were assessed with seven reference strains of E. cloacae, 12 other Enterobacter species and 41 non-Enterobacter strains. Inclusivity as well as exclusivity of the duplex real-time PCR was 100%. In contrast, resolution of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was inadequate for delineation of Enterobacter asburiae,Enterobacter hormaechei,Enterobacter kobei and Enterobacter ludwigii from E. cloacae. Eleven of 56 (20%) clinical isolates of the E. cloacae group could not be clearly identified as a certain species using MALDI-TOF MS. In summary, the combination of MALDI-TOF MS with the E. cloacae-specific duplex real-time PCR is an appropriate method for identification of the six species of the E. cloacae complex.

Journal ArticleDOI
TL;DR: YgfX is the first membrane-associating toxin in bacterial TA systems, and is proposed to rename the toxin and the antitoxin as CptA and CptB (for Cytoskeleton Polymerization inhibiting Toxin), respectively.
Abstract: Nearly all free-living bacteria carry toxin–antitoxin (TA) systems on their genomes, through which cell growth and death are regulated. Toxins target a variety of essential cellular functions, including DNA replication, translation, and cell division. Here, we identified a novel toxin, YgfX, on the Escherichia coli genome. The toxin, consisting of 135 residues, is composed of the N-terminal membrane domain, which encompasses two transmembrane segments, and the C-terminal cytoplasmic domain. Upon YgfX expression, the cells were initially elongated and then the middle portion of the cells became inflated to form a lemon shape. YgfX was found to interact with MreB and FtsZ, two essential cytoskeletal proteins in E. coli. The cytoplasmic domain [YgfX(C)] was found to be responsible for the YgfX toxicity, as purified YgfX(C) was found to block the polymerization of FtsZ and MreBin vitro. YgfY, located immediately upstream of YgfX, was shown to be the cognate antitoxin; notably, YgfX is the first membrane-associating toxin in bacterial TA systems. We propose to rename the toxin and the antitoxin as CptA and CptB (for Cytoskeleton Polymerization inhibiting Toxin), respectively.

Journal ArticleDOI
TL;DR: Dcm-mediated cytosine DNA methylation is conserved in all 162 strains examined, and the level of 5-methylcytosine ranges from 0.86% to 1.30% of the cytosines.
Abstract: In Escherichia coli , cytosine DNA methylation is catalyzed by the DNA cytosine methyltransferase (Dcm) protein and occurs at the second cytosine in the sequence 5′CCWGG3′. Although the presence of cytosine DNA methylation was reported over 35 years ago, the biological role of 5-methylcytosine in E. coli remains unclear. To gain insight into the role of cytosine DNA methylation in E. coli , we (1) screened the 72 strains of the ECOR collection and 90 recently isolated environmental samples for the presence of the full-length dcm gene using the polymerase chain reaction; (2) examined the same strains for the presence of 5-methylcytosine at 5′CCWGG3′ sites using a restriction enzyme isoschizomer digestion assay; and (3) quantified the levels of 5-methyl-2′-deoxycytidine in selected strains using liquid chromatography tandem mass spectrometry. Dcm-mediated cytosine DNA methylation is conserved in all 162 strains examined, and the level of 5-methylcytosine ranges from 0.86% to 1.30% of the cytosines. We also demonstrate that Dcm reduces the expression of ribosomal protein genes during stationary phase, and this may explain the highly conserved nature of this DNA modification pathway.