scispace - formally typeset
Search or ask a question
JournalISSN: 0378-1097

Fems Microbiology Letters 

Oxford University Press
About: Fems Microbiology Letters is an academic journal published by Oxford University Press. The journal publishes majorly in the area(s): Escherichia coli & Plasmid. It has an ISSN identifier of 0378-1097. Over the lifetime, 19217 publications have been published receiving 649016 citations. The journal is also known as: Federation of European Microbiological Societies microbiology letters.
Topics: Escherichia coli, Plasmid, Gene, Mutant, Virulence


Papers
More filters
Journal ArticleDOI
TL;DR: The system described here gives a direct and precise method for determining DNA base composition by reversed-phase high-performance liquid chromatography (HPLC).
Abstract: DNA base composition was determined by reversed-phase high-performance liquid chromatography (HPLC). DNA was hydrolysed into nucleosides with nuclease P1 and bacterial alkaline phosphatase. The mixture of nucleosides was applied to HPLC without any further purification. One determination by chromatography needed 2 μg of hydrolysed nucleosides and took only 8 min. The relative standard error of nucleoside analysis was less than 1%. The system described here gives a direct and precise method for determining DNA base composition.

2,468 citations

Journal ArticleDOI
TL;DR: 'BLAST 2 Sequences', a new BLAST-based tool for aligning two protein or nucleotide sequences, is described, utilizing the BLAST algorithm for pairwise DNA-DNA or protein-protein sequence comparison.
Abstract: 'BLAST 2 Sequences', a new BLAST-based tool for aligning two protein or nucleotide sequences, is described. While the standard BLAST program is widely used to search for homologous sequences in nucleotide and protein databases, one often needs to compare only two sequences that are already known to be homologous, coming from related species or, e.g. different isolates of the same virus. In such cases searching the entire database would be unnecessarily time-consuming. 'BLAST 2 Sequences' utilizes the BLAST algorithm for pairwise DNA-DNA or protein-protein sequence comparison. A World Wide Web version of the program can be used interactively at the NCBI WWW site (http://www.ncbi.nlm.nih.gov/gorf/bl2.++ +html). The resulting alignments are presented in both graphical and text form. The variants of the program for PC (Windows), Mac and several UNIX-based platforms can be downloaded from the NCBI FTP site (ftp://ncbi.nlm.nih.gov).

2,244 citations

Journal ArticleDOI
TL;DR: The results indicated that the criterion for isolation of phosphate solubilizers based on the formation of visible halo/zone on agar plates is not a reliable technique, and soil microbes should be screened in NBRIP broth assay for the identification of the most efficient phosphate soluble inorganic phosphates in liquid medium.
Abstract: A novel defined microbiological growth medium, National Botanical Research Institute's phosphate growth medium (NBRIP), which is more efficient than Pikovskaya medium (PVK), was developed for screening phosphate solubilizing microorganisms. In plate assay the efficiency of NBRIP was comparable to PVK; however, in broth assay NBRIP consistently demonstrated about 3-fold higher efficiency compared to PVK. The results indicated that the criterion for isolation of phosphate solubilizers based on the formation of visible halo/zone on agar plates is not a reliable technique, as many isolates which did not show any clear zone on agar plates solubilized insoluble inorganic phosphates in liquid medium. It may be concluded that soil microbes should be screened in NBRIP broth assay for the identification of the most efficient phosphate solubilizers.

1,834 citations

Journal ArticleDOI
TL;DR: This review provides an overview of the current knowledge of the diversity, metabolism and microbial ecology of this functionally important group of bacteria and suggests that mechanisms proposed recently in non-gut Clostridium spp.
Abstract: Butyrate-producing bacteria play a key role in colonic health in humans. This review provides an overview of the current knowledge of the diversity, metabolism and microbial ecology of this functionally important group of bacteria. Human colonic butyrate producers are Gram-positive firmicutes, but are phylogenetically diverse, with the two most abundant groups related to Eubacterium rectale/Roseburia spp. and to Faecalibacterium prausnitzii. Five different arrangements have been identified for the genes of the central pathway involved in butyrate synthesis, while in most cases butyryl-CoA : acetate CoA-transferase, rather than butyrate kinase, appears to perform the final step in butyrate synthesis. Mechanisms have been proposed recently in non-gut Clostridium spp. whereby butyrate synthesis can result in energy generation via both substrate-level phosphorylation and proton gradients. Here we suggest that these mechanisms also apply to the majority of butyrate producers from the human colon. The roles of these bacteria in the gut community and their influence on health are now being uncovered, taking advantage of the availability of cultured isolates and molecular methodologies. Populations of F. prausnitzii are reported to be decreased in Crohn's disease, for example, while populations of Roseburia relatives appear to be particularly sensitive to the diet composition in human volunteer studies.

1,529 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202374
2022149
2021171
2020181
2019277
2018308