Showing papers in "Fermentation in 2023"
TL;DR: In this paper , the authors provide new research ideas for the improvement and optimization of terpenes in various industries, especially in the development and utilization of the Chinese baijiu industry.
Abstract: Terpenes are compounds that include monoterpenes, sesquiterpenes, diterpenes, and terpenes, where isoprene is the basic structural unit of multiple oxygenated hydrocarbons. Terpenes are often found in plants, especially in some Zingiberaceae or tulips, and they have been obtained by direct extraction, chemical synthesis, and microorganisms. They exhibit anti-bacterial, anti-viral, anti-oxidant, and analgesic activity, aid digestion, and have other biological activities. Terpenes are widely used as factors in food health and as anti-cancer treatments. They are used especially as active substances in fermented Chinese baijiu products and gives Chinese baijiu its fruity aroma. To a certain extent, terpenes affect the quality of baijiu. In pharmaceutical products, terpenes, especially limonene and elemene, have strong biological activity that reduces the mitosis of tumor cells, induces tumor cell apoptosis, and inhibits tumor cell growth. However, the low yield of terpenes limits its application. Therefore, we review the sources of terpenes, focus on the biosynthesis pathway of sesquiterpenes, and explore the latest research progress on terpenes that play a biologically active and functional role in fermented products and pharmaceutical products, especially in the development and utilization of the Chinese baijiu industry. We provide new research ideas for the improvement and optimization of terpenes in various industries.
5 citations
TL;DR: The rumen of ruminants, as well as the colon of monogastric animals, are inhabited by over one trillion bacteria, fungi, and protozoa, and these are emerging as critical regulators in dietary micronutrients and animal health as discussed by the authors .
Abstract: The rumen of ruminants, as well as the colon of monogastric animals, are inhabited by over one trillion bacteria, fungi, and protozoa, and these are emerging as critical regulators in dietary micronutrients and animal health [...]
5 citations
TL;DR: In this article , a summary review on the factors affecting carotenoid production, cost-effective production strategies using various inexpensive feedstock, metabolic engineering, and strain improvisation is presented.
Abstract: Carotenoid production from oleaginous red yeast has been considered as a safe alternative to chemically synthesized carotenoids commonly used in the food industry, since plant-based carotenoids are expensive and an irregular source for obtaining pigments. This is a summative review on the factors affecting carotenoid production, cost-effective production strategies using various inexpensive feedstock, metabolic engineering, and strain improvisation. The review specially highlights the various potential applications of carotenoids as anti-microbial, anti-viral, antioxidant, anti-cancerous, anti-malarial agents, etc. The importance of such natural and easily available resources for prevention, evasion, or cure of emerging diseases and their plausible nutraceutical effect demands exhaustive research in this area.
4 citations
TL;DR: In this article , the authors summarized the recent studies of UDP-glycosyltransferases, including their structures, functions, and catalytic mechanism, especially in edible fungi, and the future perspectives and new challenges were also summarized to understand of their structure-function relationships.
Abstract: UDP-glycosyltransferases (UGTs) are the most studied glycosyltransferases, and belong to large GT1 family performing the key roles in antibiotic synthesis, the development of bacterial glycosyltransferase inhibitors, and in animal inflammation. They transfer the glycosyl groups from nucleotide UDP-sugars (UDP-glucose, UDP-galactose, UDP-xylose, and UDP-rhamnose) to the acceptors including saccharides, proteins, lipids, and secondary metabolites. The present review summarized the recent of UDP-glycosyltransferases, including their structures, functions, and catalytic mechanism, especially in edible fungi. The future perspectives and new challenges were also summarized to understand of their structure–function relationships in the future. The outputs in this field could provide a reference to recognize function, structure, and catalytic mechanism of UDP-glycosyltransferases for understanding the biosynthesis pathways of secondary metabolites, such as hydrocarbons, monoterpenes, sesquiterpene, and polysaccharides in edible fungi.
4 citations
TL;DR: In this article , a local strain of Aspergillus niger was used for solid-state fermentation to produce fungal laccase, as well as purify and optimize laccases.
Abstract: The large family of enzymes, known as polyphenols oxidases, includes laccase. Due to the inclusion of a copper atom in their catalytic core, laccases are frequently referred to as multi-copper oxidases. Laccases are versatile enzymes that can catalyze the oxidation of a wide range of phenolic and non-phenolic substances. In the current study, a local strain of Aspergillus niger was used for solid-state fermentation to produce fungal laccase, as well as purify and optimize laccase. The enzyme profile, which was acquired using guaiacol to measure enzyme activity, showed that after five days of incubation, wheat straw provided the highest level of laccase activity, or 2.551 U/mL. A technique called response surface methodology (RSM) was used to examine the effects of various conditions on the production of enzymes. The RSM results demonstrated that after five days of incubation, the enzyme activity was at its highest at 45 °C, pH 5.5, and 30% moisture level, inoculated with 2 mL mycelium. Through ammonium sulphate precipitation and dialysis, the enzyme was purified. Additionally, column chromatography was used to further purify laccase. The next step was enzyme characterization to evaluate how temperature and pH affected enzyme activity. At 45 °C and pH 5.5, the isolated enzyme produced its highest level of activity. The findings of the current study showed that A. niger is capable of producing laccase in an economical and environmentally friendly way. Due to its unique oxidative and catalytic features, this enzyme has received a lot of attention recently.
4 citations
TL;DR: In this article , Limosilactobacillus fermentum and Lacticaseibacillus rhamnosus PTCC 1637 were used alone and in combination to ferment quinoa seeds, and the effect of fermentation on the pH, total phenols, tocopherols, vitamin C, antioxidant activity, and enzymes inhibition (α-amylase and α-glucosidase; antidiabetic effect) was investigated.
Abstract: In this study, Limosilactobacillus fermentum PTCC 1638 and Lacticaseibacillus rhamnosus PTCC 1637 were used alone and in combination to ferment quinoa seeds, and the effect of fermentation (37 °C; 24 h) on the pH, total phenols, tocopherols, vitamin C, antioxidant activity, and enzymes inhibition (α-amylase and α-glucosidase; antidiabetic effect) was investigated. The results showed that with the increase in the fermentation time, the bacterial population, total phenols, antioxidant activity, and enzymes inhibition increased, which showed the greatest increase for the co-culture of L. rhamnosus and L. fermentum compared to the pure culture of each strain. Due to the increase in the fermentation time, the tocopherol isomers (α, β, γ, and δ), vitamin C, and pH decreased, and the largest decrease was related to the co-culture of the strains, followed by L. rhamnosus and L. fermentum. The results of this study showed that the co-culture and pure culture of bacteria can have different effects on the physicochemical properties and bioactive compounds of quinoa seeds.
4 citations
TL;DR: In this paper , the application of bacteriophages in fermented foods is discussed, which will help to better control the food fermentation process in the future and promote its further development by the food industry.
Abstract: Phage ecology has attracted increasing attention in recent years. Fermented foods have rich and diverse microbial communities, which are not only the creators of the unique flavors in food, but also good hosts for bacteriophages. However, at present, much is known about the bacterial and fungal communities and their functions in fermented foods, but little is known about the bacteriophages that inhabit the bacteria. This article reviews recent findings on phage diversity in fermented foods, highlighting how these organisms influence and relate to the dynamics of microbial communities in fermented foods. The application of bacteriophages in fermented food is also discussed, which will help to better control the food fermentation process in the future and promote its further development by the food industry.
4 citations
TL;DR: In this article , the authors demonstrated the bioconversion of lignocellulosic byproduct corn stover (CS) to the value-added fermentative product L-lactic acid using the furfural tolerant Enterococcus mundtii WX1 and Lactobacillus rhamnosus SCJ9.
Abstract: This study demonstrated the bioconversion of lignocellulosic by-product corn stover (CS) to the value-added fermentative product L-lactic acid using the furfural tolerant Enterococcus mundtii WX1 and Lactobacillus rhamnosus SCJ9. The efficacy of dilute acid pretreatment by sulfuric and formic acids varying from 1% to 4% (v/v) concentration was compared. CS pretreated with 1% (v/v) sulfuric acid was selected for L-LA fermentation regarding the highest efficacy of fermentable sugar release when combined with the enzymatic hydrolysis process. Optimal conditions achieved a highest sugar release of 24.5 g/L glucose and 11.2 g/L of xylose from 100 g/L pretreated CS with 1% (v/v) sulfuric acid at 121 °C for 30 min, followed by enzymatic hydrolysis with Cellic CTec2 30 FPU/g pretreated CS at 50 °C for 48 h. The maximum L-LA titer, yield, and average productivity reached 31.4 g/L, 0.90 g/g, and 1.73 g/L/h, respectively. Moreover, addition of a hemicellulose-degrading enzyme complex combined with Cellic CTec2 led to an increase in xylose release, which resulted in a higher L-LA titer of 36.7 g/L at 48 h fermentation. Moreover, the purification of LA from culture broth by a process of electrodialysis with 331 g/L of LA and purity of 99.7% (w/w), was successful, with an optically pure L-LA of 99.9%. This study not only presents a feasible process for L-LA production from lignocellulose hydrolysate derived from abundant corn stover; this study also showed an alternative approach for solving the problem of haze air pollution caused by inappropriate management of corn production residuals.
3 citations
TL;DR: In this paper , the authors evaluated the effect of solid-state fermentation with different edible mushroom mycelia (Pleurotus ostreatus, Hericium erinaceus, and Flammulina velutipes) on the proximate composition, antioxidant properties, and physicochemical properties of fermented soybean meal powder (SP).
Abstract: Soybean meal is a class of by-products obtained from the processing of soybean products. Despite its high nutritional value, the presence of glycoside isoflavones limits human use of soybean meal. This study evaluated the effect of solid-state fermentation (SSF) with different edible mushroom mycelia (Pleurotus ostreatus, Hericium erinaceus, and Flammulina velutipes) on the proximate composition, antioxidant properties, and physicochemical properties of fermented soybean meal powder (SP). The results revealed that fermented SP had a higher nutritional value when compared to SP. P. ostreatus was the most pronounced among the three species. Crude protein content was found to have increased by 9.49%, while the concentration of glutamate and aspartic acid increased by 23.39% and 23.16%, respectively. SSF process significantly increased the total polyphenol content (TPC) and aglycone isoflavone content by 235.9% and 324.12%, respectively, resulting in increased antioxidant activity (evaluated by the DPPH, •OH, ABTS+ assays). Microstructural changes in fermented SP and nutrient degradation and utilization were observed. Thus, fermented SP can be used as a raw material with enhanced nutritional properties to develop new functional foods, such as plant-based foods represented by plant meat. It provides a promising approach for increasing the added value of soybean meal.
3 citations
TL;DR: In this article , a review of published studies on the functionality and nutraceutical properties of kefir is presented based on the review of articles on the functional and nutritional properties of kefir.
Abstract: Kefir is a fermented milk beverage different in consistency and taste from other popular milk-product yogurt. Unlike yogurt prepared using lactic acid bacteria in fermentation, milk is fermented for kefir production using preculture in the form of kefir grains. Therefore, the metabolic activities of a mixed culture, including strains of bacteria and yeast, contribute to the probiotic characteristics in kefir. This article is based on the review of published studies on the functionality and nutraceutical properties of kefir. The therapeutic and dietary properties of kefir beverage and its probiotic strains have been discussed for their several health benefits. Concise selected information mostly from recent reports has been presented for two categories of kefir products: milk used for the production of dairy-based traditional kefir beverages for the lactose-tolerant population, and the plant-sourced substrates used for the production of dairy-free kefir beverages for lactose-intolerant and vegan consumers.
3 citations
TL;DR: A model for the large-scale production of postbiotics and their uses in cosmetic formulations are reviewed in this paper , where results obtained from in vivo tests for the treatment of alopecia, acne, atopic dermatitis, and wound healing are discussed.
Abstract: The skin microbiome is composed of a complex association of bacteria, fungi, and viruses. The maintenance of skin commensal microbes is essential for preventing the overgrowth of pathogenic microorganisms or already present opportunistic pathogens. Thus, the development of bioactive compounds capable of modulating skin microbiome has become an important topic for both researchers and the cosmetic industry. Increasingly, scientific evidence highlights that metabolites derived from probiotics have a great potential to prevent diseases affecting the skin. These compounds have recently been called postbiotics and are defined as a “preparation of inanimate microorganisms and/or their components that confers a health benefit on the host”. Postbiotics are obtained from fermentations performed almost exclusively by lactic acid bacteria and yeast. Short-chain fatty acids, bacteriocins, and organic acids are some examples of postbiotics. These compounds exhibit antimicrobial, immunomodulatory, antioxidant, and anti-inflammatory activities. In addition, postbiotic production possesses technological advantages, including high stability and increased safety, compared to viable probiotics. In this article, a model for the large-scale production of postbiotics and their uses in cosmetic formulations are reviewed. In addition, results obtained from in vivo tests for the treatment of alopecia, acne, atopic dermatitis, and wound healing are discussed. Finally, technological advances are shown based on a survey of the main patents filed in the area of postbiotics.
TL;DR: In this article , the authors describe a new and successful method for overcoming this challenge by improving the nutritional-functional properties of LP, particularly their solubility and protein quality, by combining protein complexation with water kefir-assisted fermentation.
Abstract: Highly nutritious lentil proteins (LP) have recently attracted interest in the food industry. However, due to their low solubility, extensive application of LP is severely limited. This study describes a new and successful method for overcoming this challenge by improving the nutritional–functional properties of LP, particularly their solubility and protein quality. By combining protein complexation with water kefir-assisted fermentation, the water solubility of native LP (~58%) increases to over 86% upon the formation of lentil–casein protein complexes (LCPC). Meanwhile, the surface charge increases to over −40 mV, accompanied by alterations in secondary and tertiary structures, as shown by Fourier-transform infrared and UV-vis spectra, respectively. In addition, subjecting the novel LCPC to fermentation increases the protein digestibility from 76% to over 86%, due to the reduction in micronutrients that have some degree of restriction with respect to protein digestibility. This approach could be an effective and practical way of altering plant-based proteins.
TL;DR: In this paper , the influence of fermentation on sugar/FODMAP/acid compositions and microbial metabolites in barley rootlets was analyzed and a variety of techno-functional properties were also evaluated.
Abstract: Repurposing by-products to alternative applications has become a vital part of food research. Barley rootlets (BRs) are a side-stream of malting and brewing industries. This study focuses on processing BRs into food ingredients, using fermentation with five lactic acid bacteria (LAB) as a valorisation technique. The strains used were Lactiplantibacillus plantarum FST 1.7, Lactobacillus amylovorus FST2.11, Weissella cibaria MG1, Leuconostoc citreum TR116 and Limosilactobacillus reuteri R29. The influence of fermentation on sugar/FODMAP/acid compositions and microbial metabolites in BRs was analysed. A variety of techno-functional properties were also evaluated. Results showed BRs were a suitable substrate for LAB, particularly for Lactiplantibacillus plantarum FST 1.7 and Lactobacillus amylovorus FST2.11. Sugar, acid and the FODMAP composition of the fermented BRs demonstrated various traits imparted by LABs, including high mannitol production from Leuconostoc citreum TR116 and Limosilactobacillus reuteri R29. Limosilactobacillus reuteri R29 also produced fructans using BRs as a substrate. A techno-functional analysis of BRs showed a significant reduction in α-amylase activity post sterilisation and fermentation. Fermentation reduced water-binding capacity and significantly increased oil-binding capacity. The LAB used displayed great potential in improving the functionality of BRs as a food ingredient while also showcasing LAB fermentation as a viable processing aid for BR valorisation.
TL;DR: In this article , the potential of oil palm biomass utilisation to synthesise succinic acid and its associated bioplastics is discussed, and several recommendations are made for the challenges of manufacturing succinic acids from palm oil.
Abstract: Plastic pollution has placed a significant emphasis on the need for synthesising bioplastics, such as polybutylene succinate (PBS), which is derived from succinic acid. Furthermore, environmental concerns and the depletion of non-renewable fossil fuels have initiated an interest in exploring the biotechnological route of succinic acid production via fermentation. Consequently, oil palm biomass might be a prospective substitute for the costlier pure carbon source, which is more sustainable and cost-effective due to its abundance and high lignocellulosic content. The current review focuses on the potential of oil palm biomass utilisation to synthesise succinic acid and its associated bioplastics. The pretreatment and hydrolysis of various oil palm biomass and studies on bioplastics generation from oil palm biomass are also discussed. This review also identified the challenges of manufacturing succinic acid from oil palm biomass and included several recommendations.
TL;DR: In this paper , several advanced catalytic methods for the valorization of food waste have been widely investigated for the production of liquid bio-fuels for reducing environmental pollution and dependency on petroleum-based fuels.
Abstract: Waste valorization is an important strategy to reduce environmental pollution and dependency on petroleum-based fuels. In this regard, utilization of food waste as a versatile and low-cost resource is important. Several advanced catalytic methods for the valorization of food waste have been widely investigated for the production of liquid biofuels. Along this line, chemical catalysts have been explored for the synthesis of liquid biofuels. Chemo-catalysis is mainly metal based, which requires harsh process conditions. Alternatively, biocatalysts are currently being investigated as a result of several advantages such as mild reaction conditions, recyclability, selectivity and biodegradability. In this work, recent biocatalytic technologies for the preparation of liquid biofuels through food waste valorization are discussed thoroughly. Lipases are employed for the synthesis of biodiesel and the upgradation of bio-oil, whereas methane mono-oxygenases could be explored for the production of methanol via the oxidation of methane generated from food wastes. Industrial production of ethanol from food waste using bioconversion technologies is a success story. To date, there has been no specific report on the use of food waste for propanol preparation using enzymes. The ABE process (Acetone–Butanol–Ethanol) (using suitable microorganisms) is used for butanol preparation, where the vacuum stripping system is integrated to remove butanol from the broth and circumvent inhibition. The synthesis of hydrocarbon fuels from fatty acids and triglycerides can be carried out using enzymes, such as carboxylic acid reductase and fatty acid photodecarboxylase (an algal photoenzyme). Both carboxylic acid reductase and fatty acid photodecarboxylase have not yet been applied in the direct valorization of food wastes. Furthermore, limitations of the reported methods, societal and economic aspects and a fresh perspective on the subject, along with important examples, are described.
TL;DR: The effect of farnesol, a sesquiterpene alcohol, on the production of laccases by Trametes versicolor and Pycnoporus sanguineus in pineapple waste solid state fermentation was evaluated as mentioned in this paper .
Abstract: The effect of farnesol, a sesquiterpene alcohol, on the production of laccases by Trametes versicolor and Pycnoporus sanguineus in pineapple waste solid-state fermentation was evaluated. Extracellular laccase production reached a maximum of 77.88 ± 5.62 U/g (236% above control) in farnesol-induced cultures of T. versicolor on the 17th day, whereas in a similar P. sanguineus culture, a maximal laccase activity of 130.95 ± 2.20 U/g (159% increase) was obtained on the 17th day. A single 45 KDa laccase was produced by both fungi under the influence of farnesol. These and other data allow us to conclude that farnesol acted as an inducer of the same form of laccase in both fungi. Farnesol disfavored fungal growth by increasing the lag phase, but it also clearly improved the oxidative state of the cultures. Contrary to the results obtained previously in submerged cultures, farnesol did not promote hyperbranching in the fungal mycelia. This is the first demonstration that farnesol is an excellent inducer of laccases in T. versicolor and P. sanguineus in solid-state cultivation. In quantitative terms, the results can be regarded as an excellent starting point for developing industrial or at least pre-industrial procedures to produce laccases using T. versicolor and P sanguineus under the stimulus of farnesol.
TL;DR: In this article , the influence of the growth medium (MRS broth, whole milk, and skim milk), culture age (1 day and 7 days old) and ultrasound parameters (time and amplitude) on the kinetic parameters of L. acidophilus was investigated.
Abstract: The growth pattern of probiotics can be modified by changing their nutritional factors and their physiological stage. Meanwhile, high intensity ultrasound (HIUS) can be employed to increase probiotics’ biomass. The one-factor-at-a-time (OFAT) approach was employed to investigate the influence of the growth medium (MRS broth, whole milk, and skim milk), culture age (1 day and 7 days old) and ultrasound parameters (time and amplitude) on the kinetic parameters of L. acidophilus. The oldest culture (7 days) had a greater lag phase and time to reach the end of the sigmoidal curve (Tmax) (p < 0.05) as well as a lower rate (maximum growth potential μmax) compared to the youngest culture (1 day). Regarding the growth medium, skim milk presented the greatest L. acidophilus counts (p < 0.05). Meanwhile, sonication times (60 and 90 s) change µmax and Tmax. When 30% amplitude was applied, a greater μmax and a smaller Tmax were observed (p < 0.05). It can be concluded that the growth medium, culture age, and ultrasound parameters (time and amplitude) influence the kinetic parameters of L. acidophilus. Results from this study could be used in the design and optimization of processes to improve the growth of the probiotic L. acidophilus at industrial scale.
TL;DR: In this paper , an improved model-based calibration (IMBC) approach is presented that calibrates a chemometric model for only biomass, which can be carried out with only 2D fluorescence spectra gathered from prior runs, is an effective method for estimating the process state online.
Abstract: The use of 2D fluorescence spectra is a powerful, instantaneous, and highly accurate method to estimate the state of bioprocesses. The conventional approach for calibrating a chemometric model from raw spectra needs a large number of offline measurements from numerous runs, which is tedious, time-consuming, and error-prone. In addition, many process variables lack direct signal responses, which forces chemometric models to make predictions based on indirect responses. In order to predict glycerol and biomass concentrations online in batch cultivation of Hansenula polymorpha, this study substituted offline measurements with simulated values. The only data from cultivations needed to generate the chemometric model were the 2D fluorescence spectra, with the presumption that they contain sufficient information to characterize the process state at a measurement point. The remainder of the evaluation was carried out with the aid of a mathematical process model that describes the theoretical interferences between process variables in the system. It is shown that the process model parameters, including microbial growth rate, the yield of biomass from glycerol, and lag time can be determined from only the spectra by employing a model-based calibration (MBC) approach. The prediction errors for glycerol and biomass concentrations were 8.6% and 5.7%, respectively. An improved model-based calibration (IMBC) approach is presented that calibrates a chemometric model for only biomass. Biomass was predicted from a 2D fluorescence spectrum in new cultivations, and glycerol concentration was estimated from the process model utilizing predicted biomass as an input. By using this method, the prediction errors for glycerol and biomass were reduced to 5.2% and 4.7%, respectively. The findings indicate that model-based calibration, which can be carried out with only 2D fluorescence spectra gathered from prior runs, is an effective method for estimating the process state online.
TL;DR: In this paper , a combination of wasted tea trash, sugarcane vinasse and food waste may be a viable source for biomethane generation from carbon-rich biowaste.
Abstract: In this work, sugarcane vinasse combined with organic waste (food and wasted tea) was demonstrated to be an excellent source of biomethane synthesis from carbon-rich biowaste. The discarded tea trash might be successfully used to generate bioenergy. The uncertainties and costs associated with experimental testing were recommended to be decreased by the effective use of contemporary machine learning methods such as Gaussian process regression. The training hyperparameters are crucial in the construction of a robust ML-based model. To make the process autoregressive, the training hyperparameters were fine-tuned by employing the Bayesian approach. The value of R2 was found to be greater during the model test phase by 0.72%, assisting in the avoidance of model overtraining. The mean squared error was 36.243 during the model training phase and 21.145 during the model testing phase. The mean absolute percentage error was found to be under 0.1%, which decreased to 0.085% throughout the model’s testing phase. The research demonstrated that a combination of wasted tea trash, sugarcane vinasse and food waste may be a viable source for biomethane generation. The contemporary methodology of the Bayesian approach for hyperparameters tuning for Gaussian process regression is an efficient method of model prediction despite the low correlation across data columns. It is possible to enhance the sustainability paradigm in the direction of energy security via the efficient usage of food and agroforestry waste.
TL;DR: In this paper , the effect of storing rumen fluid (RF) at −20 °C (−80 °C) and mixing RF with 5% dimethyl sulfoxide (DMSO) was investigated.
Abstract: Storing rumen fluid (RF) has the potential to standardize subsequent in vitro feed fermentation studies. The first phase of this experiment aimed to evaluate the effect of two RF storage methods on gas composition and dry matter disappearance (DMD) in wheat grain and lucerne hay under in vitro fermentation. The storage methods were as follows: (1) snap-freezing RF using liquid nitrogen and then storing it at −80 °C (−80 °C); and (2) mixing RF with 5% dimethyl sulfoxide (DMSO), subsequently freezing it at −20 °C (D−20 °C), and comparing it to fresh RF on days 1, 14, and 30 post collection. The objective of the second phase was to quantify the impact of preserving the RF for 180 days at D−20 °C on the in vitro fermentation parameters. The methane composition was lower (p < 0.001) in both the preserved RFs than in the fresh RF. There was no difference (p < 0.05) in DMD values between days 14 and 30. The average cumulative gas production and DMD from the RF stored at D−20 °C was higher than that from the RF stored at −80 °C. Moreover, there was no difference between day 30 and day 180 in the total gas production and lag time when fermenting with RF preserved at D−20 °C. Therefore, storing RF at D−20 °C is preferable to storing it at −80 °C when access to fresh RF is limited.
TL;DR: In this article , the authors proposed an alternative for Talaromyces atroroseus GH2 biomass re-utilization to produce pigments through consecutive batches using immobilized mycelium.
Abstract: Pigments of natural origin have become a research trend, and fungi provide a readily available alternative source. Moreover, developing novel processes that increase yields, reduce process time and simplify downstream processing is of increased interest. In this sense, this work proposes an alternative for Talaromyces atroroseus GH2 biomass re-utilization to produce pigments through consecutive batches using immobilized mycelium. Different support materials were evaluated for pigment production and immobilization capacity. Then, Taguchi’s method was applied to determine the effect of four factors related to fungal immobilization and pigment production (inoculum concentration, support density, working volume and support volume). Afterward, process kinetics for pigment production using immobilized cells of T. atroroseus GH2 in consecutive batches were evaluated. All evaluated factors were significant and affected pigment production and microorganism growth differently. At improved conditions, immobilization capacity reached 99.01 ± 0.37% and the pigment production was 30% higher than using free cells. Process kinetics showed that the production could continue for three batches and was limited by excessive microorganism growth. Indeed, more studies are still needed, but the immobilization of Talaromyces atroroseus GH2 represents a promising strategy for allowing downstream-processing intensification since immobilized biomass is easily removed from the fermentation media, thus paving the way for the further development of a continuous process.
TL;DR: In this article , a two-stage process scheme for cheese whey valorization through energy recovery in different forms by means of bio-electrochemical systems was investigated, which combined dark fermentation with an electrochemical system with the aim of overcoming the typical thermodynamic/biochemical limitations of fermentation and enhancing H2 recovery.
Abstract: The present work investigates a two-stage process scheme for cheese whey valorization through energy recovery in different forms by means of bio-electrochemical systems. The first stage consisted of an integrated bio-electrochemical process for H2 and electricity production. This combined dark fermentation with an electrochemical system with the aim of overcoming the typical thermodynamic/biochemical limitations of fermentation and enhancing H2 recovery. The second treatment stage involved a single-chamber microbial fuel cell, featuring an innovative configuration consisting of four air cathodes with fly ash as the oxygen reduction catalyst. The bio-electrochemical process performed in the first stage achieved promising results, displaying a three-times higher H2 production yield compared to conventional dark fermentation. In addition, the experiments using the MFC in the second stage were found to successfully exploit the effluent from the first stage, with COD removal yields of 86% ± 8% and energy recovery with a maximum current output of 1.6 mA and a maximum power density of 1.2 W/m3.
TL;DR: In this paper , chemical, nutritional, microbial, and aromatic profiles of kombucha beverages prepared with strawberry tree (Arbutus unedo) fruits fermented with three different SCOBYs for 21 days were analyzed.
Abstract: The use of alternative ingredients in the production of kombucha has seen a recent increase. Our research aimed to characterize the chemical, nutritional, microbial, and aromatic profiles of kombucha beverages prepared with strawberry tree (Arbutus unedo) fruits fermented with three different SCOBYs for 21 days. The analyses showed similar levels of microbiological groups (aerobic mesophilic microorganisms, lactic acid bacteria, acetic acid bacteria, and yeasts)among the SCOBYs used. The beverages studied displayed a decrease in pH value and carbohydrate content, and protein degradation was also observed as fermentation progressed. However, the increase in total phenolic compounds during the first week proved to be a point of interest. A total of 20 volatile organic compounds were detected, giving different sensory qualities to the beverages: higher ethanol, benzaldehyde-4-ethyl, or acetic acid depending on the SCOBY used. The results obtained indicated that strawberry tree kombucha might be an alternative beverage with notable nutritional and aromatic properties, with fermentation time and SCOBY composition being identified as crucial factors.
TL;DR: In this article , the authors used Acremonium cellulase (AC) and two cyanide-utilizing bacterial inoculants (Enterococcus feacium KKU-BF7 (BF7) and E. gallinarum KkU-BC10 (BC10)) to determine the cyanide removal efficiency, silage quality, and in vitro rumen fermentation of fresh cassava roots.
Abstract: Cyanide is a strong toxin in many tropical forage plants that can negatively affect ruminants. The aim of this study is to determine the cyanide removal efficiency, silage quality, and in vitro rumen fermentation of fresh cassava roots ensiled without an additive (control) and with Acremonium cellulase (AC), two cyanide-utilizing bacterial inoculants (Enterococcus feacium KKU-BF7 (BF7) and E. gallinarum KKU-BC10 (BC10)), and their combinations (BF7 + BC10, AC + BF7, AC + BC10 and AC + BF7 + BC10). A completely randomized design was used with eight treatments × four small-scale silo replicates. Additionally, extra silage samples (seven silos/treatment for individually opening after 0, 1, 3, 5, 7, 15, and 30 days of ensiling) were added to observe the changes in the total cyanide concentration and pH value. The fresh cassava root contained an optimal number of lactic acid bacteria (105 colony forming units/g fresh matter), and the contents of dry matter (DM) and total cyanides were 30.1% and 1304 mg/kg DM, respectively. After 30 days of ensiling, all silages demonstrated a low pH (<3.95; p < 0.01). Cyanide content ranged from 638 to 790 mg/kg DM and was highest in the control (p < 0.01). The addition of BF7 + BC10 increased the crude protein (CP) content (p < 0.01). The addition of AC decreased the fibrous contents (p < 0.01). The control had less acetic acid and propionic acid contents (p < 0.01) and a greater butyric acid content (p < 0.01). However, the degrees of in vitro DM digestibility (IVDMD) and gas production were similar among treatments. Methane production ranged between 29.2 and 33.3 L/kg IVDMD (p < 0.05), which were observed in the AC + BC10 and BF7 + BC10 treatments, respectively. Overall, our results suggested that the cyanide removal efficiency after 30 days of ensiling with good-quality cassava-root silage was approximately 39% of the initial value. The enterococci inoculants and/or AC could improve the ensiling process and cyanide removal efficiency (increasing it to between 47 and 51% of the initial value). The novel enterococci inoculants (BF7 + BC10) were associated with a decreased cyanide content and an increased CP content. They appeared to promote the methanogenesis potential of the cassava root silage. More research is required to validate the use of cyanide-utilizing bacterial inoculants in cyanogenetic plants, bioenergy fermentation, and livestock.
TL;DR: In this paper , the physiological effect of cultivating yeast in spruce hydrolysate was comprehensively studied by assessment of yeast performance in simultaneous saccharification and fermentation (SSF), measurement of furaldehyde reduction activity, assessment of conversion of phenolic compounds and genome-wide transcription analysis.
Abstract: Economically feasible bioethanol process from lignocellulose requires efficient fermentation by yeast of all sugars present in the hydrolysate. However, when exposed to lignocellulosic hydrolysate, Saccharomyces cerevisiae is challenged with a variety of inhibitors that reduce yeast viability, growth, and fermentation rate, and in addition damage cellular structures. In order to evaluate the capability of S. cerevisiae to adapt and respond to lignocellulosic hydrolysates, the physiological effect of cultivating yeast in the spruce hydrolysate was comprehensively studied by assessment of yeast performance in simultaneous saccharification and fermentation (SSF), measurement of furaldehyde reduction activity, assessment of conversion of phenolic compounds and genome-wide transcription analysis. The yeast cultivated in spruce hydrolysate developed a rapid adaptive response to lignocellulosic hydrolysate, which significantly improved its fermentation performance in subsequent SSF experiments. The adaptation was shown to involve the induction of NADPH-dependent aldehyde reductases and conversion of phenolic compounds during the fed-batch cultivation. These properties were correlated to the expression of several genes encoding oxidoreductases, notably AAD4, ADH6, OYE2/3, and YML131w. The other most significant transcriptional changes involved genes involved in transport mechanisms, such as YHK8, FLR1, or ATR1. A large set of genes were found to be associated with transcription factors (TFs) involved in stress response (Msn2p, Msn4p, Yap1p) but also cell growth and division (Gcr4p, Ste12p, Sok2p), and these TFs were most likely controlling the response at the post-transcriptional level.
DOI•
TL;DR: In this article , a combination of alkaline and heat pretreatments with zero-valent iron (ZVI) was used to increase the methane production in batch and continuous systems.
Abstract: Pretreatment with the addition of metals to anaerobic digestion in biogas production is crucial to address improper degradation of organic compounds with low methane production. Biogas production from a combination of cassava pulp and cassava wastewater in the batch system under the variation of alkaline and heat conditions as a pretreatment was investigated with the zero-valent iron (ZVI) addition after the pretreatment. It was found that alkaline pretreatment at pH 10 with the heat at 100 °C for 30 min combined with 50 g of ZVI kg of TVS−1 showed the highest methane production up to 4.18 m3 CH4 kg TVS−1. Nevertheless, chemical oxygen demand (COD) and volatile fatty acid (VFA) removals were slightly reduced when ZVI was added to the system. Furthermore, application in the continuous system showed increased COD and VFA removals after applying alkaline and heat pretreatments. On the other hand, additional ZVI in the substrate after the pretreatments in the continuous system increased the methane production from 0.58 to 0.90 and 0.19 to 0.24 of CH4 m3 kg TVS−1 in 20 and 60 days of hydraulic retention times (HRTs), respectively. Thus, a suitable combination of alkaline and heat pretreatments with ZVI is essential for increasing methane production in batch and continuous systems.
TL;DR: In this article , six substrates were studied to determine their biomethane potential (BMP) in anaerobic digestion, and a kinetics analysis using first-order and Gompertz models was performed for biodegradation and methane production.
Abstract: Solid waste is one of the largest sources of greenhouse gases (GHGs) today. The carbon footprint of landfills also has a large impact on global warming. Therefore, it is becoming more urgent to study the possibility of better environmentally friendly approaches for solid waste management and its safe disposal. The digestion of solid waste is a biological process that breaks down the organic content of the solid waste and thus stabilizes it. It also allows the recovery of valuable resources (such as biogas) and the utilization of stabilized waste in various industries. In this study, six substrates were studied to determine their biomethane potential (BMP) in anaerobic digestion. The substrates were fermented and digested anaerobically, and the biogas production was measured. The methane yield of food waste substrates had a higher methane yield between 354 and 347 mL/g-TCOD, and a biodegradability of 89–87%. Wastewater sludge substrates yielded between 324 and 288 mL/g-TCOD with a biodegradability of 81–73%. A kinetics analysis using first-order and Gompertz models was performed for biodegradation and methane production.
TL;DR: In this paper , whey protein (2.6% w/w) was added to pineapple waste in order to make up for the protein deficiency of the raw material and give the final products better flavor characteristics.
Abstract: Value-added utilization of pineapple waste is very import for the food industry and environmental protection. In this study, whey protein (2.6%, w/w) was added to pineapple waste in order to make up for the protein deficiency of the raw material and give the final products better flavor characteristics. Autochthonous Lactococcus lactis LA5 and Hanseniaspora opuntiae SA2 were used for the co-inoculation of pineapple by-products; during fermentation, the metabolite profiling and microbial community dynamics were investigated. Results showed that the contents of organic acids, total FAAs, total phenolic compounds and flavonoids significantly increased with fermentation, and 152 kinds of peptides were identified in the final products. Relevant analyses demonstrated that dominant strains including Lactococcus lactis, Hanseniaspora and Saccharomyces not only significantly promoted the accumulation of organic acids, total phenols and other active substances, but also inhibited the growth of pathogenic bacteria and further influenced the fermentation process of pineapple waste.
TL;DR: In this article , the main steps of sourdough fermentation, the microorganisms involved, and advances in bread production with functional properties are discussed, the impact of probiotics on human health, the metabolites produced, and the main microbial enzymes used in the bakery industry are also discussed.
Abstract: Sourdough fermentation is an ancient technique to ferment cereal flour that improves bread quality, bringing nutritional and health benefits. The fermented dough has a complex microbiome composed mainly of lactic acid bacteria and yeasts. During fermentation, the production of metabolites and chemical reactions occur, giving the product unique characteristics and a high sensory quality. Mastery of fermentation allows adjustment of gluten levels, delaying starch digestibility, and increasing the bio-accessibility of vitamins and minerals. This review focuses on the main steps of sourdough fermentation, the microorganisms involved, and advances in bread production with functional properties. The impact of probiotics on human health, the metabolites produced, and the main microbial enzymes used in the bakery industry are also discussed.
TL;DR: Functional foods offer positive effects on health beyond basic nutrition as mentioned in this paper , and they offer a positive effect on the overall health beyond the basic nutrition, beyond basic foods beyond basic food.
Abstract: Functional foods offer positive effects on health beyond basic nutrition [...]