scispace - formally typeset
Search or ask a question

Showing papers in "Fly in 2012"


Journal ArticleDOI
01 Apr 2012-Fly
TL;DR: It appears that the 5′ and 3′ UTRs are reservoirs for genetic variations that changes the termini of proteins during evolution of the Drosophila genus.
Abstract: We describe a new computer program, SnpEff, for rapidly categorizing the effects of variants in genome sequences. Once a genome is sequenced, SnpEff annotates variants based on their genomic locations and predicts coding effects. Annotated genomic locations include intronic, untranslated region, upstream, downstream, splice site, or intergenic regions. Coding effects such as synonymous or non-synonymous amino acid replacement, start codon gains or losses, stop codon gains or losses, or frame shifts can be predicted. Here the use of SnpEff is illustrated by annotating ~356,660 candidate SNPs in ~117 Mb unique sequences, representing a substitution rate of ~1/305 nucleotides, between the Drosophila melanogaster w1118; iso-2; iso-3 strain and the reference y1; cn1 bw1 sp1 strain. We show that ~15,842 SNPs are synonymous and ~4,467 SNPs are non-synonymous (N/S ~0.28). The remaining SNPs are in other categories, such as stop codon gains (38 SNPs), stop codon losses (8 SNPs), and start codon gains (297 SNPs) in...

8,017 citations


Journal ArticleDOI
01 Mar 2012-Fly
TL;DR: The state of the art on aggression in Drosophila and the many opportunities provided by this model organism to unravel the genetic and neurobiological basis of aggression are reviewed.
Abstract: Aggressive behavior is widely present throughout the animal kingdom and is crucial to ensure survival and reproduction. Aggressive actions serve to acquire territory, food, or mates and in defense against predators or rivals; while in some species these behaviors are involved in establishing a social hierarchy. Aggression is a complex behavior, influenced by a broad range of genetic and environmental factors. Recent studies in Drosophila provide insight into the genetic basis and control of aggression. The state of the art on aggression in Drosophila and the many opportunities provided by this model organism to unravel the genetic and neurobiological basis of aggression are reviewed.

69 citations


Journal ArticleDOI
28 Sep 2012-Fly
TL;DR: Larval hematopoiesis is the first Drosophila model for blood cell colonization and niche support by the PNS, adding to the growing concept of nervous system dependence of hematoietic microenvironments and organ stem cell niches, which is being uncovered across phyla.
Abstract: Hematopoiesis is well-conserved between Drosophila and vertebrates Similar as in vertebrates, the sites of hematopoiesis shift during Drosophila development Blood cells (hemocytes) originate de novo during hematopoietic waves in the embryo and in the Drosophila lymph gland In contrast, the hematopoietic wave in the larva is based on the colonization of resident hematopoietic sites by differentiated hemocytes that arise in the embryo, much like in vertebrates the colonization of peripheral tissues by primitive macrophages of the yolk sac, or the seeding of fetal liver, spleen and bone marrow by hematopoietic stem and progenitor cells At the transition to the larval stage, Drosophila embryonic hemocytes retreat to hematopoietic “niches,” ie, segmentally repeated hematopoietic pockets of the larval body wall that are jointly shared with sensory neurons and other cells of the peripheral nervous system (PNS) Hemocytes rely on the PNS for their localization and survival, and are induced to proliferate in these microenvironments, expanding to form the larval hematopoietic system In this process, differentiated hemocytes from the embryo resume proliferation and self-renew, omitting the need for an undifferentiated prohemocyte progenitor Larval hematopoiesis is the first Drosophila model for blood cell colonization and niche support by the PNS It suggests an interface where innocuous or noxious sensory inputs regulate blood cell homeostasis or immune responses The system adds to the growing concept of nervous system dependence of hematopoietic microenvironments and organ stem cell niches, which is being uncovered across phyla

60 citations


Journal ArticleDOI
01 Oct 2012-Fly
TL;DR: An evolutionary perspective is offered for this in which earlier ommatidia had fewer photoreceptors and used N to inhibit the addition of any more, and this is achieved by N transcriptionally activating a new RTK, one that is potently activated in the R7 precursor and sufficing to overcome the N inhibition.
Abstract: The Drosophila R7 photoreceptor precursor is directed to its fate by signals from adjacent cells that activate its Receptor Tyrosine Kinase (RTK) and Notch (N) signaling pathways. Counter-intuitively, the N activity both promotes and inhibits the photoreceptor fate in the R7 precursor. We offer an evolutionary perspective for this in which earlier ommatidia had fewer photoreceptors and used N to inhibit the addition of any more. When additional photoreceptors were added by evolution, an RTK signal was used to overcome the N inhibition in these cells, and these new additions potently activated N in their neighboring cells, preventing them from also responding to the RTK signal. The R7 precursor also receives this block, and requires robust RTK activation for it to become a photoreceptor. This is achieved by N transcriptionally activating a new RTK, one that is potently activated in the R7 precursor and sufficing to overcome the N inhibition. The unusually high RTK signal in R7 requires additional transduction components not needed when the signal is mild; in R7 the small GTPases Ras and Rap are both required to transduce the signal, but in other photoreceptors Ras alone suffices.

54 citations


Journal ArticleDOI
01 Jul 2012-Fly
TL;DR: It is suggested that monoubiquitination of histone H2A (H2Aub) by the PcG protein Sce is only essential for repression of a subset of P cG target genes but is not required for the Polycomb-mediated repression of other targets.
Abstract: Polycomb group (PcG) proteins were originally identified as negative regulators of HOX genes in Drosophila but have since emerged as a widely used transcriptional repression system that controls a variety of developmental processes in animals and plants. PcG proteins exist in multi-protein complexes that comprise specific chromatin-modifying enzymatic activities. Genome-wide binding studies in Drosophila and in mammalian cells revealed that these complexes co-localize at a large set of genes encoding developmental regulators. Recent analyses in Drosophila have begun to explore how the different chromatin-modifying activities of PcG protein complexes contribute to the repression of individual target genes. These studies suggest that monoubiquitination of histone H2A (H2Aub) by the PcG protein Sce is only essential for repression of a subset of PcG target genes but is not required for the Polycomb-mediated repression of other targets. Calypso/dBap1, a major deubiquitinase for H2Aub is also critically needed for repression of a subset of PcG target genes. Here, we review our current understanding of the role of H2A monoubiquitination and deubiquitination in Polycomb repression in Drosophila. We discuss unresolved issues concerning the immunological detection of H2Aub and critically evaluate experiments that used Sce and Ring1B point mutants with impaired H2A ubiquitinase activity to study H2Aub-dependent and -independent functions of these proteins in transcriptional repression.

51 citations


Journal ArticleDOI
13 Aug 2012-Fly
TL;DR: The results suggest that DSK/CCKLR-17D1 signaling promote larval body wall muscle contraction and is necessary for mediating locomotor behavior in stress-induced escape response.
Abstract: Neuropeptides are ubiquitous in both mammals and invertebrates and play essential roles in regulation and modulation of many developmental and physiological processes through activation of G-protein-coupled-receptors (GPCRs). However, the mechanisms by which many of the neuropeptides regulate specific neural function and behaviors remain undefined. Here we investigate the functions of Drosulfakinin (DSK), the Drosophila homolog of vertebrate neuropeptide cholecystokinin (CCK), which is the most abundant neuropeptide in the central nervous system. We provide biochemical evidence that sulfated DSK-1 and DSK-2 activate the CCKLR-17D1 receptor in a cell culture assay. We further examine the role of DSK and CCKLR-17D1 in the regulation of larval locomotion, both in a semi-intact larval preparation and in intact larvae under intense light exposure. Our results suggest that DSK/CCKLR-17D1 signaling promote larval body wall muscle contraction and is necessary for mediating locomotor behavior in stress-induced esc...

37 citations


Journal ArticleDOI
01 Apr 2012-Fly
TL;DR: It is reported that genetic impairment of KMO or TDO is protective against the eclosion defect in HD model fruit flies, and this results provide further support for the possibility of therapeutic KP interventions in HD.
Abstract: Huntington disease (HD) is a fatal inherited neurodegenerative disorder caused by a polyglutamine expansion in the huntingtin protein (htt). A pathological hallmark of the disease is the loss of a specific population of striatal neurons, and considerable attention has been paid to the role of the kynurenine pathway (KP) of tryptophan (TRP) degradation in this process. The KP contains three neuroactive metabolites: 3-hydroxykynurenine (3-HK), quinolinic acid (QUIN), and kynurenic acid (KYNA). 3-HK and QUIN are neurotoxic, and are increased in the brains of early stage HD patients, as well as in yeast and mouse models of HD. Conversely, KYNA is neuroprotective and has been shown to be decreased in HD patient brains. We recently used a Drosophila model of HD to measure the neuroprotective effect of genetic and pharmacological inhibition of kynurenine monoxygenase (KMO)-the enzyme catalyzing the formation of 3-HK at a pivotal branch point in the KP. We found that KMO inhibition in Drosophila robustly attenuated neurodegeneration, and that this neuroprotection was correlated with reduced levels of 3-HK relative to KYNA. Importantly, we showed that KP metabolites are causative in this process, as 3-HK and KYNA feeding experiments modulated neurodegeneration. We also found that genetic inhibition of the upstream KP enzyme tryptophan-2,3-dioxygenase (TDO) was neuroprotective in flies. Here, we extend these results by reporting that genetic impairment of KMO or TDO is protective against the eclosion defect in HD model fruit flies. Our results provide further support for the possibility of therapeutic KP interventions in HD.

36 citations


Journal ArticleDOI
Julie Gates1
31 Aug 2012-Fly
TL;DR: The proteins involved in Drosophila egg elongation are summarized and how this recent work has contributed to current understanding of how egg lengthening is achieved is summarized.
Abstract: As tissues and organs are formed, they acquire a specific shape that plays an integral role in their ability to function properly. A relatively simple system that has been used to examine how tissues and organs are shaped is the formation of an elongated Drosophila egg. While it has been known for some time that Drosophila egg elongation requires interactions between a polarized intracellular basal actin network and a polarized extracellular network of basal lamina proteins, how these interactions contribute to egg elongation remained unclear. Recent studies using live imaging have revealed two novel processes, global tissue rotation and oscillating basal actomyosin contractions, which have provided significant insight into how the two polarized protein networks cooperate to produce an elongated egg. This review summarizes the proteins involved in Drosophila egg elongation and how this recent work has contributed to our current understanding of how egg elongation is achieved.

35 citations


Journal ArticleDOI
01 Mar 2012-Fly
TL;DR: Notch from T-cell acute lymphoblastic leukemia patients can be cleaved by both ADAMs 10 and 17, and studies have revealed that ADAM10 is necessary for Notch processing when Notch is activated by a ligand, while ADAM17 is the major protease for processing Notch that is activated independently of ligand in both flies and mammals.
Abstract: Notch signaling is integral to a large number of developmental and homeostasis events, and either gain or loss of Notch signaling results in a wide range of defects. Notch must be processed by several proteases, including a member of the ADAM (a disintegrin and metalloprotease) family to mediate downstream signaling. Until recently, interactions of Notch with specific ADAMs in different contexts were unclear. ADAM10 is now known to be specifically essential for development and homeostasis of mouse epidermis and cardiovascular structures, and ADAM17 may not be able to fully replace ADAM10 in these contexts. However, Notch from T-cell acute lymphoblastic leukemia (T-ALL) patients can be cleaved by both ADAMs 10 and 17. Studies have revealed that ADAM10 is necessary for Notch processing when Notch is activated by a ligand, while ADAM17 is the major protease for processing Notch that is activated independently of ligand in both flies and mammals.

33 citations


Journal ArticleDOI
13 Aug 2012-Fly
TL;DR: It is demonstrated that by applying an appropriate cut-off value for interpreting the prediction values, the classification success can be immensely improved (to up to 99%), albeit at the cost of excluding a considerable portion of specimens from identification.
Abstract: The vinegar flies Drosophila subobscura and D. obscura frequently serve as study organisms for evolutionary biology. Their high morphological similarity renders traditional species determination difficult, especially when living specimens for setting up laboratory populations need to be identified. Here we test the usefulness of cuticular chemical profiles collected via the non-invasive method near-infrared spectroscopy for discriminating live individuals of the two species. We find a classification success for wild-caught specimens of 85%. The species specificity of the chemical profiles persists in laboratory offspring (87–92% success). Thus, we conclude that the cuticular chemistry is genetically determined, despite changes in the cuticular fingerprints, which we interpret as due to laboratory adaptation, genetic drift and/or diet changes. However, because of these changes, laboratory-reared specimens should not be used to predict the species-membership of wild-caught individuals, and vice versa. Final...

25 citations


Journal ArticleDOI
01 Jul 2012-Fly
TL;DR: A recent study from the laboratory is described that identifies a mechanism that regulates trait variability in response to any source of variation, be it environmental or genetic.
Abstract: Individuals within species and populations vary. Such variation arises through environmental and genetic factors and ensures that no two individuals are identical. However, it is clear that not all traits show the same degree of intraspecific variation. Some traits, in particular secondary sexual characteristics used by males to compete for and attract females, are extremely variable among individuals in a population. Other traits, for example brain size in mammals, are not. Recent research has begun to explore the possibility that the extent of phenotypic variation (here referred to as “variability”) may be a character itself and subject to natural selection. While these studies support the concept of variability as an evolvable trait, controversy remains over what precisely the trait is. At the heart of this controversy is the fact that there are very few examples of developmental mechanisms that regulate trait variability in response to any source of variation, be it environmental or genetic. Here, we ...

Journal ArticleDOI
19 Sep 2012-Fly
TL;DR: This work uses the mean squared displacement as well as the direction autocorrelation of the crawling larvae as descriptors of their motion to quantify the crawling behavior of larvae, and shows that the magnitude of impairment correlates with the severity of the mutation.
Abstract: Drosophila melanogaster is widely used as a model system for development and disease. Due to the homology between Drosophila and human genes, as well as the tractable genetics of the fly, its use as a model for neurologic disorders, in particular, has been rising. Locomotive impairment is a commonly used diagnostic for screening and characterization of these models, yet a fast, sensitive and model-free method to compare behavior is lacking. Here, we present a high throughput method to quantify the crawling behavior of larvae. We use the mean squared displacement as well as the direction autocorrelation of the crawling larvae as descriptors of their motion. By tracking larvae from wild-type strains and models of the Fragile X mental retardation as well as Alzheimer disease, we show these mutants exhibit impaired crawling. We further show that the magnitude of impairment correlates with the severity of the mutation, demonstrating the sensitivity and the dynamic range of the method. Finally, we study larvae with altered expression of the shaggy gene, a homolog of Glycogen Synthase Kinase-3 (GSK-3), which has been implicated in Alzheimer disease. Surprisingly, we find that both increased and decreased expression of dGSK-3 lead to similar larval crawling impairment. These findings have implications for the use of GSK-3 inhibitors recently proposed for Alzheimer treatment.

Journal ArticleDOI
01 Oct 2012-Fly
TL;DR: A large-scale resource of affinity-tagged expression-ready clones was generated and co-affinity purification combined with tandem mass-spectrometry to identify protein partners of nearly 5,000 Drosophila melanogaster proteins, providing a blueprint of metazoan protein complex organization.
Abstract: Proteins perform essential cellular functions as part of protein complexes, often in conjunction with RNA, DNA, metabolites and other small molecules. The genome encodes thousands of proteins but not all of them are expressed in every cell type; and expressed proteins are not active at all times. Such diversity of protein expression and function accounts for the level of biological intricacy seen in nature. Defining protein-protein interactions in protein complexes, and establishing the when, what and where of potential interactions, is therefore crucial to understanding the cellular function of any protein-especially those that have not been well studied by traditional molecular genetic approaches. We generated a large-scale resource of affinity-tagged expression-ready clones and used co-affinity purification combined with tandem mass-spectrometry to identify protein partners of nearly 5,000 Drosophila melanogaster proteins. The resulting protein complex "map" provided a blueprint of metazoan protein complex organization. Here we describe how the map has provided valuable insights into protein function in addition to generating hundreds of testable hypotheses. We also discuss recent technological advancements that will be critical in addressing the next generation of questions arising from the map.

Journal ArticleDOI
01 Apr 2012-Fly
TL;DR: It is shown that two nematode species namely Steinernema feltiae and Heterorhabditis bacteriophora display different infectivity toward Drosophila larvae with the latter being less pathogenic.
Abstract: The infective juveniles (IJs) of entomopathogenic nematodes (EPNs) seek out host insects and release their symbiotic bacteria into their body cavity causing septicaemia, which eventually leads to host death. The interaction between EPNs and their hosts are only partially understood, in particular the host immune responses appears to involve pathways other than phagocytosis and the canonical transcriptional induction pathways. These pathways are genetically tractable and include for example clotting factors and lipid mediators. The aim of this study was to optimize the nematode infections in Drosophila melanogaster larvae, a well-studied and genetically tractable model organism. Here we show that two nematode species namely Steinernema feltiae and Heterorhabditis bacteriophora display different infectivity toward Drosophila larvae with the latter being less pathogenic. The effects of supporting media and IJ dosage on the mortality of the hosts were assessed and optimized. Using optimum conditions, a faster and efficient setup for nematode infections was developed. This newly established infection model in Drosophila larvae will be applicable in large scale screens aimed at identifying novel genes/pathways involved in innate immune responses.

Journal ArticleDOI
01 Mar 2012-Fly
TL;DR: Predictions of the ad hoc hypotheses of CoR and three alternative hypotheses to CoR are discussed to facilitate a discussion and further development of a strong inference approach to experiments on the adaptive significance of polyandry for females.
Abstract: Polyandry is a paradox: why do females mate multiple times when a single ejaculate often provides enough sperm for lifetime egg production? Gowaty et al. addressed explanations for polyandry in Drosophila pseudoobscura from the perspective of hypotheses based on sex differences in costs of reproduction (CoR). Contrary to CoR, Gowaty et al. showed that (1) a single ejaculate was inadequate for lifetime egg production; (2) polyandry provided fitness benefits to females beyond provision of adequate sperm and (3) fitness benefits of polyandry were not offset by costs. Here, I discuss predictions of the ad hoc hypotheses of CoR and three alternative hypotheses to CoR to facilitate a discussion and further development of a strong inference approach to experiments on the adaptive significance of polyandry for females. Each of the hypotheses makes testable predictions; simultaneous tests of the predictions will provide a strong inference approach to understanding the adaptive significance of multiple mating. I describe a sex-symmetric experiment meant to evaluate variation in fitness among lifelong virgins (V); monogamous females and males with one copulation (MOC); monogamous females and males with multiple copulations (MMC); PAND, polyandrous females; and PGYN, polygynous males. Last, I recommend the study of many different species, while taking care in choice of study species and attention to the assumptions of specific hypotheses. I particularly urge the study of many more Drosophila species both in laboratory and the wild to understand the "nature of flies in nature," where opportunities and constraints mold evolutionary responses.

Journal ArticleDOI
01 Apr 2012-Fly
TL;DR: Wild caught females of six Drosophila species whose remating rates and number of sperm received vary from high to low are collected and the proportion of females with sperm and the number of progeny females produce suggest extreme sperm limitation in these latter species.
Abstract: Drosophila species vary in the rates at which females remate and the number of sperm they receive in the laboratory. In species such as D. melanogaster and D. pseudoobscura, in which females receive thousands of sperm and remate infrequently compared with species such as D. hydei and D. nigrospiracula, where females receive only a few hundred sperm and remate many times in a day, wild caught females should produce far more progeny. We tested this prediction by collecting, directly from nature, females of six species whose remating rates and number of sperm received vary from high to low and assessing the proportion of females with sperm and the number of progeny females produce. Over 95% of D. pseudoobscura and D. melanogaster females were inseminated while far fewer of the other species contained any sperm. In addition, D, pseudoobscura females produced progeny for over two weeks, D. melanogaster for over a week, while D. hydei and D. nigrospiracula females ran out of sperm after 1–2 d. These observation...

Journal ArticleDOI
01 Apr 2012-Fly
TL;DR: The desat1 gene possesses an extraordinary-maybe unique-feature in the control of sensory communication systems: it codes for the two principal and complementary aspects-the emission and the reception-of Drosophila sex pheromones.
Abstract: The desat1 gene possesses an extraordinary-maybe unique-feature in the control of sensory communication systems: it codes for the two principal and complementary aspects-the emission and the reception-of Drosophila sex pheromones. These two complex aspects depend on separate genetic control indicating that desat1 pleiotropically acts on pheromonal communication. This gene also control other characters either related to reproduction and to osmoregulation. Such a functional pleiotropy may be related to the molecular structure of desat1 gene which combines a highly conserved coding region with fast evolving regulatory regions: It produces at least five transcripts all giving rise to the ∆9-desaturase enzyme.

Journal ArticleDOI
10 Aug 2012-Fly
TL;DR: Results indicate that Wolbachia infects native Hawaiian taxa, with alleles spanning phylogenetic supergroups, A and B, and Phylogenetic relationships and allele diversity provide evidence for horizontal transfer of WolbachIA among Hawaiian arthropod lineages.
Abstract: Wolbachia is a genus of parasitic alphaproteobacteria found in arthropods and nematodes, and represents on of the most common, widespread endosymbionts known. Wolbachia affects a variety of reproductive functions in its host (e.g., male killing, cytoplasmic incompatibility, parthenogenesis), which have the potential to dramatically impact host evolution and species formation. Here, we present the first broad-scale study to screen natural populations of native Hawaiian insects for Wolbachia, focusing on the endemic Diptera. Results indicate that Wolbachia infects native Hawaiian taxa, with alleles spanning phylogenetic supergroups, A and B. The overall frequency of Wolbachia incidene in Hawaiian insects was 14%. The incidence of infection in native Hawaiian Diptera was 11% for individuals and 12% for all species screened. Wolbachia was not detected in two large, widespread Hawaiian dipteran families—Dolichopodidae (44 spp screened) and Limoniidae (12 spp screened). Incidence of infection within endemic Hawaiian lineages that carry Wolbachia was 18% in Drosophilidae species, 25% in Caliphoridae species, > 90% in Nesophrosyne species, 20% in Drosophila dasycnemia and 100% in Nesophrosyne craterigena. Twenty unique alleles were recovered in this study, of which 18 are newly recorded. Screening of endemic populations of D. dasycnemia across Hawaii Island revealed 4 unique alleles. Phylogenetic relationships and allele diversity provide evidence for horizontal transfer of Wolbachia among Hawaiian arthropod lineages.

Journal ArticleDOI
01 Jul 2012-Fly
TL;DR: A high-throughput qPCR assay that allows the efficient parallel screening of a large number of potentially-infested stocks and several prophylactic measures to prevent the further contamination of stocks are investigated.
Abstract: Drosophila melanogaster is a robust model to investigate many biological problems. It is however prone to some infections, which may endanger fly stocks if left unchecked for. One such infection is caused by an obligate fungal intracellular parasite, Tubulinosema ratisbonensis, which can be found in laboratory stocks. Here, we identify and briefly characterize a T. ratisbonensis strain that was infesting our Drosophila cultures and that required intensive measures to contain and eradicate the infection. We describe the phenotypes of infested stocks. We also report PCR-based techniques that allow the detection of infested stocks with a high sensitivity. We have developed a high-throughput qPCR assay that allows the efficient parallel screening of a large number of potentially-infested stocks. We also have investigated several prophylactic measures to prevent the further contamination of stocks, namely UV-exposure, ethanol treatment, bleaching, and desiccation. Bleaching was found to kill all spores. Other treatments were less effective but were found to be sufficient to prevent further contamination of noninfested stocks. Two treatments were efficacious in curing infested stocks (1) bleaching of eggs and subsequent raising of the larvae in clean vials; (2) fumagillin treatment. These cures only work on stocks that have not become too weak to withstand the procedures.

Journal ArticleDOI
01 Apr 2012-Fly
TL;DR: It is shown that a MITE element (DAIBAM), previously involved in the origin of one Drosophila americana polymorphic inversion, is also involved in that of one fixed inversion between D. virilis and D. americana and another D. Americana polymorphIC inversion.
Abstract: Chromosomal inversions can originate from breakage and repair by non-homologous end-joining. Nevertheless, they can also originate from ectopic recombination between transposable elements located on the same chromosome inserted in opposite orientations. Here, we show that a MITE element (DAIBAM), previously involved in the origin of one Drosophila americana polymorphic inversion, is also involved in the origin of one fixed inversion between D. virilis and D. americana and another D. americana polymorphic inversion. Therefore, DAIBAM is responsible for at least 20% of the chromosomal rearrangements that are observed within and between species of the virilis phylad (D. virilis, D. lummei, D. novamexicana and D. americana), having thus played a significant role in the chromosomal evolution of this group of closely related species.

Journal ArticleDOI
01 Jul 2012-Fly
TL;DR: In this Extra View, recent Drosophila research that has uncovered a new role for the innate immune response is highlighted and indicates that, in addition to combating infection, the innateimmune response promotes neurodegeneration.
Abstract: In this Extra View, we highlight recent Drosophila research that has uncovered a new role for the innate immune response. The research indicates that, in addition to combating infection, the innate immune response promotes neurodegeneration. Our publication (Petersen et al., 2012) reveals a correlative relationship between the innate immune response and neurodegeneration in a model of the human disease Ataxia-telangiectasia (A-T). We also found that glial cells are responsible for the innate immune response in the A-T model, and work by others implicates glial cells in neurodegeneration. Additionally, publications by Chinchore et al. (2012) and Tan et al. (2008) reveal a causative role for the innate immune response in models of human retinal degenerative disorders and Alzheimer disease, respectively. Collectively, these findings suggest that activation of the innate immune response is a shared cause of neurodegeneration in different human diseases.

Journal ArticleDOI
01 Apr 2012-Fly
TL;DR: The relationship between PEV and the relative levels of the H3S10ph and H3K9me2 marks at the white gene in both wild-type and wm4 backgrounds is explored by ChIP analysis and results indicate that H 3K9Me2 levels at thewhite gene directly correlate with its level of expression and that H3k9me1 levels in turn are regulated by H3s10 phosphorylation.
Abstract: The JIL-1 kinase is a multidomain protein that localizes specifically to euchromatin interband regions of polytene chromosomes and is the kinase responsible for histone H3S10 phosphorylation at interphase. Genetic interaction assays have suggested that the function of the epigenetic histone H3S10ph mark is to antagonize heterochromatization by participating in a dynamic balance between factors promoting repression and activation of gene expression as measured by position-effect variegation (PEV) assays. Interestingly, JIL-1 loss-of-function alleles can act either as an enhancer or indirectly as a suppressor of w(m4) PEV depending on the precise levels of JIL-1 kinase activity. In this study, we have explored the relationship between PEV and the relative levels of the H3S10ph and H3K9me2 marks at the white gene in both wild-type and w(m4) backgrounds by ChIP analysis. Our results indicate that H3K9me2 levels at the white gene directly correlate with its level of expression and that H3K9me2 levels in turn are regulated by H3S10 phosphorylation.

Journal ArticleDOI
01 Mar 2012-Fly
TL;DR: It is suggested that cationic antimicrobial peptides, as well as lysozymes, can facilitate Eater binding to live Gram-negative bacteria and unmasking ligands for phagocytic receptors may be a conserved mechanism operating in many animals, including humans.
Abstract: Phagocytosis is an evolutionarily ancient, receptor-driven process, by which phagocytic cells recognize invading microbes and destroy them after internalization. The phagocytosis receptor Eater is expressed exclusively on Drosophila phagocytes and is required for the survival of bacterial infections. In a recent study, we explored how Eater can defend fruit flies against different kinds of bacteria. We discovered that Eater bound to certain types of bacteria directly, while for others bacterial binding was dependent on prior disruption of the bacterial envelope. Similar to phagocytes, antimicrobial peptides and lysozymes are ancient components of animal immune systems. Our results suggest that cationic antimicrobial peptides, as well as lysozymes, can facilitate Eater binding to live Gram-negative bacteria. Both types of molecules promote surface-exposure of bacterial ligands that otherwise would remain buried and hidden under an outer membrane. We propose that unmasking ligands for phagocytic receptors m...

Journal ArticleDOI
10 Aug 2012-Fly
TL;DR: This work considers a model where EGFR-mediated downregulation of Cic modulates the spatial distribution of Mirr protein in lateral follicle cells, thereby contributing to define the position at which the pipe expression border is formed.
Abstract: Dorsoventral (DV) axis formation in Drosophila begins during oogenesis through the graded activation of the EGF receptor (EGFR)-Ras-MAPK signaling pathway in the follicle cell layer of the egg chamber. EGFR signaling, which is higher in dorsal follicle cells, represses expression of the sulfotransferase-encoding gene pipe, thereby delimiting a ventral domain of Pipe activity that is critical for the subsequent induction of ventral embryonic fates. We have characterized the transcriptional circuit that links EGFR signaling to pipe repression: in dorsal follicle cells, the homeodomain transcription factor Mirror (Mirr), which is induced by EGFR signaling, directly represses pipe transcription, whereas in ventral follicle cells, the HMG-box protein Capicua (Cic) supports pipe expression by repressing mirr. Although Cic is under negative post-transcriptional regulation by Ras-MAPK signaling in different contexts, the relevance of this mechanism for the interpretation of the EGFR signal during DV pattern formation remains unclear. Here, we consider a model where EGFR-mediated downregulation of Cic modulates the spatial distribution of Mirr protein in lateral follicle cells, thereby contributing to define the position at which the pipe expression border is formed.

Journal ArticleDOI
01 Jan 2012-Fly
TL;DR: The voltage-gated Na+ channels (VGSCs) are complex membrane proteins responsible for generation and propagation of the electrical signals through the brain, the skeletal muscle and the heart.
Abstract: The voltage-gated Na (+) channels (VGSC) are complex membrane proteins responsible for generation and propagation of the electrical signals through the brain, the skeletal muscle and the heart. The levels of sodium channels affect behavior and physical activity. This is illustrated by the maleless mutant allele (mle (napts)) in Drosophila, where the decreased levels of voltage-gated Na(+) channels cause temperature-sensitive paralysis. Here, we report that mle (napts) mutant flies exhibit developmental lethality, decreased fecundity and increased neurodegeneration. The negative effect of decreased levels of Na(+) channels on development and ts-paralysis was more pronounced at 18 and 29°C than at 25°C, suggesting particular sensitivity of the mle (napts) flies to temperatures above and below normal environmental conditions. Similarly, longevity of mle (napts) flies was unexpectedly short at 18 and 29°C compared with flies heterozygous for the mle (napts) mutation. Developmental lethality and neurodegeneration of mle (napts) flies was partially rescued by increasing the dosage of para, confirming a vital role of Na(+) channels in development, longevity and neurodegeneration of flies and their adaptation to temperatures.

Journal ArticleDOI
01 Jul 2012-Fly
TL;DR: Low-vacuum SEM is applied to wild type and mutant Drosophila and it is demonstrated that high quality ultrastructure data can be obtained quickly using minimal preparation, well suited to large-scale ultrastructural phenotypic analysis in insects.
Abstract: Research projects featuring repetitive phenotypic analysis of insects, such as taxonomic studies, quantitative genetics, and mutant screens, could be greatly facilitated by a simpler approach to scanning electron microscopy (SEM) Here, we have applied low-vacuum SEM to wild type and mutant Drosophila and demonstrate that high quality ultrastructure data can be obtained quickly using minimal preparation Adult flies, frozen live for storage, were mounted on aluminum stubs with carbon cement and directly imaged, with no chemical treatment or sputter coating The key imaging parameters were identified and optimized, including chamber pressure, beam size, accelerating voltage, working distance and beam exposure Different optimal conditions were found for eyes, wings, and bristles; in particular, surface features of bristles were obscured at higher accelerating voltages The chief difficulties were charging, beam damage, and sample movement We conclude that our optimized protocol is well suited to large-sca

Journal ArticleDOI
01 Apr 2012-Fly
TL;DR: It is established that, in addition to functioning as an energy source, mitochondria can serve as internal skeleton for shaping cell morphology in D. melanogaster.
Abstract: Sexual competition has selected a number of extreme phenotypes like the tail ornament of peacock male. Sperm tail of Drosophilidae elongate up to 6 cm as a result of evolutionary selection for reproductive fitness among competing sperms. Sperm elongation takes place post meiotically and can proceed in the absence of an axoneme. Here, we used primary cultures of elongating spermatids of D. melanogaster to demonstrate that sperm elongation is driven by interdependent extension of giant mitochondria and microtubule array that is formed around the mitochondrial surface. This work established that, in addition to functioning as an energy source, mitochondria can serve as internal skeleton for shaping cell morphology.

Journal ArticleDOI
01 Apr 2012-Fly
TL;DR: It is described here that Hipk proteins have a role independent of their effect on β-catenin/Armadillo stability to enhance Wnt/Wingless signaling.
Abstract: The Wnt/Wingless (Wg) pathway is an evolutionarily conserved signaling system that is used reiteratively, both spatially and temporally, to control the development of multicellular animals. The stability of cytoplasmic β-catenin/Armadillo, the transcriptional effector of the pathway, is controlled by sequential N-terminal phosphorylation and ubiquitination that targets it for proteasome-mediated degradation. Orthologous members of the Homeodomain-interacting protein kinase family from Drosophila to vertebrates have been implicated in the regulation of Wnt/Wingless signaling. In Drosophila, as a consequence of Hipk activity, cells accumulate stabilized Armadillo that directs the expression of Wg-specific target genes. Hipk promotes the stabilization of Armadillo by inhibiting its ubiquitination (and hence subsequent degradation) by the SCFSlimb E3 ubiquitin ligase complex. Vertebrate Hipk2 impedes β-catenin ubiquitination to promote its stability and the Wnt signal in a mechanism that is functionally conse...

Journal ArticleDOI
13 Aug 2012-Fly
TL;DR: Since a population of spermatid-associated microtubules known to disappear prior to movement of the IC abnormally persists during individualization in CG12214 mutant testes, this work implicates TBCE-like in the removal of these micro Tubules prior to IC movement.
Abstract: Spermatogenesis in all animal species occurs within a syncytium. Only at the very end of spermatogenesis are individual sperm cells resolved from this syncytium in a process known as individualization. Individualization in Drosophila begins as a membrane-cytoskeletal complex known as the individualization complex (IC) assembles around the sperm heads and proceeds down the flagella, removing cytoplasm from between the sperm tails and shrink-wrapping each spermatid into its own plasma membrane as it travels. The mulet (mlt) mutation results in severely disrupted ICs, indicating that the mlt gene product is required for individualization. Inverse PCR followed by cycle sequencing maps all known P-insertion alleles of mlt to two overlapping genes, CG12214 (the Drosophila tubulin-binding cofactor E-like homolog) and KCNQ (a large voltage-gated potassium channel). However, since the alleles of mlt map to the 5′-UTR of CG12214 and since CG12214 is contained within an intron of KCNQ, it was hypothesized that mlt and CG12214 are allelic. Indeed, CG12214 mutant testes exhibited severely disrupted ICs and were indistinguishable from mlt mutant testes, thus further suggesting allelism. To test this hypothesis, alleles of mlt were crossed to CG12214 in order to generate trans-heterozygous males. Testes from all trans-heterozygous combinations revealed severely disrupted ICs and were also indistinguishable from mlt mutant testes, indicating that mlt and CG12214 fail to complement one another and are thus allelic. In addition, complementation testing against null alleles of KCNQ verified that the observed individualization defect is not caused by a disruption of KCNQ. Finally, since a population of spermatid-associated microtubules known to disappear prior to movement of the IC abnormally persists during individualization in CG12214 mutant testes, this work implicates TBCE-like in the removal of these microtubules prior to IC movement. Taken together, these results identify mlt as CG12214 and suggest that the removal of microtubules by TBCE-like is a necessary pre-requisite for proper coordinated movement of the IC.

Journal ArticleDOI
01 Oct 2012-Fly
TL;DR: DNA analysis using the rbcl gene revealed that these pollinia belong to the genus Leptadenia (Apocynaceae), of which a single species L. madagascariensis, endemic in Madagascar and Comoros, is present in this island, the first reported association between this plant and drosophilids.
Abstract: Thirteen drosophilid species belonging to seven genera and two subfamilies are reported from three coral islands (namely Europa, Juan de Nova and Glorioso) that belong to the Scattered Islands in the Indian Ocean. Five species are cosmopolitan and five are African. Three are endemic to the insular Western Indian Ocean, including a presumably new Scaptodrosophila species. On the island of Juan de Nova, most captured flies had pollinia attached to the bases of their proboscis. DNA analysis using the rbcl gene revealed that these pollinia belong to the genus Leptadenia (Apocynaceae), of which a single species L. madagascariensis, endemic in Madagascar and Comoros, is present in this island. This is the first reported association between this plant and drosophilids.