scispace - formally typeset
Search or ask a question

Showing papers in "Forensic Science International-genetics in 2015"


Journal ArticleDOI
TL;DR: The true variation in core forensic STR loci has been uncovered, and previously unknown STR alleles have been discovered, and the possible applications of NGS in forensic genetics are discussed.
Abstract: It has been almost a decade since the first next generation sequencing (NGS) technologies emerged and quickly changed the way genetic research is conducted. Today, full genomes are mapped and published almost weekly and with ever increasing speed and decreasing costs. NGS methods and platforms have matured during the last 10 years, and the quality of the sequences has reached a level where NGS is used in clinical diagnostics of humans. Forensic genetic laboratories have also explored NGS technologies and especially in the last year, there has been a small explosion in the number of scientific articles and presentations at conferences with forensic aspects of NGS. These contributions have demonstrated that NGS offers new possibilities for forensic genetic case work. More information may be obtained from unique samples in a single experiment by analyzing combinations of markers (STRs, SNPs, insertion/deletions, mRNA) that cannot be analyzed simultaneously with the standard PCR-CE methods used today. The true variation in core forensic STR loci has been uncovered, and previously unknown STR alleles have been discovered. The detailed sequence information may aid mixture interpretation and will increase the statistical weight of the evidence. In this review, we will give an introduction to NGS and single-molecule sequencing, and we will discuss the possible applications of NGS in forensic genetics.

337 citations


Journal ArticleDOI
TL;DR: Future research to better understand the genetic basis of human appearance will expectedly lead to a substantially more detailed description of an unknown person's appearance from DNA, delivering increased value for police investigations in criminal and missing person cases involving unknowns.
Abstract: Forensic DNA Phenotyping refers to the prediction of appearance traits of unknown sample donors, or unknown deceased (missing) persons, directly from biological materials found at the scene. "Biological witness" outcomes of Forensic DNA Phenotyping can provide investigative leads to trace unknown persons, who are unidentifiable with current comparative DNA profiling. This intelligence application of DNA marks a substantially different forensic use of genetic material rather than that of current DNA profiling presented in the courtroom. Currently, group-specific pigmentation traits are already predictable from DNA with reasonably high accuracies, while several other externally visible characteristics are under genetic investigation. Until individual-specific appearance becomes accurately predictable from DNA, conventional DNA profiling needs to be performed subsequent to appearance DNA prediction. Notably, and where Forensic DNA Phenotyping shows great promise, this is on a (much) smaller group of potential suspects, who match the appearance characteristics DNA-predicted from the crime scene stain or from the deceased person's remains. Provided sufficient funding being made available, future research to better understand the genetic basis of human appearance will expectedly lead to a substantially more detailed description of an unknown person's appearance from DNA, delivering increased value for police investigations in criminal and missing person cases involving unknowns.

304 citations


Journal ArticleDOI
TL;DR: This study analysed eight DNA methylation candidate loci using convenient and reliable pyrosequencing technology and developed a deterministic age prediction model that was deterministic for individuals belonging to these two extreme age categories.
Abstract: Forensic DNA phenotyping needs to be supplemented with age prediction to become a relevant source of information on human appearance Recent progress in analysis of the human methylome has enabled selection of multiple candidate loci showing linear correlation with chronological age Practical application in forensic science depends on successful validation of these potential age predictors In this study, eight DNA methylation candidate loci were analysed using convenient and reliable pyrosequencing technology A total number of 41 CpG sites was investigated in 420 samples collected from men and women aged from 2 to 75 years The study confirmed correlation of all the investigated markers with human age The five most significantly correlated CpG sites in ELOVL2 on 6p242, C1orf132 on 1q322, TRIM59 on 3q2533, KLF14 on 7q323 and FHL2 on 2q122 were chosen to build a prediction model This restriction allowed the technical analysis to be simplified without lowering the prediction accuracy significantly Model parameters for a discovery set of 300 samples were R 2 =094 and the standard error of the estimate=45 years An independent set of 120 samples was used to test the model performance Mean absolute deviation for this testing set was 39 years The number of correct predictions ±5 years achieved a very high level of 867% in the age category 2–19 and gradually decreased to 50% in the age category 60–75 The prediction model was deterministic for individuals belonging to these two extreme age categories The developed method was implemented in a freely available online age prediction calculator

227 citations


Journal ArticleDOI
TL;DR: This review outlines some of the current understanding of past human population structure and how it may have influenced the complex distribution of contemporary human diversity.
Abstract: With the great strides made in the last ten years in the understanding of human population variation and the detailed characterization of the genome, it is now possible to identify sets of ancestry informative markers suitable for relatively small-scale PCR-based assays and use them to analyze the ancestry of an individual from forensic DNA. This review outlines some of the current understanding of past human population structure and how it may have influenced the complex distribution of contemporary human diversity. A simplified description of human diversity can provide a suitable basis for choosing the best ancestry-informative markers, which is important given the constraints of multiplex sizes in forensic DNA tests. It is also important to decide the level of geographic resolution that is realistic to ensure the balance between informativeness and an over-simplification of complex human diversity patterns. A detailed comparison is made of the most informative ancestry markers suitable for forensic use and assessments are made of the data analysis regimes that can provide statistical inferences of a DNA donor's bio-geographical ancestry.

190 citations


Journal ArticleDOI
TL;DR: This letter is to update the DNA community on the Federal Bureau of Investigation (FBI) CODIS Core Loci Working Group’s progress and the evaluation of additional core loci to support lawenforcement DNA databases.
Abstract: This letter is to update the DNA community on the Federal Bureau of Investigation (FBI) CODIS Core Loci Working Group’s progress and the evaluation of additional core loci. As announced in previous communications initially published online in April of 2011 [1,2], the FBI launched this effort to determine additional core loci that could be implementedintothe CODISProgram to support lawenforcement DNA databases. The goals of this expansion include reducing the number of adventitious matches, increasing international compatibility and increasing the power of discrimination for criminal and missing person cases. The current CODIS core 13 loci were given primary consideration, with one exception, for inclusion within the proposed core set of loci for CODIS. In addition, other loci that are currently part of DNA typing kits used in the United States were considered as potential new loci [3]. Loci used internationally for forensic DNA databasing purposes were also identified for consideration [4]. It is important to note that the loci chosen for this project have no known predictive value for medical condition ordisease. The Working Group developed and published an implementation timeline for the public in June 2011[5]. As noted in the initial explanation of this Project, a ranked list of loci were recommended (Table 1). In the fall of 2012, manufacturer grade PCR amplification kits containing those loci became available for use in the United States. The CODIS Core Loci Working Group selected a consortium of 11 CODIS laboratories representing casework, databasing and missing person laboratories to evaluate the available PCR amplification kits: Life Technologies’ GlobalFiler, Life Technologies GlobalFiler Express and Promega Powerplex Fusion. Over an eighteen month period, these laboratories performed validation experiments in accordance with the FBI Director’s Quality Assurance Standards that included studies on the following: known or non-probative samples, precision, reproducibility, sensitivity and stochastic, mixture, and casework challenge samples. With the assistance of the National Institute of Standards and Technology (NIST), the data generated through these validation studies were compiled, reviewed and analyzed. During this Project, the FBI has provided updates to the DNA community and stakeholders through presentations at annual National CODIS Conferences, semiannual CODIS State Administrators meetings, semiannual meetings of the Scientific Working Group on DNA Analysis Methods (SWGDAM), as well as the annual International Symposium on Human Identification. Consistent with the initial considerations in the selection of the proposed core loci, the Working Group acknowledged that there are almost 14 million STR profiles in the National DNA Index

179 citations


Journal ArticleDOI
Sascha Willuweit1, Lutz Roewer1
TL;DR: Worldwide collaboration is the driving force for the rapid growth of the database and this allows the evaluation and implementation of enhanced interpretation tools (variable frequency estimators, LR-based mixture and kinship analysis, Y-SNP-based ancestry assessment).
Abstract: After opening the first version of an internet-accessible worldwide reference database of Y chromosome profiles 14 years ago and six years after the last major relaunch the new YHRD 4.0 repository and website has been rolled-out. By November 2014 about 136k 9-locus haplotypes, among these 84k 17-locus haplotypes, 25k 23-locus haplotypes and 15k Y SNP profiles from 917 sampling locations in 128 countries have been submitted by more than 250 institutes and laboratories. In geographic terms, about 39% of the YHRD samples are from Europe, 32% from Asia, 16% from South America, 6% from North America, 4% from Africa and 2% from Oceania/Australia. Worldwide collaboration is the driving force for the rapid growth of the database and this, in turn, allows the evaluation and implementation of enhanced interpretation tools (variable frequency estimators, LR-based mixture and kinship analysis, Y-SNP-based ancestry assessment).

176 citations


Journal ArticleDOI
TL;DR: The obtained results show that the ELOVL2 locus provides a very good source of information about human chronological age based on analysis of blood, including bloodstains, and it may constitute a powerful and reliable predictor in future forensic age estimation models.
Abstract: Age estimation in forensic investigations may complement the prediction of externally visible characteristics and the inference of biogeographical ancestry, thus allowing a better description of an unknown individual. Multiple CpG sites that show linear correlation between age and degree of DNA methylation have been identified in the human genome, providing a selection of candidates for age prediction. In this study, we optimized an assay based on bisulfite conversion and pyrosequencing of 7 CpG sites located in the ELOVL2 gene. Examination of 303 blood samples collected from individuals aged 2-75 years allowed selection of the most informative site, explaining 83% of variation in age. The final linear regression model included two CpG sites in ELOVL2 and enabled age prediction with R(2)=0.859, prediction error=6.85 and mean absolute deviation MAD=5.03. Examination of a testing set of 124 blood samples (MAD=5.75) showed that 68.5% of samples were correctly predicted, assuming that chronological and predicted ages matched ± 7 years. It was found that the ELOVL2 methylation status in bloodstains had not changed significantly after 4 weeks of storage in room temperature conditions. Analysis of 45 bloodstains deposited on tissue paper after 5, 10 and 15 years of storage in room conditions indicated that although a gradual decrease of positive PCR results was observed, the general age prediction success rate remained similar and equaled 60-78%. The obtained results show that the ELOVL2 locus provides a very good source of information about human chronological age based on analysis of blood, including bloodstains, and it may constitute a powerful and reliable predictor in future forensic age estimation models.

159 citations


Journal ArticleDOI
TL;DR: This article reviews what is currently known about short tandem repeat (STR) allelic sequence variation in and around the twenty-four loci most commonly used throughout the world to perform forensic DNA investigations.
Abstract: This article reviews what is currently known about short tandem repeat (STR) allelic sequence variation in and around the twenty-four loci most commonly used throughout the world to perform forensic DNA investigations. These STR loci include D1S1656, TPOX, D2S441, D2S1338, D3S1358, FGA, CSF1PO, D5S818, SE33, D6S1043, D7S820, D8S1179, D10S1248, TH01, vWA, D12S391, D13S317, Penta E, D16S539, D18S51, D19S433, D21S11, Penta D, and D22S1045. All known reported variant alleles are compiled along with genomic information available from GenBank, dbSNP, and the 1000 Genomes Project. Supplementary files are included which provide annotated reference sequences for each STR locus, characterize genomic variation around the STR repeat region, and compare alleles present in currently available STR kit allelic ladders. Looking to the future, STR allele nomenclature options are discussed as they relate to next generation sequencing efforts underway.

141 citations


Journal ArticleDOI
TL;DR: This review aims to give an overview of the possibilities of the employment of mRNA, miRNA, DNA methylation and microbial markers for tissue identification in a forensic context, and the biological background that renders these markers tissue-specificity is considered.
Abstract: Human biological traces have the potential to present strong evidence for placing a suspect at a crime scene. In cases, the activity that led to deposition of an individual's cellular material is increasingly disputed, for which the identification of cell types could be crucial. This review aims to give an overview of the possibilities of the employment of mRNA, miRNA, DNA methylation and microbial markers for tissue identification in a forensic context. The biological background that renders these markers tissue-specificity is considered, as this can affect data interpretation. Furthermore, the forensic relevance of inferring certain cell types is discussed, as are the various methodologies that can be applied. Forensic stains can carry minute amounts of cell material that may be degraded or polluted and most likely cell material of multiple sources will be present. The interpretational challenges that are imposed by this compromised state will be discussed as well.

136 citations


Journal ArticleDOI
TL;DR: There is now a detailed understanding of the causes of stochastic effects that cause DNA profiles to exhibit the phenomena of drop-out and drop-in, along with artefacts such as stutters, and the development of national DNA databases is discussed.
Abstract: The introduction of Short Tandem Repeat (STR) DNA was a revolution within a revolution that transformed forensic DNA profiling into a tool that could be used, for the first time, to create National DNA databases. This transformation would not have been possible without the concurrent development of fluorescent automated sequencers, combined with the ability to multiplex several loci together. Use of the polymerase chain reaction (PCR) increased the sensitivity of the method to enable the analysis of a handful of cells. The first multiplexes were simple: 'the quad', introduced by the defunct UK Forensic Science Service (FSS) in 1994, rapidly followed by a more discriminating 'six-plex' (Second Generation Multiplex) in 1995 that was used to create the world's first national DNA database. The success of the database rapidly outgrew the functionality of the original system - by the year 2000 a new multiplex of ten-loci was introduced to reduce the chance of adventitious matches. The technology was adopted world-wide, albeit with different loci. The political requirement to introduce pan-European databases encouraged standardisation - the development of European Standard Set (ESS) of markers comprising twelve-loci is the latest iteration. Although development has been impressive, the methods used to interpret evidence have lagged behind. For example, the theory to interpret complex DNA profiles (low-level mixtures), had been developed fifteen years ago, but only in the past year or so, are the concepts starting to be widely adopted. A plethora of different models (some commercial and others non-commercial) have appeared. This has led to a confusing 'debate' about the 'best' to use. The different models available are described along with their advantages and disadvantages. A section discusses the development of national DNA databases, along with details of an associated controversy to estimate the strength of evidence of matches. Current methodology is limited to searches of complete profiles - another example where the interpretation of matches has not kept pace with development of theory. STRs have also transformed the area of Disaster Victim Identification (DVI) which frequently requires kinship analysis. However, genotyping efficiency is complicated by complex, degraded DNA profiles. Finally, there is now a detailed understanding of the causes of stochastic effects that cause DNA profiles to exhibit the phenomena of drop-out and drop-in, along with artefacts such as stutters. The phenomena discussed include: heterozygote balance; stutter; degradation; the effect of decreasing quantities of DNA; the dilution effect.

117 citations


Journal ArticleDOI
TL;DR: The role of mitochondrial and nuclear DNA markers is discussed, alongside a comparison of neutral markers with those exhibiting signatures of selection, which potentially offer much higher levels of assignment power to address specific questions.
Abstract: Wildlife forensic science has become a key means of enforcing legislation surrounding the illegal trade in protected and endangered species. A relatively new dimension to this area of forensic science is to determine the geographic origin of a seized sample. This review focuses on DNA testing, which relies on assignment of an unknown sample to its genetic population of origin. Key examples of this are the trade in timber, fish and ivory and these are used only to illustrate the large number of species for which this type of testing is potentially available. The role of mitochondrial and nuclear DNA markers is discussed, alongside a comparison of neutral markers with those exhibiting signatures of selection, which potentially offer much higher levels of assignment power to address specific questions. A review of assignment tests is presented along with detailed methods for evaluating error rates and considerations for marker selection. The availability and quality of reference data are of paramount importance to support assignment applications and ensure reliability of any conclusions drawn. The genetic methods discussed have been developed initially as investigative tools but comment is made regarding their use in courts. The potential to compliment DNA markers with elemental assays for greater assignment power is considered and finally recommendations are made for the future of this type of testing.

Journal ArticleDOI
TL;DR: An update on developments in mtDNA forensic genetics is provided and the recent literature for the detection of heteroplasmy using next generation sequencing techniques is reviewed.
Abstract: Long an important and useful tool in forensic genetic investigations, mitochondrial DNA (mtDNA) typing continues to mature. Research in the last few years has demonstrated both that data from the entire molecule will have practical benefits in forensic DNA casework, and that massively parallel sequencing (MPS) methods will make full mitochondrial genome (mtGenome) sequencing of forensic specimens feasible and cost-effective. A spate of recent studies has employed these new technologies to assess intraindividual mtDNA variation. However, in several instances, contamination and other sources of mixed mtDNA data have been erroneously identified as heteroplasmy. Well vetted mtGenome datasets based on both Sanger and MPS sequences have found authentic point heteroplasmy in approximately 25% of individuals when minor component detection thresholds are in the range of 10–20%, along with positional distribution patterns in the coding region that differ from patterns of point heteroplasmy in the well-studied control region. A few recent studies that examined very low-level heteroplasmy are concordant with these observations when the data are examined at a common level of resolution. In this review we provide an overview of considerations related to the use of MPS technologies to detect mtDNA heteroplasmy. In addition, we examine published reports on point heteroplasmy to characterize features of the data that will assist in the evaluation of future mtGenome data developed by any typing method.

Journal ArticleDOI
TL;DR: Interestingly, full profiles were obtained for all biological samples from real crime and identification cases, in which only partial profiles were obtaining with PCR-CE assays, and the Ion Torrent™ HID STR 10-plex panel offers an all-in-one solution from amplification of STRs and amelogenin, and sequencing to data analysis.
Abstract: Second-generation sequencing (SGS) using Roche/454 and Illumina platforms has proved capable of sequencing the majority of the key forensic genetic STR systems. Given that Roche has announced that the 454 platforms will no longer be supported from 2015, focus should now be shifted to competing SGS platforms, such as the MiSeq (Illumina) and the Ion Personal Genome Machine (Ion PGM™; Thermo Fisher). There are currently several challenges faced with amplicon-based SGS STR typing in forensic genetics, including current lengths of amplicons for CE-typing and lack of uniform data analysis between laboratories. Thermo Fisher has designed a human identification (HID) short tandem repeat (STR) 10-plex panel including amelogenin, CSF1PO, D16S539, D3S1358, D5S818, D7S820, D8S1179, TH01, TPOX and vWA, where the primers have been designed specifically for the purpose of SGS and the data analysis is supported by Ion Torrent™ software. Hence, the combination of the STR 10-plex and the Ion PGM™ represents the first fully integrated SGS STR typing solution from PCR to data analysis. In this study, four experiments were performed to evaluate the alpha-version of the STR 10-plex: (1) typing of control samples; (2) analysis of sensitivity; (3) typing of mixtures; and (4) typing of biological crime case samples. Full profiles and concordant results between replicate SGS runs and CE-typing were observed for all control samples. Full profiles were seen with DNA input down to 50 pg, with the exception of a single locus drop-out in one of the 100 pg dilutions. Mixtures were easily deconvoluted down to 20:1, although alleles from the minor contributor had to be identified manually as some signals were not called by the Ion Torrent™ software. Interestingly, full profiles were obtained for all biological samples from real crime and identification cases, in which only partial profiles were obtained with PCR-CE assays. In conclusion, the Ion Torrent™ HID STR 10-plex panel offers an all-in-one solution from amplification of STRs and amelogenin, and sequencing to data analysis.

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the levels of sequence coverage, genotyping precision, sensitivity and mixed DNA patterns of a prototype version of the first commercial forensic NGS kit: the HID-Ion AmpliSeq™ Identity Panel with 169-markers designed for the Ion PGM™ system.
Abstract: Next generation sequencing (NGS) offers the opportunity to analyse forensic DNA samples and obtain massively parallel coverage of targeted short sequences with the variants they carry. We evaluated the levels of sequence coverage, genotyping precision, sensitivity and mixed DNA patterns of a prototype version of the first commercial forensic NGS kit: the HID-Ion AmpliSeq™ Identity Panel with 169-markers designed for the Ion PGM™ system. Evaluations were made between three laboratories following closely matched Ion PGM™ protocols and a simple validation framework of shared DNA controls. The sequence coverage obtained was extensive for the bulk of SNPs targeted by the HID-Ion AmpliSeq™ Identity Panel. Sensitivity studies showed 90-95% of SNP genotypes could be obtained from 25 to 100pg of input DNA. Genotyping concordance tests included Coriell cell-line control DNA analyses checked against whole-genome sequencing data from 1000 Genomes and Complete Genomics, indicating a very high concordance rate of 99.8%. Discordant genotypes detected in rs1979255, rs1004357, rs938283, rs2032597 and rs2399332 indicate these loci should be excluded from the panel. Therefore, the HID-Ion AmpliSeq™ Identity Panel and Ion PGM™ system provide a sensitive and accurate forensic SNP genotyping assay. However, low-level DNA produced much more varied sequence coverage and in forensic use the Ion PGM™ system will require careful calibration of the total samples loaded per chip to preserve the genotyping reliability seen in routine forensic DNA. Furthermore, assessments of mixed DNA indicate the user's control of sequence analysis parameter settings is necessary to ensure mixtures are detected robustly. Given the sensitivity of Ion PGM™, this aspect of forensic genotyping requires further optimisation before massively parallel sequencing is applied to routine casework.

Journal ArticleDOI
TL;DR: The performance of a next generation sequencing SNP assay and CE-based STR, mini-STR, and InDel assays was evaluated with a series of fragmented, size-selected samples, indicating the potential advantage of NGS SNP assays for forensic analysis of degraded DNA samples.
Abstract: Forensic DNA casework samples are often of insufficient quantity or quality to generate full profiles by conventional DNA typing methods. Polymerase chain reaction (PCR) amplification of short tandem repeat (STR) loci is inherently limited in samples containing degraded DNA, as the cumulative size of repeat regions, primer binding regions, and flanking sequence is necessarily larger than the PCR template. Additionally, traditional capillary electrophoresis (CE) assay design further inherently limits shortening amplicons because the markers must be separated by size. Non-traditional markers, such as single nucleotide polymorphisms (SNPs) and insertion deletion polymorphisms (InDels), may yield more information from challenging samples due to their smaller amplicon size. In this study, the performance of a next generation sequencing (NGS) SNP assay and CE-based STR, mini-STR, and InDel assays was evaluated with a series of fragmented, size-selected samples. Information obtained from the NGS SNP assay exhibited higher overall inverse random match probability (1/RMP) values compared to the CE-based typing assays, with particular benefit for fragment sizes ≤ 150 base pairs (bp). The InDel, mini-STR, and NGS SNP assays all had similar percentages of loci with reportable alleles at this level of degradation; however, the relatively fewer number of loci in the InDel and mini-STR assays results in the NGS SNP assay having at least nine orders of magnitude higher 1/RMP values. In addition, the NGS SNP assay and three CE-based assays (two STR and one InDel assay) were tested using a dilution series consisting of 0.5 ng, 0.1 ng, and 0.05 ng non-degraded DNA. All tested assays showed similar percentages of loci with reportable alleles at these levels of input DNA; however, due to the larger number of loci, the NGS SNP assay and the larger of the two tested CE-based STR assays both resulted in considerably higher 1/RMP values than the other assays. These results indicate the potential advantage of NGS SNP assays for forensic analysis of degraded DNA samples.

Journal ArticleDOI
TL;DR: This preliminary study of the Ion Torrent PGM system has demonstrated considerable potential for use in forensic DNA analyses as a low to medium throughput NGS platform using established SNaPshot assays.
Abstract: Forensic phenotyping can provide useful intelligence regarding the biogeographical ancestry (BGA) and externally visible characteristics (EVCs) of the donor of an evidentiary sample. Currently, single nucleotide polymorphism (SNP) based inference of BGA and EVCs is performed most commonly using SNaPshot(®), a single base extension (SBE) assay. However, a single SNaPshot multiplex PCR is limited to 30-40 SNPs. Next generation sequencing (NGS) offers the potential to genotype hundreds to thousands of SNPs from multiple samples in a single experimental run. The PCR multiplexes from five SNaPshot assays (SNPforID 52plex, SNPforID 34plex, Eurasiaplex, IrisPlex and an unpublished BGA assay) were applied to three different DNA template amounts (0.1, 0.2 and 0.3 ng) in three samples (9947A and 007 control DNAs and a male donor). The pooled PCR amplicons containing 136 unique SNPs were sequenced using Life Technologies' Ion Torrent™ PGM system. Approximately 72 Mb of sequence was generated from two 10 Mb Ion 314™ v1 chips. Accurate genotypes were readily obtained from all three template amounts. Of a total of 408 genotypes, 395 (97%) were fully concordant with SNaPshot across all three template amounts. Of those genotypes discordant with SNaPshot, six Ion Torrent sequences (1.5%) were fully concordant with Sanger sequencing across the three template amounts. Seven SNPs (1.7%) were either discordant between template amounts or discordant with Sanger sequencing. Sequence coverage observed in the negative control, and, allele coverage variation for heterozygous genotypes highlights the need to establish a threshold for background levels of sequence output and heterozygous balance. This preliminary study of the Ion Torrent PGM system has demonstrated considerable potential for use in forensic DNA analyses as a low to medium throughput NGS platform using established SNaPshot assays.

Journal ArticleDOI
TL;DR: These selected epigenetic age signatures are expected to be useful for considerably accurate age estimation in the forensically relevant body fluid of semen and will be necessary to further evaluate the age correlation of the selected CpGs and to encourage further investigation.
Abstract: To date, DNA methylation has been regarded as the most promising age-predictive biomarker. In support of this, several researchers have reported age predictive models based on the use of blood or even across a broad spectrum of tissues. However, there have been no publications that report epigenetic age signatures from semen, one of the most forensically relevant body fluids. In genome-wide DNA methylation profiles of 36 body fluids including blood, saliva, and semen, the previous age predictive models showed considerable prediction accuracy in blood and saliva but not in semen. Therefore, we selected CpG sites, whose methylation levels are strongly correlated with age in 12 semen profiles obtained from individuals of different ages, and investigated DNA methylation changes at these CpGs in 68 additional semen samples obtained from individuals aged 20 to 73 years using methylation SNaPshot reaction. Among the selected age-related CpG candidates, outstanding age correlation was obtained at cg06304190 in the TTC7B gene. Interestingly, the region around the TTC7B gene has been reported to show age-related DNA methylation alteration in the sperm methylome of 2 samples collected from individuals at certain time intervals. The age-predictive linear regression model trained with 3 CpGs (cg06304190 in the TTC7B gene, cg06979108 in the NOX4 gene and cg12837463) showed a high correlation between the predicted age and the chronological age, with an average absolute difference of approximately 5 years. These selected epigenetic age signatures are expected to be useful for considerably accurate age estimation in the forensically relevant body fluid of semen. However, because the findings were limited by small sample size, it will be necessary to further evaluate the age correlation of the selected CpGs and to encourage further investigation.

Journal ArticleDOI
TL;DR: This review pretends to gather all the information to date and assessed a multitude of factors that have a potential aptitude to discrediting miRNA profiling, such as: methodological approaches, environmental factors, physiological conditions, gender, pathologies and samples storage.
Abstract: In forensic investigation, body fluids represent an important support to professionals when detected, collected and correctly identified. Through many years, various approaches were used, namely serology-based methodologies however, their lack of sensitivity and specificity became difficult to set aside. In order to sidetrack the problem, miRNA profiling surged with a real potential to be used to identify evidences like urine, blood, menstrual blood, saliva, semen and vaginal secretions. MiRNAs are small RNA structures with 20-25 nt whose proprieties makes them less prone to degradation processes when compared to mRNA which is extremely important once, in a crime scene, biological evidences might be exposed to several unfavorable environmental factors. Recently, published studies were able to identify some specific miRNAs, however their results were not always reproducible by others which can possibly be the reflection of different workflow strategies for their profiling studies. Given the current blast of interest in miRNAs, it is important to acknowledge potential limitations of miRNA profiling, yet, the lack of such studies are evident. This review pretends to gather all the information to date and assessed a multitude of factors that have a potential aptitude to discrediting miRNA profiling, such as: methodological approaches, environmental factors, physiological conditions, gender, pathologies and samples storage. It can be asserted that much has yet to be made, but we pretend to highlight a potential answer for the ultimate question: Can miRNA profiling be used as the forensic biomarker for body fluids identification?

Journal ArticleDOI
TL;DR: A small amplicon multiplex assay comprised of sixty-two primer sets that can be routinely applied to the compromised hair samples typically encountered in forensic casework is described, demonstrating that particular hair samples yield DNA sufficient in quantity and quality to produce 2-3kb mtGenome amplicons and that entiremtGenome data can be recovered from hair extracts even without PCR enrichment.
Abstract: Though shed hairs are one of the most commonly encountered evidence types, they are among the most limited in terms of DNA quantity and quality. As a result, DNA testing has historically focused on the recovery of just about 600 base pairs of the mitochondrial DNA control region. Here, we describe our success in recovering complete mitochondrial genome (mtGenome) data (∼16,569bp) from single shed hairs. By employing massively parallel sequencing (MPS), we demonstrate that particular hair samples yield DNA sufficient in quantity and quality to produce 2-3kb mtGenome amplicons and that entire mtGenome data can be recovered from hair extracts even without PCR enrichment. Most importantly, we describe a small amplicon multiplex assay comprised of sixty-two primer sets that can be routinely applied to the compromised hair samples typically encountered in forensic casework. In all samples tested here, the MPS data recovered using any one of the three methods were consistent with the control Sanger sequence data developed from high quality known specimens. Given the recently demonstrated value of complete mtGenome data in terms of discrimination power among randomly sampled individuals, the possibility of recovering mtGenome data from the most compromised and limited evidentiary material is likely to vastly increase the utility of mtDNA testing for hair evidence.

Journal ArticleDOI
TL;DR: Developmental validation testing followed SWGDAM guidelines and demonstrated the quality and robustness of the GlobalFiler(®) Express Kit over a number of variables that demonstrate that the 24-locus multiplex kit is a robust and reliable identification assay as required for forensic DNA typing and databasing.
Abstract: In order to increase the power of discrimination, reduce the possibility of adventitious matches, and expand global data sharing, the CODIS Core Loci Working Group made a recommendation to expand the CODIS core loci from the "required" 13 loci to 20 plus three additional "highly recommended" loci. The GlobalFiler(®) Express Kit was designed to incorporate all 20 required and 3 highly recommended loci along with a novel male-specific Y insertion/deletion marker. The GlobalFiler(®) Express Kit allows simultaneous amplification of the following loci: D3S1358, vWA, D16S539, CSF1PO, TPOX, Yindel, AMEL, D8S1179, D21S11, D18S51, DYS391, D2S441, D19S433, TH01, FGA, D22S1045, D5S818, D13S317, D7S820, SE33, D10S1248, D1S1656, D12S391, and D2S1338. The kit enables direct amplification from blood and buccal samples stored on paper or swab and the chemistry features an optimized PCR protocol that yields time to results in less than an hour. Developmental validation testing followed SWGDAM guidelines and demonstrated the quality and robustness of the GlobalFiler(®) Express Kit over a number of variables. The validation results demonstrate that the 24-locus multiplex kit is a robust and reliable identification assay as required for forensic DNA typing and databasing.

Journal ArticleDOI
TL;DR: The obtained results showed the DNA methylation assay is a reliable and effective method for age prediction for forensic purposes and still performed an effective prediction on bloodstains after four-month storage in room conditions.
Abstract: Age prediction of an individual based on biological traces remained in a crime scene is of ultimate importance for criminal investigation. Growing evidence indicates that some CpG sites may have age-related methylation changes and thus may be a promising tool for age prediction. In this study, we utilized the pyrosequencing approach to screen age-related CpG (AR-CpG) sites for age prediction. Five AR-CpGs were identified as age-related markers from thirty-eight candidates, among which three CpG sites, ITGA2B_1, NPTX2_3, and NPTX2_4 were never reported in previous studies. We fit a linear regression model for age prediction based on methylation assay for 89 blood samples from donors aged 9-75 years old. The model included four AR-CpG markers in three gene fragments ASPA, ITGA2B and NPTX2 and enabled the age prediction with R(2)=0.819. The mean absolute deviation (MAD) from chronological age of the model was 7.870. We validated the linear regression model with a validation set of 40 blood samples, and the prediction MAD was 7.986. There was no statistically significant difference in age prediction between 20 pairs of blood samples and bloodstains. Six pairs of fresh and old bloodstains were analyzed using our assay. The obtained results showed the assay still performed an effective prediction on bloodstains after four-month storage in room conditions. This study indicates that our DNA methylation assay is a reliable and effective method for age prediction for forensic purposes.

Journal ArticleDOI
TL;DR: This study investigates the possibility of investigator-mediated transfer of DNA traces with disposable nitrile-gloves used during crime-scene examinations and shows that with use of the new highly sensitive technologies available in forensic DNA analysis there is an enhanced probability to obtain a DNA-profile which has not been directly deposited on the object but is an outcome of one or more transfer events.
Abstract: With the introduction of new multiplex PCR kits and instrumentation such as the Applied Biosystems 3500xl, there has recently been a rapid change in technology that has greatly increased sensitivity of detection so that a DNA profile can routinely be obtained from only a few cells. Research to evaluate the risks of passive transfer has not kept pace with this development; hence the risk of innocent DNA transfer at the crime-scene is currently not properly understood. The purpose of this study was to investigate the possibility of investigator-mediated transfer of DNA traces with disposable nitrile-gloves used during crime-scene examinations. We investigated the primary transfer of freshly deposited DNA from touched plastic, wood or metal substrates and secondary and tertiary transfer by a person wearing disposable nitrile-gloves and onto a third object. We show that with use of the new highly sensitive technologies available in forensic DNA analysis there is an enhanced probability to obtain a DNA-profile which has not been directly deposited on the object but is an outcome of one or more transfer events. The nitrile-gloves used by investigators during exhibit examination can act as a vector for DNA transfer from one item to another. We have shown that the amount of DNA deposited on an object affects the probability of transfer. Secondly, the type of substrate material that DNA is deposited onto has an impact on transfer rates.

Journal ArticleDOI
TL;DR: These studies indicate that this STR multiplex system and the Illumina MiSeq can generate reliable STR profiles at a sensitivity level that competes with current widely used CE-based method.
Abstract: STR typing in forensic genetics has been performed traditionally using capillary electrophoresis (CE). However, CE-based method has some limitations: a small number of STR loci can be used; stutter products, dye artifacts and low level alleles. Massively parallel sequencing (MPS) has been considered a viable technology in recent years allowing high-throughput coverage at a relatively affordable price. Some of the CE-based limitations may be overcome with the application of MPS. In this study, a prototype multiplex STR System (Promega) was amplified and prepared using the TruSeq DNA LT Sample Preparation Kit (Illumina) in 24 samples. Results showed that the MinElute PCR Purification Kit (Qiagen) was a better size selection method compared with recommended diluted bead mixtures. The library input sensitivity study showed that a wide range of amplicon product (6-200ng) could be used for library preparation without apparent differences in the STR profile. PCR sensitivity study indicated that 62pg may be minimum input amount for generating complete profiles. Reliability study results on 24 different individuals showed that high depth of coverage (DoC) and balanced heterozygote allele coverage ratios (ACRs) could be obtained with 250pg of input DNA, and 62pg could generate complete or nearly complete profiles. These studies indicate that this STR multiplex system and the Illumina MiSeq can generate reliable STR profiles at a sensitivity level that competes with current widely used CE-based method.

Journal ArticleDOI
TL;DR: This paper developed 588 complete mtGenome haplotypes, spanning three U.S. population groups (African American, Caucasian and Hispanic) from anonymized, randomly-sampled specimens.
Abstract: Though investigations into the use of massively parallel sequencing technologies for the generation of complete mitochondrial genome (mtGenome) profiles from difficult forensic specimens are well underway in multiple laboratories, the high quality population reference data necessary to support full mtGenome typing in the forensic context are lacking. To address this deficiency, we have developed 588 complete mtGenome haplotypes, spanning three U.S. population groups (African American, Caucasian and Hispanic) from anonymized, randomly-sampled specimens. Data production utilized an 8-amplicon, 135 sequencing reaction Sanger-based protocol, performed in semi-automated fashion on robotic instrumentation. Data review followed an intensive multi-step strategy that included a minimum of three independent reviews of the raw data at two laboratories; repeat screenings of all insertions, deletions, heteroplasmies, transversions and any additional private mutations; and a check for phylogenetic feasibility. For all three populations, nearly complete resolution of the haplotypes was achieved with full mtGenome sequences: 90.3-98.8% of haplotypes were unique per population, an improvement of 7.7-29.2% over control region sequencing alone, and zero haplotypes overlapped between populations. Inferred maternal biogeographic ancestry frequencies for each population and heteroplasmy rates in the control region were generally consistent with published datasets. In the coding region, nearly 90% of individuals exhibited length heteroplasmy in the 12418-12425 adenine homopolymer; and despite a relatively high rate of point heteroplasmy (23.8% of individuals across the entire molecule), coding region point heteroplasmies shared by more than one individual were notably absent, and transversion-type heteroplasmies were extremely rare. The ratio of nonsynonymous to synonymous changes among point heteroplasmies in the protein-coding genes (1:1.3) and average pathogenicity scores in comparison to data reported for complete substitutions in previous studies seem to provide some additional support for the role of purifying selection in the evolution of the human mtGenome. Overall, these thoroughly vetted full mtGenome population reference data can serve as a standard against which the quality and features of future mtGenome datasets (especially those developed via massively parallel sequencing) may be evaluated, and will provide a solid foundation for the generation of complete mtGenome haplotype frequency estimates for forensic applications.

Journal ArticleDOI
TL;DR: Applying different statistical analyses, the reliability of the Degradation Index provided by the Quantifiler® Trio is investigated in determining the level of DNA degradation in a forensic sample.
Abstract: DNA collected from crime scenes may have experienced different levels of degradation This is mainly due to sample exposure to different environmental factors The impact of DNA degradation on short tandem repeat (STR) profiling can lead to partial or null information and in some cases, the identification of the trace may fail The availability of a system enabling the assessment not only of the quantity of the DNA but also of its quality in terms of degradation would result in shorter time for sample processing, more reliable identifications and cost reduction by predicting the quality of the DNA profiles prior to STR analysis We report here a study on 181 selected degraded DNA samples extracted from real crime scene evidence The selected samples were processed by combining the use of a new commercial quantification kit (Quantifiler® Trio) with a new 24 marker multiplex PCR amplification kit (Globalfiler® Kit) Applying different statistical analyses we investigated the reliability of the Degradation Index provided by the Quantifiler® Trio in determining the level of DNA degradation in a forensic sample This useful information can be used to predict the quality of the profile obtained after STR amplification The combination of such a quantification kit with different PCR protocols allowed us to define practical guidelines for processing degraded forensic DNA samples with a simplified and comprehensive approach

Journal ArticleDOI
TL;DR: Body fluid-specific epigenetic marker candidates were identified from genome-wide DNA methylation profiling of 42 body fluid samples including blood, saliva, semen, vaginal fluid and menstrual blood using the Illumina Infinium HumanMethylation450 BeadChip array.
Abstract: The identification of body fluids found at crime scenes can contribute to solving crimes by providing important insights into crime scene reconstruction. In the present study, body fluid-specific epigenetic marker candidates were identified from genome-wide DNA methylation profiling of 42 body fluid samples including blood, saliva, semen, vaginal fluid and menstrual blood using the Illumina Infinium HumanMethylation450 BeadChip array. A total of 64 CpG sites were selected as body fluid-specific marker candidates by having more than 20% discrepancy in DNA methylation status between a certain type of body fluid and other types of body fluids and to have methylation or unmethylation pattern only in a particular type of body fluid. From further locus-specific methylation analysis in additional samples, 1 to 3 CpG sites were selected for each body fluid. Then, a multiplex methylation SNaPshot reaction was constructed to analyze methylation status of 8 body fluid-specific CpG sites. The developed multiplex reaction positively identifies blood, saliva, semen and the body fluid which originates from female reproductive organ in one reaction, and produces successful DNA methylation profiles in aged or mixed samples. Although it remains to be investigated whether this approach is more sensitive, more practical than RNA- or peptide-based assays and whether it can be successfully applied to forensic casework, the results of the present study will be useful for the forensic investigators dealing with body fluid samples.

Journal ArticleDOI
TL;DR: This review aims to provide an overview of how X and Y STR markers are currently being used in forensic laboratories, including the applications which target their use, the markers and multiplexes facilitating recovery of this genetic information, and the tools available to interpret the resulting data.
Abstract: Short tandem repeat (STR) markers are the cornerstone of forensic identity and kinship testing. Markers located on the X and the Y chromosome can complement those found on the autosomes, which are commonly used in laboratories today. The distinctive inheritance pattern of the sex chromosomes affords advantages to the investigation of family pedigrees required by mass disaster victim identification or missing persons cases, as well as mixed samples typically recovered in sexual assault crimes. This review aims to provide an overview of how X and Y STR markers are currently being used in forensic laboratories, including the applications which target their use, the markers and multiplexes facilitating recovery of this genetic information, and the tools available to interpret the resulting data. Emerging research topics are considered as well as issues requiring further study for both marker systems.

Journal ArticleDOI
TL;DR: An effective and sensitive single multiplex assay for simultaneous genotyping of 13 RM Y-STRs is introduced and made available for widespread use in forensic and anthropological studies.
Abstract: A multiplex polymerase chain reaction (PCR) assay (RM-Yplex) was developed which is capable of simultaneously amplifying 13 recently introduced rapidly mutating Y-STR markers (RM Y-STRs). This multiplex assay is expected to aid human identity testing in forensic and other applications to improve differentiating unrelated males and allow separating related males. The 13 RM Y-STR markers included in the multiplex are: DYF387S1, DYF399S1, DYF403S1ab, DYF404S1, DYS449, DYS518, DYS526ab, DYS547, DYS570, DYS576, DYS612, DYS626 and DYS627. This study reflects the proof of concept to analyse all currently known RM Y-STRs simultaneously and describes the optimization of the multiplex assay. The RM-Yplex assay generated complete RM Y-STR profiles down to 62.5 pg of male template DNA, and from male–female DNA mixtures at all ratios tested. We herewith introduce and make available for widespread use in forensic and anthropological studies, an effective and sensitive single multiplex assay for simultaneous genotyping of 13 RM Y-STRs.

Journal ArticleDOI
TL;DR: NOCIt works on single source calibration data consisting of known genotypes to compute the APP for an unknown sample and takes into account signal peak heights, population allele frequencies, allele dropout and stutter-a commonly occurring PCR artifact.
Abstract: Repetitive sequences in the human genome called short tandem repeats (STRs) are used in human identification for forensic purposes. Interpretation of DNA profiles generated using STRs is often problematic because of uncertainty in the number of contributors to the sample. Existing methods to identify the number of contributors work on the number of peaks observed and/or allele frequencies. We have developed a computational method called NOCIt that calculates the a posteriori probability (APP) on the number of contributors. NOCIt works on single source calibration data consisting of known genotypes to compute the APP for an unknown sample. The method takes into account signal peak heights, population allele frequencies, allele dropout and stutter—a commonly occurring PCR artifact. We tested the performance of NOCIt using 278 experimental and 40 simulated DNA mixtures consisting of one to five contributors with total DNA mass from 0.016 to 0.25 ng. NOCIt correctly identified the number of contributors in 83% of the experimental samples and in 85% of the simulated mixtures, while the accuracy of the best pre-existing method to determine the number of contributors was 72% for the experimental samples and 73% for the simulated mixtures. Moreover, NOCIt calculated the APP for the true number of contributors to be at least 1% in 95% of the experimental samples and in all the simulated mixtures.

Journal ArticleDOI
TL;DR: Based on obtained results, the adoption of a two-locus combination with rbcL+trnH-psbA plastid markers, which currently best satisfies forensic needs for botanical species identification, is recommended.
Abstract: The ambitious idea of using a short piece of DNA for large-scale species identification (DNA barcoding) is already a powerful tool for scientists and the application of this standard technique seems promising in a range of fields including forensic genetics. While DNA barcoding enjoyed a remarkable success for animal identification through cytochrome c oxidase I (COI) analysis, the attempts to identify a single barcode for plants remained a vain hope for a longtime. From the beginning, the Consortium for the Barcode of Life (CBOL) showed a lack of agreement on a core plant barcode, reflecting the diversity of viewpoints. Different research groups advocated various markers with divergent set of criteria until the recent publication by the CBOL–Plant Working Group. After a four-year effort, in 2009 the International Team concluded to agree on standard markers promoting a multilocus solution (rbcL and matK), with 70–75% of discrimination to the species level. In 2009 our group firstly proposed the broad application of DNA barcoding principles as a tool for identification of trace botanical evidence through the analysis of two chloroplast loci (trnH-psbA and trnL-trnF) in plant species belonging to local flora. Difficulties and drawbacks that were encountered included a poor coverage of species in specific databases and the lack of authenticated reference sequences for the selected markers. Successful preliminary results were obtained providing an approach to progressively identify unknown plant specimens to a given taxonomic rank, usable by any non-specialist botanist or in case of a shortage of taxonomic expertise. Now we considered mandatory to update and to compare our previous findings with the new selected plastid markers (matK + rbcL), taking into account forensic requirements. Features of all the four loci (the two previously analyzed trnH-psbA + trnL-trnF and matK + rbcL) were compared singly and in multilocus solutions to assess the most suitable combination for forensic botany. Based on obtained results, we recommend the adoption of a two-locus combination with rbcL + trnH-psbA plastid markers, which currently best satisfies forensic needs for botanical species identification.