scispace - formally typeset
Search or ask a question

Showing papers in "Free Radical Research in 2014"


Journal ArticleDOI
TL;DR: Human blood cells were investigated after cold atmospheric plasma treatment with regard to oxidation and viability and the responses were similar in cells treated with concentration-matched H2O2 and the results will help to clarify how oxidative stress associates with physical plasma treatment in wound relevant cells.
Abstract: Plasma medicine is an interdisciplinary field and recent clinical studies showed benefits of topical plasma application to chronic wounds. Whereas most investigations have focused on plasma-skin cell interaction, immune cells are omnipresent in most tissues as well. They not only elicit specific immune responses but also regulate inflammation, which is central in healing and regeneration. Plasma generates short-lived radicals and species in the gas phase. Mechanisms of plasma-cell interactions are not fully understood but it is hypothesized that reactive oxygen and nitrogen species (RONS) mediate effects of plasma on cells. In this study human blood cells were investigated after cold atmospheric plasma treatment with regard to oxidation and viability. Plasma generates hydrogen peroxide (H2O2) and the responses were similar in cells treated with concentration-matched H2O2. Both treatments gave an equivalent reduction in viability and this was completely abrogated if catalase was added prior to plasma exposure. Further, five oxidation probes were utilized and fluorescence increase was observed in plasma-treated cells. Dye-dependent addition of catalase diminished most but not all of the probe fluorescence, assigning H2O2 a dominant but not exclusive role in cellular oxidation by plasma. Investigations for other species revealed generation of nitrite and formation of 3-nitrotyrosine but not 3-chlorotyrosine after plasma treatment indicating presence of RNS which may contribute to cellular redox changes observed. Together, these results will help to clarify how oxidative stress associates with physical plasma treatment in wound relevant cells.

200 citations


Journal ArticleDOI
TL;DR: Interestingly, recent findings suggest that the induction of nuclear factor erythroid like-2 (Nrf2), a major regulator of the antioxidant response, by some of the above-mentioned antioxidants, has been involved in the protective effect against PQ-induced toxicity.
Abstract: Paraquat (PQ, 1,1'-dimethyl-4-4'-bipyridinium dichloride) is a highly toxic quaternary ammonium herbicide widely used in agriculture, it exerts its toxic effects mainly because of its redox cycle through the production of superoxide anions in organisms, leading to an imbalance in the redox state of the cell causing oxidative damage and finally cell death. The contribution of mitochondrial dysfunction including increased production of reactive oxygen species besides the reduction in oxygen consumption as well as in the activity of some respiratory complexes has emerged as a key component in the mechanisms through which PQ induces cell death. Although several aspects of PQ-mitochondria interaction remain to be clarified, recent advances have been conducted with reproducible results. Currently, there is no treatment for PQ poisoning; however, several studies taking into account oxidative stress as the main mechanism of PQ-induced toxicity suggest an antioxidant therapy as a viable alternative. In fact, it has been shown that the antioxidants naringin, sylimarin, edaravone, Bathysa cuspidata extracts, alpha-lipoic acid, pirfenidone, lysine acetylsalicylate, selenium, quercetin, C-phycocyanin, bacosides, and vitamin C may be useful in the treatment against PQ toxicity. The main mechanisms involved in the protective effect of these antioxidants include the reduction of oxidative stress and inflammation and the induction of antioxidant defenses. Interestingly, recent findings suggest that the induction of nuclear factor erythroid like-2 (Nrf2), a major regulator of the antioxidant response, by some of the above-mentioned antioxidants, has been involved in the protective effect against PQ-induced toxicity.

200 citations


Journal ArticleDOI
TL;DR: The subcellular sites that modulate intracellular changes in superoxide in skeletal muscle are outlined and it is concluded that the NAD(P)H oxidases are likely to be the major superoxide generating sources in contracting skeletal muscle.
Abstract: The production of reactive oxygen and nitrogen species (RONS) by skeletal muscle is important as it (i) underlies oxidative damage in many degenerative muscle pathologies and (ii) plays multiple regulatory roles by fulfilling important cellular functions. Superoxide and nitric oxide (NO) are the primary radical species produced by skeletal muscle and studies in the early 1980s demonstrated that their generation is augmented during contractile activity. Over the past 30 years considerable research has been undertaken to identify the major sites that contribute to the increased rate of RONS generation in response to contractions. It is widely accepted that NO is regulated by the nitric oxide synthases, however the sites that modulate changes in superoxide during exercise remain unclear. Despite the initial indications that the mitochondrial electron transport chain was the predominant source of superoxide during activity, with the development of analytical methods a number of alternative potential sites have been identified including the NAD(P)H oxidases, xanthine oxidase, cyclooxygenases, and lipoxygenases linked to the activity of the phospholipase A2 enzymes. In the present review we outline the subcellular sites that modulate intracellular changes in superoxide in skeletal muscle and based on the available experimental evidence in the literature we conclude that the NAD(P)H oxidases are likely to be the major superoxide generating sources in contracting skeletal muscle.

140 citations


Journal ArticleDOI
TL;DR: The data suggest that NA may have a therapeutic potential in neurodegenerative processes due to the decreased levels of oxidative stress, apoptosis, and PARP-1 activity.
Abstract: The underlying mechanisms of Alzheimer's Disease (AD) are still unclear. It is suggested that poly(ADP-ribose) polymerase-1 (PARP-1) overactivation can cause neuroinflammation and cell death. In this study we searched the effects of nicotinamide (NA), endogenous PARP-1 inhibitor, on oxidative stress, apoptosis, and the regulation of PARP-1 and nuclear factor kappa B (NF-κB) in amyloid beta peptide (1-42) (Aβ(1-42))-induced neurodegeneration. Sprague-Dawley rats were divided into four groups as control, Aβ(1-42), Aβ(1-42) + NA(100 and 500 mg/kg). All groups were stereotaxically injected bilaterally into the hippocampus with Aβ(1-42) or saline. After surgery NA administrations were made intraperitoneally (ip) for 7 days. In order to investigate the effects of Aβ(1-42) and NA, protein carbonyls, lipid peroxidation, reactive oxygen species (ROS) production, glutathione (GSH) levels, activities of antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase), mitochondrial function, mRNA and protein levels of PARP-1, NF-κB, p53, Bax, and Bcl-2 were measured in specific brain regions such as cortex and hippocampus. Aβ(1-42) treatment only increased the oxidative stress parameters and caused decline in antioxidant enzyme activities, mitochondrial function, and GSH levels. Also, overexpression of PARP-1, NF-κB, p53, Bax, and the decreased levels of Bcl-2 were observed in Aβ(1-42)-treated group. NA treatments against Aβ(1-42)-upregulated Bcl-2 and downregulated PARP-1, NF-κB, p53, and Bax levels. NA treatments also decreased the oxidative stress parameters and elevated antioxidant enzyme activities, GSH levels, and mitochondrial function against Aβ(1-42) treatment. These data suggest that NA may have a therapeutic potential in neurodegenerative processes due to the decreased levels of oxidative stress, apoptosis, and PARP-1 activity.

133 citations


Journal ArticleDOI
TL;DR: This review will focus on 4-HNE generation, the role of 4-hNE in cardiovascular diseases, cellular targets (especially mitochondria), processes and mechanisms for 4- HNE-induced toxicity, regulation of 4,HNE metabolism, and finally strategies for developing potential therapies for cardiovascular disease by attenuating 4, HNEinduced toxicity.
Abstract: 4-Hydroxy-2-nonenal (4-HNE), a reactive aldehyde, is generated from polyunsaturated fatty acids (PUFAs) in biological membranes. Reactive oxygen species (ROS) generated during oxidative stress react with PUFAs to form aldehydes like 4-HNE, which inactivates proteins and DNA by forming hybrid covalent chemical addition compounds called adducts. The ensuing chain reaction results in cellular dysfunction and tissue damage. It includes a wide spectrum of events ranging from electron transport chain dysfunction to apoptosis. In addition, 4-HNE directly depresses contractile function, enhances ROS formation, modulates cell signaling pathways, and can contribute to many cardiovascular diseases, including atherosclerosis, myocardial ischemia-reperfusion injury, heart failure, and cardiomyopathy. Therefore, targeting 4-HNE could help reverse these pathologies. This review will focus on 4-HNE generation, the role of 4-HNE in cardiovascular diseases, cellular targets (especially mitochondria), processes and mechanisms for 4-HNE-induced toxicity, regulation of 4-HNE metabolism, and finally strategies for developing potential therapies for cardiovascular disease by attenuating 4-HNEinduced toxicity.

85 citations


Journal ArticleDOI
TL;DR: It is shown that high levels of ROS can directly increase LOX-1 production in microvascular endothelial cells (HMEC-1) and small amounts of ROS could have a beneficial effect, suggesting its therapeutic potential for reducing ischemic tissue.
Abstract: Lectin-like oxidized low-density lipoprotein (LOX-1) has been identified in endothelial cells as the main receptor of oxidized low-density lipoprotein (OxLDL). LOX-1 is upregulated in the presence of pathological conditions including atherosclerosis, hypertension, and diabetes because it acts as a mediator of "endothelial dysfunction". It promotes the generation of superoxide anion (O2(-)), the inhibition of nitric oxide (NO) production and the increment of endothelial adhesiveness to monocytes. Recently, it was reported that OxLDL, binding to LOX-1, determined a significant increase in the generation of reactive oxygen species (ROS), suggesting the involvement of signaling pathways such as mitogen-activated protein kinases (MAPKs). It is now generally accepted that ROS act indirectly on the modulation of LOX-1 expression because ROS oxidize native LDL. Moreover, LOX-1 activation per se may stimulate ROS generation. Accordingly, our findings showed that high levels of ROS can directly increase LOX-1 production in microvascular endothelial cells (HMEC-1). It has been reported that OxLDL, usually > 20 μg protein/ml, induced apoptosis in a variety of cell types. At low concentrations (< 5 μg protein/ml) OxLDL appears to be associated with cell proliferation and low levels of ROS-induced capillary tube formation in endothelial cells. Our data and those of the literature indicate the existence of a direct control of LOX-1 by ROS. Although ROS in large amounts clearly have detrimental effects on cell biology, small amounts of ROS could have a beneficial effect, suggesting its therapeutic potential for reducing ischemic tissue.

80 citations


Journal ArticleDOI
TL;DR: In this study, in vivo and in vitro models of cerebral I/R injury that demonstrate middle cerebral artery occlusion and reperfusion in rats, as well as oxygen–glucose deprivation followed by reoxygenation in primary cortical neurons were used to evaluate NGR1 neuroprotection.
Abstract: Notoginsenoside R1 (NGR1) is a novel phytoestrogen that is isolated from Panax notoginseng. We have recently found that NGR1 showed neuroprotection in vitro against oxidative stress through estrogen receptor (ER)-dependent activation of Akt/Nrf2 pathways. However, whether NGR1 has neuroprotective effect against cerebral ischemia-reperfusion (I/R) injury in vivo is unknown. In this study, we used in vivo and in vitro models of cerebral I/R injury that demonstrate middle cerebral artery occlusion and reperfusion in rats, as well as oxygen-glucose deprivation followed by reoxygenation (OGD/R) in primary cortical neurons. These models were used to evaluate NGR1 neuroprotection. Three-day pretreatment with NGR1 (20 mg/kg; i.p.) significantly improved neurologic outcomes and reduced cerebral infarct volume. Pretreatment of primary cortical neurons with NGR1 (25 μM) for 24 h prevented apoptosis and oxidative stress induced by OGD/R. NGR1 inhibited apoptosis by inhibiting mitochondrial membrane potential disruption, caspase-3 activation, and DNA fragmentation. NGR1 prevented oxidative stress by suppressing NADPH oxidase- and mitochondrion-derived superoxide and inhibiting production of malondialdehyde, protein carbonyl, and 8-hydroxydeoxyguanosine in vivo and in vitro. NGR1 induced ER-dependent activation of Akt/Nrf2 pathways by increasing ERα, ERβ, phospho-Akt, phospho-GSK3β, nuclear Nrf2, and HO-1 expression in vivo and in vitro. Pretreatment with ICI-182780, LY294002, or Snpp abolished NGR1-mediated neuroprotection against oxidative stress and apoptosis in vitro. In conclusion, NGR1 showed neuroprotection against cerebral I/R injury in vivo and in vitro. The mechanism of NGR1 neuroprotection involves inhibition of NADPH oxidase activity and mitochondrial dysfunction via ER-dependent activation of Akt/Nrf2 pathways.

78 citations


Journal ArticleDOI
TL;DR: Endotoxemia and CLP showed different iNOS, ROS/RNS, and complex activities time-courses, and abnormal fusion-to-fission balance contributes to the progression of sepsis.
Abstract: Sepsis-associated multiple organ failure is a major cause of mortality characterized by a massive increase of reactive oxygen and nitrogen species (ROS/RNS) and mitochondrial dysfunction. Despite intensive research, determining events in the progression or reversal of the disease are incompletely understood. Herein, we studied two prototype sepsis models: endotoxemia and cecal ligation and puncture (CLP)—which showed very different lethality rates (2.5% and 67%, respectively)—, evaluated iNOS, ROS and respiratory chain activity, and investigated mitochondrial biogenesis and dynamics, as possible processes involved in sepsis outcome. Endotoxemia and CLP showed different iNOS, ROS/RNS, and complex activities time-courses. Moreover, these alterations reverted after 24-h endotoxemia but not after CLP. Mitochondrial biogenesis was not elicited during the first 24 h in either model but instead, 50% mtDNA depletion was observed. Mitochondrial fusion and fission were evaluated using real-time PCR of mitof...

76 citations


Journal ArticleDOI
TL;DR: Investigation of the effects of CoCl2 on human retinal epithelium cells suggests that oxidative stress induced by hypoxia might be involved in RD development through the stimulation of two key-events of RD such as neo-angiogenesis and apoptosis.
Abstract: Retinal diseases (RD), including diabetic retinopathy, are among the most important eye diseases in industrialized countries. RD is characterized by abnormal angiogenesis associated with an increase in cell proliferation and apoptosis. Hypoxia could be one of the triggers of the pathogenic mechanism of this disease. A key regulatory component of the cell's hypoxia response system is hypoxia-inducible factor 1 alpha (HIF-1α). It has been demonstrated that the induction of HIF-1α expression can be also achieved in vitro by exposure with cobalt chloride (CoCl2), leading to an intracellular hypoxia-like state. In this study we have investigated the effects of CoCl2 on human retinal epithelium cells (hRPE), which are an integral part of the blood-retinal barrier, with the aim to determine the possible role of oxidative stress in chemical hypoxia-induced damage in retinal epithelial cells. Our data showed that CoCl2 treatment is able to induce HIF-1α expression, that parallels with the formation of reactive oxygen species (ROS) and the increase of lipid 8-isoprostanes and 4-hydroxynonenal (4-HNE) protein adducts levels. In addition we observed the activation of the redox-sensitive transcription factor nuclear factor-kappaB (NFkB) by CoCl2 which can explain the increased levels of vascular endothelial growth factor (VEGF). The increased number of dead cells seems to be related to an apoptotic process. Taken together these evidences suggest that oxidative stress induced by hypoxia might be involved in RD development through the stimulation of two key-events of RD such as neo-angiogenesis and apoptosis.

76 citations


Journal ArticleDOI
Wei C1, Li L1, Kim Ik1, Sun P2, Sudhiranjan Gupta1 
TL;DR: A critical role of NF-κB-mediated miR-21 modulation in H2O2-induced oxidative stress in cardiomyocytes by targeting PDCD4 is evaluated, which may provide a new insight of mi R-21's role in cardiac diseases primarily mediated by ROS.
Abstract: Oxidative stress, defined as an excess production of reactive oxygen species (ROS), is shown to play an important role in the pathophysiology of cardiac remodeling including cell death and contractile dysfunction. Therefore, the balance between ROS production and removal of excess ROS is essential in maintaining the redox state and homeostasis balance in the cell. The increased ROS further activates nuclear factor-κB (NF-κB), a redox-sensitive transcription factor and promotes cell death. Recently, microRNAs (miRNAs) have been identified as critical regulators of various pathophysiological processes of cardiac remodeling; however, NF-κB-mediated miRNA's role in cardiomyocytes under oxidative stress remains undetermined. The miR-21 has been implicated in diverse cardiac remodeling; but, NF-κB-mediated miR-21 modulation in oxidative stress is currently unknown. Neonatal cardiomyocytes were transfected with IκBα mutant, miR-21 mimetic, and inhibitors separately, and were challenged with H2O2. The target gene, programmed cell death 4 (PDCD4), ROS activity, and NF-κB translocation were analyzed. Our results indicated that NF-κB positively regulated miR-21 expression under oxidative stress, and PDCD4 was a direct target for miR-21. NF-κB further regulated the expression of PDCD4 in H2O2-induced oxidative stress. Moreover, H2O2-induced ROS activity and cardiomyocytes apoptosis were partly protected by overexpression of miR-21 and displayed an important role in ROS-mediated cardiomyocytes injury. We evaluated a critical role of NF-κB-mediated miR-21 modulation in H2O2-induced oxidative stress in cardiomyocytes by targeting PDCD4. Our data may provide a new insight of miR-21's role in cardiac diseases primarily mediated by ROS.

75 citations


Journal ArticleDOI
TL;DR: It is shown that under conditions of increased glycolytic energy turnover and muscle acidification, as during sprint exercise in severe acute hypoxia, AMPKα phosphorylation is also blunted, which indicates that an optimal level of RONS-mediated stimulation is required for the normal signaling response to sprint exercise.
Abstract: Sprint exercise ability has been critical for survival. The remarkably high-power output levels attained during sprint exercise are achieved through strong activation of anaerobic, and to a lesser extent, aerobic energy supplying metabolic reactions, which generate reactive oxygen and nitrogen species (RONS). Sprint exercise may cause oxidative stress leading to muscle damage, particularly when performed in severe acute hypoxia. However, with training oxidative stress is reduced. Paradoxically, total plasma antioxidant capacity increases during the subsequent 2 h after a short sprint due to the increase in plasma urate concentration. The RONS produced during and immediately after sprint exercise play a capital role in signaling the adaptive response to sprint. Antioxidant supplementation blunts the normal AMPKα and CaMKII phosphorylation in response to sprint exercise. However, under conditions of increased glycolytic energy turnover and muscle acidification, as during sprint exercise in severe acute hypoxia, AMPKα phosphorylation is also blunted. This indicates that an optimal level of RONS-mediated stimulation is required for the normal signaling response to sprint exercise. Although RONS are implicated in fatigue, most studies convey that antioxidants do not enhance sprint performance in humans. Although currently controversial, it has been reported that antioxidant ingestion during training may jeopardize some of the beneficial adaptations to sprint training.

Journal ArticleDOI
TL;DR: Robust evidence indicates that as few as five consecutive days of endurance exercise training results in a cardiac phenotype that resists IR-induced arrhythmias, myocardial stunning, and infarction and mechanistic studies indicate that exercise-induced increases in mitochondrial superoxide dismutase 2 play a key role in this adaptation.
Abstract: Endurance exercise training is known to promote beneficial adaptations to numerous tissues including the heart. Indeed, endurance exercise training results in a cardioprotective phenotype that resists injury during an ischemia–reperfusion (IR) insult. Because IR-induced cardiac injury is due, in part, to increased production of radicals and other reactive oxygen species, many studies have explored the impact of exercise training on myocardial antioxidant capacity. Unfortunately, the literature describing the effects of exercise on the cardiac antioxidant capacity is widely inconsistent. Nonetheless, a growing body of evidence indicates that regular bouts of endurance exercise promote an increase in the expression of both superoxide dismutase 1 and 2 in cardiac mitochondria. Moreover, emerging evidence suggests that exercise also increases accessory antioxidant enzymes in the heart. Importantly, robust evidence indicates that as few as five consecutive days of endurance exercise training results in...

Journal ArticleDOI
TL;DR: It is assumed that early muscle insulin resistance allows the excess nutrients to shift in the storage tissues to withstand starvation through energy storage, and when chronic and prolonged, physical inactivity over an extended period of time is an underestimated contributor to pathological insulin resistance and hence indirectly to numerous chronic diseases.
Abstract: Epidemiological data indicate that physical inactivity, a main factor of global energetic imbalance, is involved in the worldwide epidemic of obesity and metabolic disorders such as insulin resistance. Although the complex pathogenesis of insulin resistance is not fully understood, literature data accumulated during the past decades clearly indicate that the activation of the oxidative-infl ammatory loop plays a major role. By activating the oxidative-infl ammatory loop in insulin-sensitive tissues, fat gain and adipose tissue dysfunction likely contribute to induce insulin resistance during chronic and prolonged physical inactivity. However, in the past years, evidence has emerged showing that early insulin resistance also occurs after very short-term exposure to physical inactivity (1 – 7 days) without any fat gain or energetic imbalance. The possible role of liver disturbances or endothelial dysfunction is suggested, but further studies are necessary to really conclude. Inactive skeletal muscle probably constitutes the primary triggering tissue for the development of early insulin resistance. In the present review, we discuss on the current knowledge about the eff ect of physical inactivity on whole-body and peripheral insulin sensitivity, and how local infl ammation and oxidative stress arising with physical inactivity could potentially induce insulin resistance. We assume that early muscle insulin resistance allows the excess nutrients to shift in the storage tissues to withstand starvation through energy storage. We also consider when chronic and prolonged, physical inactivity over an extended period of time is an underestimated contributor to pathological insulin resistance and hence indirectly to numerous chronic diseases.

Journal ArticleDOI
TL;DR: NGR1 provided neuroprotection via inducing an estrogen receptor-dependent crosstalk between Akt and ERK1/2 pathways, subsequently activating Nrf2/ARE signaling and thereby up-regulating phase II antioxidant enzymes.
Abstract: Notoginsenoside R1 (NGR1), a novel phytoestrogen isolated from Panax notoginseng, has antioxidant and anti-apoptotic properties. Oxidative stress plays a pivotal role in neurodegenerative diseases. To mimic oxidative stress in neurons and explore the neuroprotection of NGR1, H₂O₂-induced neurotoxicity in NGF-induced differentiation of PC12 cells was used. In this study, NGR1 preconditioning provided neuroprotective effects via suppressing H₂O₂-induced the intracellular ROS accumulation, the increase in the product of lipid peroxidation (MDA), protein oxidation (protein carbonyl), and DNA fragmentation (8-OHdG), and mitochondrial membrane depolarization as well as caspase-3 activation. Moreover, NGR1 treatment alone potently increased the nuclear translocation of Nrf2, augmented ARE enhancer activity, and upregulated the expression and activity of phase II antioxidant enzymes including HO-1, NQO-1, and γ-GCSc. NGR1 could also increase the ERE activity and activate Akt and ERK1/2 pathways. NGR1-mediated activation of Nrf2/ARE signaling and neuroprotection were abolished by genetic silencing of Nrf2 using siRNA or the pharmacological blockade of estrogen receptors using ICI-182780, and partially inhibited by Akt siRNA or ERK siRNA transfection. In addition, the phosphorylation of ERK1/2 mediated by NGR1 was markedly inhibited in PC12 cells transfected with Akt siRNA. On the contrary, ERK1/2 siRNA transfection hardly had any effect on the phosphorylation of Akt mediated by NGR1. NGR1-mediated activation of Akt and ERK1/2 pathways was blocked by ICI-182780. In conclusion, NGR1 provided neuroprotection via inducing an estrogen receptor-dependent crosstalk between Akt and ERK1/2 pathways, subsequently activating Nrf2/ARE signaling and thereby up-regulating phase II antioxidant enzymes.

Journal ArticleDOI
TL;DR: Overall, EGT, MEL, and, in particular, the combination of EGT and MEL effectively protect against learning and memory deficits in C57BL/6J mice treated with DG, possibly through attenuation of oxidative damage.
Abstract: Male C57BL/6J mice treated with D-galactose (DG) were used to examine the effects of ergothioneine (EGT), melatonin (MEL), or their combination (EGT+MEL) on learning and memory abilities. The mice were divided into five groups and injected subcutaneously with DG (0.3 mL of 1% DG/mouse) except for group 1 (normal controls). Group 3 was orally supplemented with EGT [0.5 mg/kg body weight (bw)], group 4 with MEL (10 mg/kg bw, p.o.), and group 5 with EGT+MEL. EGT and MEL were provided daily for 88 days, while DG was provided between days 7 to 56. Active avoidance task and Morris water-maze task were used to evaluate learning and memory abilities. DG treatment markedly increased escape latency and decreased the number of avoidance in the active avoidance test, whereas EGT and MEL alone significantly improved the performance. DG also impaired the learning and memory abilities in the water-maze task, and EGT and MEL alone also significantly improved the performance. EGT+MEL produced the strongest effects...

Journal ArticleDOI
TL;DR: Maternal l-citrulline therapy can prevent prenatal DEX-induced programmed hypertension by restoration ADMA/nitric oxide (NO) balance, alterations of renin–angiotensin system and sodium transporters, and epigenetic regulation by histone deacetylases (HDACs).
Abstract: Glucocorticoids are administered to premature infants to accelerate pulmonary maturation. In experimental model, prenatal dexamethasone (DEX) results in reduced nephron number and adulthood hypertension. Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase (NOS), can cause oxidative stress and is involved in the development of hypertension. L-citrulline can be converted to l-arginine (the substrate for NOS) in the body. Thus we intended to determine if maternal L-citrulline therapy can prevent prenatal DEX-induced programmed hypertension by restoration ADMA/nitric oxide (NO) balance, alterations of renin-angiotensin system (RAS) and sodium transporters, and epigenetic regulation by histone deacetylases (HDACs). Male offspring were assigned to four groups: control, pregnancy rats received intraperitoneal DEX (0.2 mg/kg body weight) daily on gestational days 15 and 16 (DEX), pregnancy rats received 0.25% L-citrulline in drinking water during the entire pregnancy and lactation period (CIT), and DEX + CIT. We found DEX group developed hypertension at 16 weeks of age, which was prevented by maternal L-citrulline therapy. Prenatal DEX exposure increased plasma ADMA concentrations and reduced renal NO production. However, L-citrulline reduced plasma ADMA level and increased renal level of NO in DEX + CIT group. Next, prenatal DEX-induced programmed hypertension is related to increased mRNA expression of angiotensin and angiotensin II type 1 receptor, and class I HDACs in the kidney. Prenatal DEX exposure increased renal protein abundance of Na(+)/Cl(-) cotransporter (NCC), which was prevented by L-citrulline therapy. The beneficial effects of L-citrulline therapy include restoration of ADMA/NO balance and alteration of NCC, to prevent the prenatal DEX-induced programmed hypertension.

Journal ArticleDOI
TL;DR: A critical update on the role of exercise-induced ROS in the modulation of the HSP's response is provided, focusing on experimental results from animal and human studies where the link between redox homeostasis and HSPs’ expression in different tissues has been addressed.
Abstract: The multiple roles that have been associated with heat shock proteins (HSPs), inside and outside cells are remarkable. HSPs have been found to play a fundamental role in multiple stress conditions and to offer protection from subsequent insults. Exercise, because of the physiological stresses associated with it, is one of the main stimuli associated with a robust increase of different HSPs in several tissues. Given the combination of physiological stresses induced by exercise, and the 'cross-talk' that occurs between signaling pathways in different tissues, it is likely that exercise induces the HSP expression through a combination of 'stressors', among which reactive oxygen species (ROS) could play a major role. Indeed, although an imbalance between ROS production and antioxidant levels results in oxidative stress, causing damage to lipids, proteins, and nucleic acids with a possible activation of the programed cell death pathway, at moderate concentrations ROS play an important role as regulatory mediators in signaling processes. Many of the ROS-mediated responses actually protect the cells against oxidative stress and re-establish redox homeostasis. The aim of this review is to provide a critical update on the role of exercise-induced ROS in the modulation of the HSP's response, focusing on experimental results from animal and human studies where the link between redox homeostasis and HSPs' expression in different tissues has been addressed.

Journal ArticleDOI
TL;DR: Regular physical activity is likely to be a highly useful tool in the treatment of cardiovascular disease and future studies should focus on which form of exercise may be most optimal for enhancing NO bioavailability and improving cardiovascular health.
Abstract: Nitric oxide (NO) is known to be one of the most important regulatory compounds within the cardiovascular system where it is central for functions such as regulation of blood pressure, blood flow, and vascular growth. The bioavailability of NO is determined by a balance between, on one hand, the extent of enzymatic and non-enzymatic formation of NO and on the other hand, removal of NO, which in part is dependent on the reaction of NO with reactive oxygen species (ROS). The presence of ROS is dependent on the extent of ROS formation via mitochondria and/or enzymes such as NAD(P)H oxidase (NOX) and xanthine oxidase (XO) and the degree of ROS removal through the antioxidant defense system or other reactions. The development of cardiovascular disease has been proposed to be closely related to a reduced bioavailability of NO in parallel with an increased presence of ROS. Excessive levels of ROS not only lower the bioavailability of NO but may also cause cellular damage in the cardiovascular system. Physical activity has been shown to greatly improve cardiovascular function, in part through improved bioavailability of NO, enhanced endogenous antioxidant defense and a lowering of the expression of ROS-forming enzymes. Regular physical activity is therefore likely to be a highly useful tool in the treatment of cardiovascular disease. Future studies should focus on which form of exercise may be most optimal for enhancing NO bioavailability and improving cardiovascular health.

Journal ArticleDOI
TL;DR: It is demonstrated for the first time that influenza A virus and TLR7 activation enhance the NOX2 oxidase-dependent oxidative burst in macrophages, which might underpin the acute lung injury to influenza Airus infection.
Abstract: Influenza A virus infects resident alveolar macrophages in the respiratory tract resulting in Toll like receptor 7 (TLR7) activation that triggers an inflammatory response to resolve the infection. Macrophages are also major sources of reactive oxygen species (ROS) via the NOX2-containing NADPH oxidase. Although ROS are crucial for pathogen clearance, in response to influenza A virus, ROS are touted as being culprit mediators of the lung tissue injury. The aim of the present study was to determine whether influenza A virus infection and TLR7 activation of macrophages, results in alterations in their ROS production. Here we demonstrate using immunofluorescence that influenza A virus (Hong Kong X-31 strain; H3N2) internalizes in RAW264.7 cells and mouse alveolar macrophages within 1 h, resulting in a significant enhancement in the stimulated NOX2 oxidase-dependent oxidative burst, although virus had no effect on basal ROS. The specific TLR7 agonist imiquimod (10 μg/ml) elevated basal superoxide production and, in a similar fashion to influenza A virus, enhanced NOX2 oxidase-dependent oxidative burst. By contrast, the TLR3 agonist, poly I:C (1-100 μg/ml) failed to influence the oxidative burst to NOX2 oxidase. A peptide corresponding to the region 337-348 on p47phox conjugated to a HIV-tat, designed to inhibit the phosphorylation of Ser346 on p47phox suppressed the influenza A virus- and imiquimod-induced enhancement in the oxidative burst. In conclusion, this study demonstrates for the first time that influenza A virus and TLR7 activation enhance the NOX2 oxidase-dependent oxidative burst in macrophages, which might underpin the acute lung injury to influenza A virus infection.

Journal ArticleDOI
TL;DR: It is demonstrated that antioxidant and anti-inflammatory properties of polyphenols may depend on structure, dose, time of exposure and cell conditioning with oxidative stress, and such findings should be considered for a better understanding ofpolyphenols’ benefits in strategies aiming to prevent obesity-related diseases.
Abstract: Obesity has been associated with a marked risk of metabolic diseases and requires therapeutic strategies. Changes in redox status with increased oxidative stress in adipose tissue have been linked with obesity-related disorders. Thus, the biological eff ect of antioxidants such as polyphenols is of high interest. We aimed to measure antioxidant capacities of 28 polyphenols representative of main dietary phenolic acids, fl avonoids, stilbenes and curcuminoids. Then, 14 molecules were selected for the evaluation of their eff ect on 3T3-L1 preadipocytes and human red blood cells exposed to oxidative stress. Analysis of reducing and free radical-scavenging capacities of compounds revealed antioxidant properties related to their structure, with higher activities for fl avonoids such as quercetin and epicatechin. Their eff ects on preadipocytes ’ viability also depended on their structure, dose and time of exposure. Interestingly, most of the compounds exhibited a protective eff ect on preadipocytes exposed to oxidative stress, by reversing H 2 O 2 -induced anti-proliferative action and reactive oxygen species production. Polyphenols also exerted an anti-infl ammatory eff ect on preadipocytes exposed to H 2 O 2 by reducing IL-6 secretion. Importantly, such antioxidant and anti-infl ammatory eff ects were observed in co-exposition (polyphenol and prooxidant during 24 h) or pretreatment (polyphenol during 24 h, then prooxidant for 24 h) conditions. Moreover, compounds protected erythrocytes from AAPH radical-induced lysis. Finally, these results led to demonstrate that antioxidant and anti-infl ammatory properties of polyphenols may depend on structure, dose, time of exposure and cell conditioning with oxidative stress. Such fi ndings should be considered for a better understanding of polyphenols ’ benefi ts in strategies aiming to prevent obesity-related diseases.

Journal ArticleDOI
TL;DR: MitoQ revealed the central role of mitochondrial oxidative stress in the development of MetS and suggested that mitochondria-targeted antioxidants may be worth considering as potentially helpful therapies for MetS features.
Abstract: The prevalence of metabolic syndrome (MetS) components including obesity, dyslipidemia, insulin resistance (IR), and hepatic steatosis is rapidly increasing in wealthy societies. It is accepted that inflammation/oxidative stress are involved in the initiation/evolution of the MetS features. The present work was designed to evaluate the effects of three major cellular ROS production systems on obesity, glucose tolerance, and hepatic steatosis development and on oxidative stress onset. To do so, 40 young male Sprague–Dawley rats were divided into 5 groups: 1-control group, 2-high fat (HF) group (60% energy from fat), 3-HF+ MitoQ (mitochondrial ROS scavenger), 4-HF+ Apocynin (NADPH oxidase inhibitor), 5-HF+ Allopurinol (xanthine oxidase inhibitor). After 8 weeks of these treatments, surrogate MetS, mitochondrial function, and oxidative stress markers were measured in blood and liver. As expected, rats that were fed the HF diet exhibited increased body weight, glucose intolerance, overt hepatic steato...

Journal ArticleDOI
TL;DR: Since the redox balance also plays an important role in host defence against pathogens, carefully designed clinical trials are needed to assess the therapeutic benefits and secondary effects of these molecules and whether these effects differ between different types of viral infections.
Abstract: Oxygen and nitrogen radicals are frequently produced during viral infections. These radicals are not only a physiological mechanism for pathogen clearance but also result in many pathological consequences. Low concentrations of radicals can promote viral replication; however, high concentrations of radicals can also inhibit viral replication and are detrimental to the cell due to their mitogenic activity. We reviewed the detailed mechanisms behind oxygen and nitrogen radical production and focused on how viruses induce radical production. In addition, we examined the effects of oxygen and nitrogen radicals on both the virus and host. We also reviewed enzymatic and chemical detoxification mechanisms and recent advances in therapeutic antioxidant applications. Many molecules that modulate the redox balance have yielded promising results in cell and animal models of infection. This encourages their use in clinical practice either alone or with existing therapies. However, since the redox balance also plays an important role in host defence against pathogens, carefully designed clinical trials are needed to assess the therapeutic benefits and secondary effects of these molecules and whether these effects differ between different types of viral infections.

Journal ArticleDOI
TL;DR: It is demonstrated that quercetin, through its free radical scavenging and antioxidant properties, attenuates irradiation-induced oxidative organ injury, suggesting that quERCetin may have a potential benefit in radiotherapy by minimizing the adverse effects and will improve patient care.
Abstract: Ionizing radiation (IR) can induce cell damage and cell death through the reactive oxygen species generated by radiolytic hydrolysis. The present study was aimed to determine the possible protective effects of quercetin, a well-known antioxidant agent, against IR-induced bladder and kidney damage in rats. Sprague-Dawley rats were exposed to 8-Gy whole-abdominal IR and given either vehicle or quercetin (20 mg/kg, ip). Rats were decapitated at either 36 h or 10 days following IR, where quercetin or vehicle injections were repeated once daily, and kidney and bladder samples were obtained for the determination of myeloperoxidase and caspase-3 activities, an index of tissue neutrophil infiltration and apoptosis, respectively. Radiation-induced inflammation was evaluated through tissue cytokine, TNF-α levels. In order to examine oxidative DNA damage, tissue 8-hydroxydeoxyguanosine (8-OHdG) levels were measured. All tissues were also examined microscopically. In the saline-treated irradiation groups, myeloperoxidase and caspase-3 activities, 8-OHdG and TNF-α levels were found to be increased in both tissues (p < 0.05). In the quercetin-treated-IR groups, all these oxidant responses were prevented significantly (p < 0.05). The present data demonstrate that quercetin, through its free radical scavenging and antioxidant properties, attenuates irradiation-induced oxidative organ injury, suggesting that quercetin may have a potential benefit in radiotherapy by minimizing the adverse effects and will improve patient care.

Journal ArticleDOI
TL;DR: An overview of the common methods used to determine protein carbonylation in biological material is given as well as to highlight the limitations and the potential to get insights into the molecular mechanisms involved in the progression of diseases.
Abstract: Oxidation of proteins has received a lot of attention in the last decades due to the fact that they have been shown to accumulate and to be implicated in the progression and the patho-physiology of several diseases such as Alzheimer, coronary heart diseases, etc. This has also resulted in the fact that research scientist became more eager to be able to measure accurately the level of oxidized protein in biological materials, and to determine the precise site of the oxidative attack on the protein, in order to get insights into the molecular mechanisms involved in the progression of diseases. Several methods for measuring protein carbonylation have been implemented in different laboratories around the world. However, to date no methods prevail as the most accurate, reliable and robust. The present paper aims at giving an overview of the common methods used to determine protein carbonylation in biological material as well as to highlight the limitations and the potential. The ultimate goal is to give quick tips for a rapid decision making when a method has to be selected and taking into consideration the advantage and drawback of the methods.

Journal ArticleDOI
Kalle Kilk1, Richard Meitern1, O. Härmson1, Ursel Soomets1, Peeter Hõrak1 
TL;DR: This assay has deficiencies in terms of detecting realistic concentrations of hydroperoxides, is mostly measuring CP and is also interfered with other serum components, making it very difficult to interpret in most biological systems.
Abstract: Assessment of oxidative stress is an important but technically challenging procedure in medical and biological research. The reactive oxygen metabolites (d-ROMs) test is a simple assay marketed for analyzing the total amount of hydroperoxides in serum via the Fenton's reaction. Earlier reports have raised a suspicion that a part of the signal detected in the assay comes from sources other than metabolites generated by oxidative stress. The aim of this study was to identify which serum components interfere with the d-ROMs signal. By application of sodium azide, ethylenediaminetetraacetic acid, sodium dodecylsulphate, varying temperature, and spiking endogenous substances we demonstrate that in the case of mammalian sera the assay determines ceruloplasmin (CP) activity with potential interferences from hydroperoxides, iron level, thiols, and albumin. In sera of avian species hydroperoxides contribute more to the test outcome, but the CP part is insensitive to inhibition by azide. In conclusion, this assay has deficiencies in terms of detecting realistic concentrations of hydroperoxides, is mostly measuring CP and is also interfered with other serum components, making it very difficult to interpret in most biological systems.

Journal ArticleDOI
TL;DR: The elevated concentrations of both copper and ceruloplasmin are independently associated with increased risk of mortality from all causes and from cardiovascular causes.
Abstract: Background. Copper and its main transport protein ceruloplasmin have been suggested to promote the development of atherosclerosis. Most of the data come from experimental and animal model studies. Copper and mortality have not been simultaneously evaluated in patients undergoing coronary angiography. Methods and results. We examined whether serum copper and ceruloplasmin concentrations are associated with angiographic coronary artery disease (CAD) and mortality from all causes and cardiovascular causes in 3253 participants of the Ludwigshafen Risk and Cardiovascular Health Study. Age and sex-adjusted hazard ratios (HR) for death from any cause were 2.23 (95% CI, 1.85–2.68) for copper and 2.63 (95% CI, 2.17–3.20) for ceruloplasmin when we compared the highest with the lowest quartiles. Corresponding hazard ratios (HR) for death from cardiovascular causes were 2.58 (95% CI, 2.05–3.25) and 3.02 (95% CI, 2.36–3.86), respectively. Further adjustments for various risk factors and clinical variables cons...

Journal ArticleDOI
TL;DR: It is concluded that curcumin is able to attenuate in vivo maleate-induced nephropathy and in vitro cell damage and the in vivo protection was associated to the prevention of oxidative stress and preservation of mitochondrial oxygen consumption and activity of respiratory complex I.
Abstract: The potential protective effect of the dietary antioxidant curcumin (120 mg/Kg/day for 6 days) against the renal injury induced by maleate was evaluated. Tubular proteinuria and oxidative stress were induced by a single injection of maleate (400 mg/kg) in rats. Maleate-induced renal injury included increase in renal vascular resistance and in the urinary excretion of total protein, glucose, sodium, neutrophil gelatinase-associated lipocalin (NGAL) and N-acetyl β-D-glucosaminidase (NAG), upregulation of kidney injury molecule (KIM)-1, decrease in renal blood flow and claudin-2 expression besides of necrosis and apoptosis of tubular cells on 24 h. Oxidative stress was determined by measuring the oxidation of lipids and proteins and diminution in renal Nrf2 levels. Studies were also conducted in renal epithelial LLC-PK1 cells and in mitochondria isolated from kidneys of all the experimental groups. Maleate induced cell damage and reactive oxygen species (ROS) production in LLC-PK1 cells in culture. In addition, maleate treatment reduced oxygen consumption in ADP-stimulated mitochondria and diminished respiratory control index when using malate/glutamate as substrate. The activities of both complex I and aconitase were also diminished. All the above-described alterations were prevented by curcumin. It is concluded that curcumin is able to attenuate in vivo maleate-induced nephropathy and in vitro cell damage. The in vivo protection was associated to the prevention of oxidative stress and preservation of mitochondrial oxygen consumption and activity of respiratory complex I, and the in vitro protection was associated to the prevention of ROS production.

Journal ArticleDOI
TL;DR: The nature of the extracellular matrix is briefly reviewed, together with evidence for the presence of matrix modifications in cardiovascular disease and the limited data available to date on how such changes affect structural properties and cellular behavior are reviewed.
Abstract: There is accumulating evidence that damage to extracellular materials and particularly the extracellular matrix, can play a major role in multiple human pathologies. In contrast to cells, the extracellular compartment of most biological tissues is relatively poorly equipped to prevent or repair damage caused by oxidation due to lower levels of antioxidant defenses (low molecular mass and enzymatic) and repair systems (both catabolic and enzymatic). The extracellular compartment is therefore likely to be subject to both an increased extent of damage and an overall accumulation of damage due to slow turnover and/or poor repair. The nature and consequences of damage to the extracellular matrix is poorly understood, despite evidence that changes in matrix structure influences not only structural integrity, but also cell adhesion, proliferation, migration and signaling, and cytokine and growth factor binding. In this article the nature of the extracellular matrix is briefly reviewed, together with evidence for the presence of matrix modifications in cardiovascular disease. The oxidants and mechanisms that are known to damage extracellular matrix are reviewed, together with the limited data available to date on how such changes affect structural properties and cellular behavior.

Journal ArticleDOI
TL;DR: This study applies a highly specific turn-on fluorescent probe to frozen sections of an established Fenton reaction-based rat renal carcinogenesis model with an iron chelate, ferric nitrilotriacetate (Fe-NTA), in which catalytic iron induces the Fenton Reaction specifically in the renal proximal tubules, presumably after iron reduction.
Abstract: Iron overload of a chronic nature has been associated with a wide variety of human diseases, including infection, carcinogenesis, and atherosclerosis. Recently, a highly specific turn-on fluorescen...

Journal ArticleDOI
TL;DR: It is suggested that oxidative stress-elicited down-regulation of Sirt3 plays a role in the pathophysiology of diabetes, cardiac hypotrophy, mitochondrial diseases, and age-related diseases through an intricate regulation of energy metabolism under oxidative stress.
Abstract: In addition to serving as the power house of mammalian cells, mitochondria are crucial for the maintenance of cellular homeostasis in response to physiological or environmental changes. Several lines of evidence suggest that posttranslational modification (PTM) of proteins plays a pivotal role in the regulation of the bioenergetic function of mitochondria. Among them, reversible lysine acetylation of mitochondrial proteins has been established as one of the key mechanisms in cellular response to energy demand by modulating the flux of a number of key metabolic pathways. In this article, we focus on the role of Sirt3-mediated deacetylation in: (1) flexibility of energy metabolism, (2) activation of antioxidant defense, and (3) maintenance of cellular redox status in response to dietary challenge and oxidative stress. We suggest that oxidative stress-elicited down-regulation of Sirt3 plays a role in the pathophysiology of diabetes, cardiac hypotrophy, mitochondrial diseases, and age-related diseases...