scispace - formally typeset
Search or ask a question

Showing papers in "Frontiers in Earth Science in 2019"


Journal ArticleDOI
TL;DR: In this article, the authors synthesize existing knowledge of seafloor microplastic distribution, and integrate this with process-based sedimentological models of particle transport, to provide new insights, and critically, to identify future research challenges.
Abstract: An estimated 8.3 billion tonnes of non-biodegradable plastic has been produced over the last 65 years. Much of this is not recycled or disposed of ‘properly’, has a long environmental residence time and accumulates in sedimentary systems worldwide, posing a threat to important ecosystems and potentially human health. We synthesise existing knowledge of seafloor microplastic distribution, and integrate this with process-based sedimentological models of particle transport, to provide new insights, and critically, to identify future research challenges. Compilation of published data shows that microplastics pervade the global seafloor, from abyssal plains to submarine canyons and deep-sea trenches. However, few studies relate microplastic accumulation to sediment transport and deposition. Microplastics may enter directly into the sea as marine litter from shipping and fishing, or indirectly via fluvial and aeolian systems from terrestrial environments. The nature of the entry-point is critical to how terrestrially-sourced microplastics are transferred to offshore sedimentary systems. We present models for physiographic shelf connection types related to the tectono-sedimentary regime of the margin. Beyond the shelf, the principal agents for microplastic transport are: i) gravity-driven transport in sediment-laden flows; ii) settling, or conveyance through biological processes, of material that was formerly floating on the surface or suspended in the water column; iii) transport by thermohaline currents, either during settling or by reworking of deposited microplastics. We compare microplastic settling velocities to natural sediments to understand how appropriate existing sediment transport models are for explaining microplastic dispersal. Based on this analysis, and the relatively well-known behaviour or deep-marine flow types, we explore the expected distribution of microplastic particles, both in individual sedimentary event deposits and within deep-marine depositional systems. Residence time within certain deposit types and depositional environments is anticipated to be variable, which has implications for the likelihood of ingestion and incorporation into the food chain, further transport, or deeper burial. We conclude that integration of process-based sedimentological and stratigraphic knowledge with insights from modern sedimentary systems, and biological activity within them, will provide essential constraints on the transfer of microplastics to deep-marine environments, their distribution and ultimate fate, and the implications that these have for benthic ecosystems.

234 citations


Journal ArticleDOI
TL;DR: The authors provided an overview of changes in the mass of the world's glaciers, excluding those in Greenland and Antarctica, between 2002 and 2016, based on satellite gravimetry observations of the Gravity Recovery and Climate Experiment (GRACE).
Abstract: Glaciers outside of the ice sheets are known to be important contributors to sea level rise. In this work, we provide an overview of changes in the mass of the world's glaciers, excluding those in Greenland and Antarctica, between 2002 and 2016, based on satellite gravimetry observations of the Gravity Recovery and Climate Experiment (GRACE). Glaciers lost mass at a rate of 199 ± 32 Gt yr −1 during this 14-yr period, equivalent to a cumulative sea level contribution of 8 mm. We present annual mass balances for 17 glacier regions, that show a qualitatively good agreement with published estimates from in situ observations. We find that annual mass balance varies considerably from year to year, which can in part be attributed to changes in the large-scale circulation of the atmosphere. These variations, combined with the relatively short observational record, hamper the detection of acceleration of glacier mass loss. Our study highlights the need for continued observations of the Earth's glacierized regions.

141 citations


Journal ArticleDOI
TL;DR: A strategy for atmospheric correction is presented that ensures continuity and consistency with past and present ocean-color missions while enabling full exploitation of the new dimensions and possibilities of the EOS era.
Abstract: The Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission will carry into space the Ocean Color Instrument (OCI), a spectrometer measuring at 5nm spectral resolution in the ultraviolet (UV) to near infrared (NIR) with additional spectral bands in the shortwave infrared (SWIR), and two multi-angle polarimeters that will overlap the OCI spectral range and spatial coverage, i. e., the Spectrometer for Planetary Exploration (SPEXone) and the Hyper-Angular Rainbow Polarimeter (HARP2). These instruments, especially when used in synergy, have great potential for improving estimates of water reflectance in the post Earth Observing System (EOS) era. Extending the top-of-atmosphere (TOA) observations to the UV, where aerosol absorption is effective, adding spectral bands in the SWIR, where even the most turbid waters are black and sensitivity to the aerosol coarse mode is higher than at shorter wavelengths, and measuring in the oxygen A-band to estimate aerosol altitude will enable greater accuracy in atmospheric correction for ocean color science. The multi-angular and polarized measurements, sensitive to aerosol properties (e.g., size distribution, index of refraction), can further help to identify or constrain the aerosol model, or to retrieve directly water reflectance. Algorithms that exploit the new capabilities are presented, and their ability to improve accuracy is discussed. They embrace a modern, adapted heritage two-step algorithm and alternative schemes (deterministic, statistical) that aim at inverting the TOA signal in a single step. These schemes, by the nature of their construction, their robustness, their generalization properties, and their ability to associate uncertainties, are expected to become the new standard in the future. A strategy for atmospheric correction is presented that ensures continuity and consistency with past and present ocean-color missions while enabling full exploitation of the new dimensions and possibilities. Despite the major improvements anticipated with the PACE instruments, gaps/issues remain to be filled/tackled. They include dealing properly with whitecaps, taking into account Earth-curvature effects, correcting for adjacency effects, accounting for the coupling between scattering and absorption, modeling accurately water reflectance, and acquiring a sufficiently representative dataset of water reflectance in the UV to SWIR. Dedicated efforts, experimental and theoretical, are in order to gather the necessary information and rectify inadequacies. Ideas and solutions are put forward to address the unresolved issues. Thanks to its design and characteristics, the PACE mission will mark the beginning of a new era of unprecedented accuracy in ocean-color radiometry from space.

88 citations


Journal ArticleDOI
TL;DR: In this article, a review of the literature on the South Atlantic Subtropical Anticyclone (SASA) including the drivers of the semi-permanent anticyclones and the main features of the SASA in the future climate obtained through the projections of three global climate models (HadGEM2-ES, GFDL-ESM2M and MPI-ESm-MR) from the Coupled Model Intercomparison Project (CMIP5), using the Representative Concentration Pathway 8.5 (RCP8.5) scenario
Abstract: The South Atlantic Subtropical Anticyclone (SASA) is the main feature of the atmospheric circulation over the South Atlantic Ocean, and its study is of great importance to explain many characteristics of the Brazilian weather and climate. Therefore, this study aims to present (1) a review of the literature on SASA including the drivers of the semi-permanent anticyclones and (2) the main features of the SASA in the future climate obtained through the projections of three global climate models (HadGEM2-ES, GFDL-ESM2M and MPI-ESM-MR), from the Coupled Model Intercomparison Project (CMIP5), using the Representative Concentration Pathway 8.5 (RCP8.5) scenario. SASA is zonally wider in winter and retracted to the east in summer, when it presents a more circular format. These features of the SASA in the present climate (1979-2005) are well represented by the three global climate models, which also project this same SASA seasonal pattern for the future climate (2065-2095). Considering the projections, they indicate a slightly poleward expansion of the SASA, which is associated with the widening of the Hadley cell. At the SASA core, the pressure can be similar or slightly more intense than the present climate.

81 citations


Journal ArticleDOI
TL;DR: The aim of this paper is to review current activities in citizen science and crowdsourcing with respect to applications of pluvial flooding and classify them into four main themes.
Abstract: Pluvial flooding can have devastating effects, both in terms of loss of life and damage. Predicting pluvial floods is difficult and many cities do not have a hydrodynamic model or an early warning system in place. Citizen science and crowdsourcing have the potential for contributing to early warning systems and can also provide data for validating flood forecasting models. Although there are increasing applications of citizen science and crowdsourcing in fluvial hydrology, less is known about activities related to pluvial flooding. Hence the aim of this paper is to review current activities in citizen science and crowdsourcing with respect to applications of pluvial flooding. Based on a search in Scopus, the papers were first filtered for relevant content and then classified into four main themes. The first two themes were divided into (i) applications relevant during a flood event, which includes automated street flooding detection using crowdsourced photographs and sensors, analysis of social media, and online and mobile applications for flood reporting; and (ii) applications related to post-flood events. The use of citizen science and crowdsourcing for model development and validation is the third theme while the development of integrated systems is theme four. All four main areas of research have the potential to contribute to early warning systems and build community resilience. Moreover, developments in one will benefit others, e.g., further developments in flood reporting applications and automated flood detection systems will yield data useful for model validation.

73 citations


Journal ArticleDOI
TL;DR: Recently, new techniques for dynamic compression using high-powered lasers and pulsed-power systems have been developed as discussed by the authors, allowing for compression on timescales ranging from nanoseconds to microseconds and can often achieve substantially higher pressures than earlier gas-gun-based loading techniques.
Abstract: Dynamic compression experiments on geological materials are important for understanding the composition and physical state of the deep interior of the Earth and other planets. These experiments also provide insights into impact processes relevant to planetary formation and evolution. Recently, new techniques for dynamic compression using high-powered lasers and pulsed-power systems have been developed. These methods allow for compression on timescales ranging from nanoseconds to microseconds and can often achieve substantially higher pressures than earlier gas-gun-based loading techniques. The capability to produce shockless (ramp) compression provides access to new regimes of pressure-temperature space while new diagnostics allow for a more detailed understanding of the structure and physical properties of materials under dynamic loading. This review summarizes these recent advances, focusing on results for geological materials at ultra-high pressures above 200 GPa.

68 citations


Journal ArticleDOI
TL;DR: The ImaginING RIFTING workshop as discussed by the authors gathered researchers from all disciplines working on rifts and rifted margins, and included participants from academia and industry, and highlighted future challenges in unravelling the processes and conditions under which these extensional systems form and ultimately how tectonic plates rupture and new oceans are born.
Abstract: Improvements in seismic imaging, computing capabilities and analytical methods, as well as a number of industry deep-water wells sampling distal offshore settings, have underpinned new concepts for rifted margin evolution developed in the last two decades; these mark significant progress in our understanding of extensional systems. For example, the tectonic, sedimentary and magmatic processes linked to the formation of rifted margins have been overhauled, giving rise to more quantitative approaches and new concepts. However, these processes cannot be understood in isolation, requiring consideration of the continuum in which inheritance and physical processes are integrated within a plate tectonic framework. The major progress and fundamental developments of past research in rifted margins have been made hand-in-hand with other domains of Earth Sciences and have fundamental implications for the understanding of key geological systems such as active rifts, the ocean lithosphere, subduction zones, and collisional orogens. The 'IMAGinING RIFTING' workshop, organized in Pontresina-Switzerland in September 2017, gathered researchers from all disciplines working on rifts and rifted margins, and included participants from academia and industry. This contribution summarizes the workshop discussions, in addition to outlining our state-of-the-art knowledge of rifted margins. We highlight future challenges in unravelling the processes and conditions under which these extensional systems form and, ultimately, how tectonic plates rupture and new oceans are born. Our aims here are to provide a framework for future research endeavours and to promote collaboration not only within the rift and rifted margins communities, but across other Earth Science disciplines.

66 citations


Journal ArticleDOI
TL;DR: In this article, the authors synthesize key research into landterminating ice sheet hydrology-dynamics, in order to reconcile several apparent contradictions that have recently arisen as understanding of the topic has developed.
Abstract: Coupling between runoff, hydrology, basal motion, and mass loss (“hydrology-dynamics”) is a critical component of the Greenland Ice Sheet system. Despite considerable research effort, the mechanisms by which runoff influences ice dynamics and the net long-term (decadal and longer) dynamical effect of variations in the timing and magnitude of runoff delivery to the bed remain a subject of debate. We synthesise key research into land-terminating ice sheet hydrology-dynamics, in order to reconcile several apparent contradictions that have recently arisen as understanding of the topic has developed. We suggest that meltwater interaction with subglacial channels, cavities, and deforming subglacial sediment modulates ice flow variability. Increasing surface runoff supply to the bed induces cavity expansion and sediment deformation, leading to early-melt season ice flow acceleration. In the ablation area, drainage of water at times of low runoff from high-pressure subglacial environments toward more efficient drainage pathways is thought to result in reductions in water pressure, ice-bed separation and sediment deformation, causing net slow-down on annual to decadal time-scales (ice flow self-regulation), despite increasing surface melt. Further inland, thicker ice, small surface gradients and reduced runoff suppress efficient drainage development, and a small net increase in both summer and winter ice flow is observed. Predicting ice motion across land-terminating sectors of the ice sheet over the twenty-first century is confounded by inadequate understanding of the processes and feedbacks between runoff and subglacial motion. However, if runoff supply increases, we suggest that ice flow in marginal regions will continue to decrease on annual and longer timescales, principally due to (i) increasing drainage system efficiency in marginal areas, (ii) progressive depression of basal water pressure, and (iii) thinning-induced lowering of driving stresses. At higher elevations, we suggest that minor year-on-year ice flow acceleration will continue and extend further into the interior where self-regulation mechanisms cannot operate and if surface-to-bed meltwater connections form. Based on current understanding, we expect that ice flow deceleration due to the seasonal development of efficient drainage beneath the land-terminating margins of the Greenland Ice Sheet will continue to regulate its future mass loss.

65 citations


Journal ArticleDOI
TL;DR: Although the CHNOSZ package does not provide a complete chemical speciation model, numerous examples from the package demonstrate the ease of reproducing selected published calculations and sometimes identifying issues with existing datasets and models.
Abstract: Thermodynamic calculations are an essential tool for many areas of geochemistry. Thermodynamics provides a framework for the quantitative description and prediction of the solubilities and relative stabilities of different minerals, metal transport in hydrothermal fluids, and geobiochemical reactions that drive microbial metabolism and contribute to the compositional variation of proteins. Accessible and up-to-date software and databases are important for the development and reproducible application of thermodynamic models. CHNOSZ is a free package for R that has been frequently updated since its first release in 2008. The package provides an integrated set of functions to calculate the standard molal thermodynamic properties and chemical affinities of reactions. It uses the graphical capabilities of R to produce high-quality chemical activity diagrams for aqueous species and predominance diagrams including Eh-pH (Pourbaix) and logfO2-T diagrams. The extensive database utilizes the well-known revised Helgeson-Kirkham-Flowers (HKF) equations for aqueous species. Recent additions to the database include the Berman equations for minerals, the Deep Earth Water model, which extends the applicability of the HKF equations to higher pressures, and the Akinfiev-Diamond model for aqueous nonelectrolytes. The package comes with many types of documentation, including technical help pages with short code examples, longer code demos, and in-depth vignettes combining code, text and graphics, giving users a wide array of starting points for their own research. This paper provides a concise overview of the package and illustrates the new features using examples selected from the literature. Although the package does not provide a complete chemical speciation model, numerous examples from the package demonstrate the ease of reproducing selected published calculations and sometimes identifying issues with existing datasets and models.

64 citations


Journal ArticleDOI
TL;DR: A smartphone app that allows collection of stream level information at any place without any physical installation as an alternative approach to hydrological citizen science projects related to streamflow.
Abstract: Hydrological observations are crucial for decision making for a wide range of water resource challenges. Citizen science is a potentially useful approach to complement existing observation networks to obtain this data. Previous projects, such as CrowdHydrology, have demonstrated that it is possible to engage the public in contributing hydrological observations. However, hydrological citizen science projects related to streamflow have, so far, been based on the use of different kinds of instruments or installations; in the case of stream level observations, this is usually a staff gauge. While it may be relatively easy to install a staff gauge at a few river sites, the need for a physical installation makes it difficult to scale this type of citizen science approach to a larger number of sites because these gauges cannot be installed everywhere or by everyone. Here, we present a smartphone app that allows collection of stream level information at any place without any physical installation as an alternative approach. The approach is similar to geocaching, with the difference that instead of finding treasure-hunting sites, hydrological measurement sites can be generated by anyone and at any location and these sites can be found by the initiator or other citizen scientists to add another observation at another time. The app is based on a virtual staff gauge approach, where a picture of a staff gauge is digitally inserted into a photo of a stream bank or a bridge pillar, and the stream level during a subsequent field visit to that site is compared to the staff gauge on the first picture. The first experiences with the use of the app by citizen scientists were largely encouraging but also highlight a few challenges and possible improvements.

58 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the possibility of near-simultaneous storm surge and extreme river discharge using an extended data set derived from a storm surge model (WAQUA/DCSMv5) and two hydrological river discharge models (SPHY and HBV96) forced with conditions from a high-resolution (0.11°/12 km) regional climate model (RACMO2) in ensemble mode (16 × 50 years).
Abstract: . Many winter deep low-pressure systems passing over Western Europe have the potential to induce significant storm surge levels along the coast of the North Sea. The accompanying frontal systems lead to large rainfall amounts, which can result in river discharges exceeding critical thresholds. The risk of disruptive societal impact increases strongly if river runoff and storm-surge peak occur near-simultaneously. For the Rhine catchment and the Dutch coastal area, existing studies suggest that no such relation is present at time lags shorter than six days. Here we re-investigate the possibility of finding near-simultaneous storm surge and extreme river discharge using an extended data set derived from a storm surge model (WAQUA/DCSMv5) and two hydrological river-discharge models (SPHY and HBV96) forced with conditions from a high-resolution (0.11°/12 km) regional climate model (RACMO2) in ensemble mode (16 × 50 years). We find that the probability for finding a co-occurrence of extreme river discharge at Lobith and storm surge conditions at Hoek van Holland are up to four times higher (than random chance) for a broad range of time lags (−2 to 10 days, depending on exact threshold). This highlights that the hazard of a co-occurrence of high river discharge and coastal water levels cannot be neglected in a robust risk assessment.

Journal ArticleDOI
TL;DR: Marine transform faults and associated fracture zones (MTFFZs) cover vast stretches of the ocean floor, where they play a key role in plate tectonics, accommodating the lateral movement of tectonic plates and allowing connections between ridges and trenches as discussed by the authors.
Abstract: Marine transform faults and associated fracture zones (MTFFZs) cover vast stretches of the ocean floor, where they play a key role in plate tectonics, accommodating the lateral movement of tectonic plates and allowing connections between ridges and trenches. Together with the continental counterparts of MTFFZs, these structures also pose a risk to human societies as they can generate high magnitude earthquakes and trigger tsunamis. Historical examples are the Sumatra-Wharton Basin Earthquake in 2012 (M8.6) and the Atlantic Gloria Fault Earthquake in 1941 (M8.4). Earthquakes at MTFFZs furthermore open and sustain pathways for fluid flow triggering reactions with the host rocks that may permanently change the rheological properties of the oceanic lithosphere. In fact, they may act as conduits mediating vertical fluid flow and leading to elemental exchanges between Earth’s mantle and overlying sediments. Chemicals transported upward in MTFFZs include energy substrates, such as H2 and volatile hydrocarbons, which then sustain chemosynthetic, microbial ecosystems at and below the seafloor. Moreover, up- or downwelling of fluids within the complex system of fractures and seismogenic faults along MTFFZs could modify earthquake cycles and/or serve as “detectors” for changes in the stress state during interseismic phases. Despite their likely global importance, the large areas where transform faults and fracture zones occur are still underexplored, as are the coupling mechanisms between seismic activity, fluid flow, and life. This manuscript provides an interdisciplinary review and synthesis of scientific progress at or related to MTFFZs and specifies approaches and strategies to deepen the understanding of processes that trigger, maintain, and control fluid flow at MTFFZs.

Journal ArticleDOI
TL;DR: In this paper, a review of the development of low-cost sensor networks over the last 15 years is presented, highlighting trends and future opportunities for a diverse range of environmental applications.
Abstract: The use of low-cost sensor networks (LCSNs) is becoming increasingly popular in the environmental sciences and the unprecedented monitoring data generated enable research across a wide spectrum of disciplines and applications. However, in particular, non-technical challenges still hinder the broader development and application of LCSNs. This paper reviews the development of LCSNs over the last 15 years, highlighting trends and future opportunities for a diverse range of environmental applications. We found air quality, meteorological and water-related networks were particularly well represented with few studies focusing on sensor networks for ecological systems. Furthermore, we identified bias towards studies that have direct links to human health, safety and livelihoods. These studies were more likely to involve downstream data analytics, visualisations, and multi-stakeholder participation through citizen science initiatives. However, there was a paucity of studies that considered sustainability factors for the development and implementation of LCSNs. Existing LCSNs are largely focussed on detecting and mitigating events which have a direct impact on humans such as flooding, air pollution or geo-hazards, while these applications are important there is a need for future development of LCSNs for monitoring ecosystem structure and function. Our findings highlight three distinct opportunities for future research to unleash the full potential of LCSNs: (1) improvement of links between data collection and downstream activities; (2) the potential to broaden the scope of application systems and fields; and (3) to better integrate stakeholder engagement and sustainable operation to enable longer and greater societal impacts.

Journal ArticleDOI
TL;DR: In this paper, the authors combine textural and chemical data acquired on large euhedral augite megacrysts from Roman era activity (Pizzo scoria cone, 2.4-1.8 ka) at Stromboli (Italy) to investigate the plumbing system prior to the onset of current steady-state activity.
Abstract: The magmatic architecture and physicochemical processes inside volcanoes influence the style and timescale of eruptions. A long-standing challenge in volcanology is to establish the rates and depths of magma storage and the events that trigger eruption. Magma feeder systems are remarkably crystal-rich, and the growth stratigraphy of minerals sampled by erupted magmas can reveal a wealth of information on pre-eruptive processes. Here we combine detailed textural and chemical data acquired on large (>5 mm), euhedral augite megacrysts from Roman era activity (Pizzo scoria cone, 2.4-1.8 ka) at Stromboli (Italy) to investigate the plumbing system prior to the onset of current steady-state activity. Our dataset includes novel laser ablation time-of-flight mass spectrometry (LA-ICP-TOFMS) maps, which rapidly visualise multi-element zoning patterns across entire megacryst sections. The clinopyroxene data are complemented with geochemical constraints on mineral and melt inclusions, and adhering glassy tephra. Megacrysts are sector and oscillatory zoned in trace elements, yet their major element compositions are relatively uniform and in equilibrium with shoshonite-buffered melts. Mild sector zoning documents dynamic crystallisation under conditions of low undercooling during magma residence and growth. Clinopyroxene-melt thermobarometric and hygrometric calibrations, integrated with thermodynamically derived equilibrium equations, accurately track the P-T-H2O path of magmas. The refined models return restricted crystallisation depths that are deeper than those reported previously for historical and current eruptions, but consistent with deep clinopyroxene-dominated crystallisation (≥10 km), resembling other water-rich alkaline mafic systems. Megacryst cores are overgrown by oscillatory zoned mantles recording continuous input of magma that failed to trigger eruption. Crystal rims are characterised by a mild increase in compatible transition metals Cr and Ni, and depletion in incompatible elements, indicative of pre-eruptive mafic replenishment and magma mixing. The volcanic system appears to have been dominated by protracted periods of replenishment, convection and crystal residence, punctuated by rapid megacryst evacuation and eruption upon arrival of more mafic magma (days-weeks). Since the inception of current steady-state activity, eruption-triggering melts have become appreciably more mafic, suggesting that intrusion of primitive magma may be a key driver of the steady-state regime.

Journal ArticleDOI
TL;DR: In this paper, the authors present a systematic global mapping of citizen science used for disaster risk reduction (DRR) in order to draw out broader insights across diverse methods, initiatives, hazards and country contexts.
Abstract: Citizen science for disaster risk reduction (DRR) holds huge promise and has demonstrated success in advancing scientific knowledge, providing early warning of hazards, and contributed to the assessment and management of impacts. While many existing studies focus on the performance of specific citizen science examples, this paper goes beyond this approach to present a systematic global mapping of citizen science used for DRR in order to draw out broader insights across diverse methods, initiatives, hazards and country contexts. The systematic mapping analyzed a total of 106 cases of citizen science applied to DRR across all continents. Unlike many existing reviews of citizen science initiatives, relevance to the disaster risk context led us to ‘open up’ our mapping to a broader definition of what might constitute citizen science, including participatory research and narrative-based approaches. By taking a wider view of citizen science and opening up to other disciplinary practices as valid ways of knowing risks and hazards, we also capture these alternative examples and discuss their relevance for aiding effective decision-making around risk reduction. Based on this analysis we draw out lessons for future research and practice of citizen science for DRR including the need to: build interconnections between disparate citizen science methods and practitioners; address multi-dimensionality within and across hazard cycles; and develop principles and frameworks for evaluating citizen science initiatives that not only ensure scientific competence but also attend to questions of equity, responsibility and the empowerment of those most vulnerable to disaster risk.

Journal ArticleDOI
TL;DR: In this paper, the use of transparent synthetic soil for geotechnical problems using optical system, including transparent materials, sample preparation, and experimental methods, and applications in physical modeling.
Abstract: This article introduces the uses of transparent synthetic soil for geotechnical problems using optical system, including transparent materials, sample preparation, geotechnical properties, experimental methods, and applications in physical modeling. Four typical kinds of transparent synthetic soil are shown and compared. For amorphous silica powder, normally the consolidated amorphous silica has a higher normalized strength but a lower modulus than the natural clays. For amorphous silica gels, the stress-strain behaviors are consistent with the typical stress-strain behaviors of sand for both dense and loose conditions. For fused silica, it has a higher shearing strength and higher modulus than the natural sand does; the deviatoric stress increases with the confining pressure, but the stress-strain curves of fused silica and the natural sand are particularly similar. For glass sand, with increasing of the relative density, the strain-stress relationship varies from strain hardening to stress softening, while its failure form is essentially the same as that of standard sand. According to the geotechnical properties of four typical materials of transparent synthetic soil grain, they are used to simulate different conditions and analyze practical engineering problems in different physical model tests. The process included the generation of a speckle pattern created by the interaction of laser light with transparent particles. Using digital image processing technology, speckle patterns can be obtained and used to calculate the displacement field. By utilizing this optical system, transparent synthetic soil can be used to non-intrusively investigate internal soil deformation, flow problems, and ground movement in physical model tests. Finally, both the advantages and disadvantages of the transparent soil experimental technique are analyzed.

Journal ArticleDOI
TL;DR: In this paper, the authors examined the link between molecular composition and biolability of dissolved organic matter (DOM) mobilized from different soil horizons despite its importance in understanding carbon turnover in aquatic systems.
Abstract: Increased permafrost thaw due to climate change in northern high-latitudes has prompted concern over impacts on soil and stream biogeochemistry that affect the fate of dissolved organic carbon (DOC). Few studies to-date have examined the link between molecular composition and biolability of dissolved organic matter (DOM) mobilized from different soil horizons despite its importance in understanding carbon turnover in aquatic systems. Additionally, the effect of mixed DOM sources on microbial metabolism (e.g., priming) is not well understood. No studies to-date have addressed potential priming effects in northern high-latitude or permafrost-influenced aquatic ecosystems, yet these ecosystems may be hot spots of priming where biolabile, ancient permafrost DOC mixes with relatively stable, modern stream DOC. To assess biodegradability and priming of DOC in permafrost-influenced streams, we conducted 28 day bioincubation experiments utilizing a suite of stream samples and leachates of fresh vegetation and different soil horizons, including permafrost, from Interior Alaska. The molecular composition of unamended DOM samples at initial and final time points was determined by ultrahigh resolution mass spectrometry. Initial molecular composition was correlated to DOC biodegradability, particularly the contribution of energy-rich aliphatic compounds, and stream microbial communities utilized 50-56% of aliphatics in permafrost-derived DOM within 28 days. Biodegradability of DOC followed a continuum from relatively stable stream DOC to relatively biolabile DOC derived from permafrost, active layer organic soil, and vegetation leachates. Microbial utilization of DOC was ~3-11% for stream bioincubations and ranged from 9% (active layer mineral soil-derived) to 66% (vegetation-derived) for leachate bioincubations. To investigate the presence or absence of a priming effect, bioincubation experiments included treatments amended with 1% relative carbon concentrations of simple, biolabile organic carbon substrates (i.e., primers). The amount of DOC consumed in primed treatments was not significantly different from the control in any of the bioincubation experiments after 28 days, making it apparent that the addition of biolabile permafrost-derived DOC to aquatic ecosystems will likely not enhance the biodegradation of relatively modern, stable DOC sources. Thus, future projections of carbon turnover in northern high-latitude region streams may not have to account for a priming effect.

Journal ArticleDOI
TL;DR: This work provides a survey of cascading hazard processes impacting HMA and how these can be characterized using remote sensing sources and discusses how remote sensing products can be used to address these process chains.
Abstract: Cascading hazard processes refer to a primary trigger such as heavy rainfall, seismic activity, or snow melt, followed by a chain or web of consequences that can cause subsequent hazards influenced by a complex array of preconditions and vulnerabilities. These interact in multiple ways and can have tremendous impacts on populations proximate to or downstream of these initial triggers. High Mountain Asia (HMA) is extremely vulnerable to cascading hazard processes given the tectonic, geomorphologic, and climatic setting of the region, particularly as it relates to glacial lakes. Given the limitations of in situ surveys in steep and often inaccessible terrain, remote sensing data are a valuable resource for better understanding and quantifying these processes. The present work provides a survey of cascading hazard processes impacting HMA and how these can be characterized using remote sensing sources. We discuss how remote sensing products can be used to address these process chains, citing several examples of cascading hazard scenarios across HMA. This work also provides a perspective on the current gaps and challenges, community needs, and view forward towards improved characterization of evolving hazards and risk across HMA.

Journal ArticleDOI
TL;DR: In this paper, the authors summarized the research frontiers on radiative transfer (RT) in coupled atmosphere-atmosphere systems to enable new science and specifically to support simulations and interpretations of remote sensing observations from the upcoming Plankton, Aerosol, Cloud ocean Ecosystem (PACE) mission.
Abstract: This report summarizes the research frontiers on radiative transfer (RT) in coupled atmosphere-atmosphere systems to enable new science and specifically to support simulations and interpretations of remote sensing observations from the upcoming Plankton, Aerosol, Cloud ocean Ecosystem (PACE) mission. Given that (i) there is a multitude of atmospheric and oceanic constituents at any given moment that each exhibit a large variety of physical and chemical properties and that (ii) light-matter interaction can occur in various ways (scattering, absorption, and emission), it becomes clear that it is impossible to tackle all outstanding RT aspects related to interpreting and/or simulating light reflected by atmosphere-ocean systems. Instead, we performed both theoretical and experimental studies on a discrete set of RT topics that are of importance to (a) the science threshold and goal questions of the PACE mission and (b) the measurement capabilities of the instruments currently envisioned for this mission. These topics cover (1) the ocean (i.e., water body): exact (elastic and inelastic scattering) and approximate (bio-optical) forward RT models used for scattering and absorption by pure water and particulates, (2) the air-water interface: extracting and/or accounting for variations in surface refractive index and whitecaps and underwater bubbles in actual imagery, (3) the atmosphere: aerosol and gas RT models for polarimetric and/or hyperspectral remote sensing, and (4) atmosphere-ocean systems: RT benchmark results for horizontally homogeneous plane-parallel systems, and impact of the Earth’s sphericity and adjacency effects on RT analyses of space-borne observations. We provide for each topic a summary of past relevant (heritage) work, followed by a discussion (for unresolved questions) and RT updates.

Journal ArticleDOI
TL;DR: In this article, the particle mixing coefficient (DB) is estimated from the averaged penetration of particle-reactive radionuclides into sedimentary deposits in Long Island Sound, an estuarine system with well-defined sources of naturally-occurring radions.
Abstract: Bioturbation promotes priming and total remineralization of sedimentary organic matter (Corg) in multiple ways. A primary local mode is the injection of reactive Corg from the water column, surface sediment, and mucus secretions into deposits. During feeding, burrowing, and construction activities by benthic fauna, labile substrates are brought into close association with more refractory material over a wide range of time scales, geometries, and depths, enhancing decomposition of the less reactive components (priming). One measure of these local interactions is the particle mixing coefficient, DB, which can be estimated from the averaged penetration of particle-reactive radionuclides into deposits. Patterns of DB in Long Island Sound, an estuarine system with well-defined sources of naturally-occurring radionuclides, show consistent positive correlations between DB and total inventories of 234Th (t1/2 = 24 d) and 210Pb (t1/2 = 22 yr) at local and basin scales. These correlations, maintained seasonally in the case of 234Th, demonstrate not only the penetration of plankton-derived, reactive Corg into deeper regions of deposits during bioturbation over monthly (~ 5 – 10 cm) to decadal timescales (~ 20 – 100 cm) but also the enhanced capture of labile substrates from the water column across basin scales into bioturbated patches as the intensity of reworking increases. In Long Island Sound, sedimentary Chl-a distributions and benthic nutrient regeneration (e.g., NH4+ fluxes) reflect these particle exchange processes. Basin and regional scale capture of labile substrates into bioturbated deposits can be generally demonstrated, for example, along the highly productive Cape Hatteras continental margin. Thus, total and net remineralization necessarily increase with the biogenic enhancement of the quantity of labile particulate substrate in deposits. This capture, intermixing, and close association of reactive and refractory substrates (reductant mixing), and thus the optimization of priming potential, represent important, often overlooked, pathways by which bioturbation generates biogeochemical conditions conducive to maximum efficiency of remineralization.

Journal ArticleDOI
TL;DR: In this article, the authors present a c. 10.9 kcal BP 18O(calcite) record from Lake Elsinore, California, interpreted to reflect 18O (lake water) values as controlled by over-water evaporation from summer-to-early fall.
Abstract: Records of past climate can inform us on the natural range and mechanisms of climate change. In the arid Pacific southwest United States (PSW), which includes southern California, there exist a variety of Holocene records that can be used to infer past winter conditions (moisture and/or temperature). Holocene records of summer climate, however, are rare from the PSW. In the future, climate changes due to anthropogenic forcing are expected to increase the severity of drought in the already water stressed PSW. Hot droughts are of considerable concern as summer temperatures rise. As a result, understanding how summer conditions changed in the past is critical to understanding future predictions under varied climate forcings. Here, we present a c. 10.9 kcal BP 18O(calcite) record from Lake Elsinore, California, interpreted to reflect 18O(lake water) values as controlled by over-water evaporation from summer-to-early fall. Our results reveal three millennial scale intervals: 1) the highly evaporative Early Holocene (10.55-6.65 kcal BP), 2) the less evaporative Mid-Holocene (6.65-2.65 kcal BP); and, 3) the evaporative Late Holocene (2.65-0.55 kcal BP). These results are coupled with an inferred winter precipitation runoff (sand content) record from Kirby et al. (2010). Using these data together, we estimate the duration and severity of centennial-scale Holocene droughts and pluvials (e.g., high 18O(calcite) values plus low sand content = drought and vice versa). Furthermore, the coupled 18O(calcite) and sand data provide a generalized Holocene lake level history. The most severe, long-lasting droughts (i.e., maximum summer-to-early fall evaporation and minimum winter precipitation runoff) occur in the Early Holocene. Fewer, less severe, and shorter duration droughts occurred during the Mid-Holocene as pluvials became more common. Droughts return with less severity and duration in the Late Holocene. Notably, the Little Ice Age is characterized as the wettest period during the Late Holocene.

Journal ArticleDOI
TL;DR: In this article, the authors focused on one of the most threatened coastal seas, the Baltic Sea, and estimated uncertainties in projections due to climate model deficiencies and due to unknown future greenhouse gas concentration, nutrient load and sea level rise scenarios.
Abstract: Many coastal seas worldwide are affected by human impacts such as eutrophication causing, inter alia, oxygen depletion and extensive areas of hypoxia. Depending on the region, global warming may reinforce these environmental changes by reducing air-sea oxygen fluxes, intensifying internal nutrient cycling and increasing river-borne nutrient loads. The development of appropriate management plans to effectively protect the marine environment requires projections of future marine ecosystem states. However, projections with regional climate models commonly suffer from shortcomings in the driving global General Circulation Models (GCMs). The differing sensitivities of GCMs to increased greenhouse gas concentrations affect regional projections considerably. In this study, we focused on one of the most threatened coastal seas, the Baltic Sea, and estimated uncertainties in projections due to climate model deficiencies and due to unknown future greenhouse gas concentration, nutrient load and sea level rise scenarios. To address the latter, simulations of the period 1975-2098 were performed using the initial conditions from an earlier reconstruction with the same Baltic Sea model (starting in 1850). To estimate the impacts of climate model uncertainties, dynamical downscaling experiments with four driving global models were carried out for two greenhouse gas concentration scenarios and for three nutrient load scenarios, covering the plausible range between low and high loads. The results of primary production, nitrogen fixation, and hypoxic areas show that uncertainties caused by the various nutrient load scenarios are greater than the uncertainties due to climate model uncertainties and future greenhouse gas concentrations. In all scenario simulations, a proposed nutrient load abatement strategy, i.e., the Baltic Sea Action Plan, will lead to a significant improvement in the overall environmental state. However, the projections cannot provide detailed information on the timing and the reductions of future hypoxic areas, due to uncertainties in salinity projections caused by uncertainties in projections of the regional water cycle and of the mean sea level outside the model domain.

Journal ArticleDOI
TL;DR: In this paper, two catchments in contrasting climatic regions, one in the central Himalaya (Langtang) and another in the Karakoram (Shimshal), are modeled at 1 km grid spacing with the numerical atmospheric model WRF for the period of 2011-2013.
Abstract: There is strong variation in glacier mass balances in High Mountain Asia. Particularly interesting is the fact that glaciers are in equilibrium or even gaining mass in the Karakoram and Kunlun Shan ranges, which is in sharp contrast with the negative mass balances in the rest of High Mountain Asia. To understand this difference, an in-depth understanding of the meteorological drivers of the glacier mass balance is required. In this study, two catchments in contrasting climatic regions, one in the central Himalaya (Langtang) and one in the Karakoram (Shimshal), are modeled at 1 km grid spacing with the numerical atmospheric model WRF for the period of 2011–2013. Our results show that the accumulation and melt dynamics of both regions differ due to contrasting meteorological conditions. In Shimshal, 92% of the annual precipitation falls in the form of snow, in contrast with 42% in Langtang. In addition, 80% of the total snow falls above an altitude of 5000 m a.s.l, compared with 35% in Langtang. Another prominent contrast is that most of the annual snowfall falls between December and May (71%), compared with 52% in Langtang. The melt regimes are also different, with 41% less energy available for melt in Shimshal. The melt in the Karakoram is controlled by net shortwave radiation (r = 0.79 ± 0.01) through the relatively low glacier albedo in summer, while net longwave radiation (clouds) dominates the energy balance in the Langtang region (r = 0.76 ± 0.02). High amounts of snowfall and low melt rates result in a simulated positive glacier surface mass balance in Shimshal (+0.31 ± 0.06 m w.e. year−1) for the study period, while little snowfall, and high melt rates lead to a negative mass balance in Langtang (−0.40 ± 0.09 m w.e. year−1). The melt in Shimshal is highly variable between years, and is especially sensitive to summer snow events that reset the surface albedo. We conclude that understanding glacier mass balance anomalies requires quantification and insight into subtle shifts in the energy balance and accumulation regimes at high altitude and that the sensitivity of glaciers to climate change is regionally variable.

Journal ArticleDOI
TL;DR: The Ash with Lapilli (AL) unit of the 2012 Havre volcano in the Kermadec Arc, New Zealand, has been analyzed in this article, where the authors identify the stratigraphic relationships of the four AL unit subunits to other seafloor products of the Havre eruption and infer the overall order of events through the eruption.
Abstract: Submarine eruptions dominate volcanism on Earth, but few are observed or even identified. Knowledge of how they operate is largely based on inference from ancient deposits, lagging by a decade or more our understanding of subaerial eruptions. In 2012, the largest wholly deep-subaqueous silicic eruption with any observational record occurred 700–1220 m below sea level at Havre volcano, Kermadec Arc, New Zealand. Pre- and post-eruption shipboard bathymetry surveys, acquisition by autonomous underwater vehicle of meter-scale-resolution bathymetry, and sampling by remote-operated vehicle revealed 14 seafloor lavas and three major seafloor clastic deposits. Here we analyze one of these clastic deposits, an Ash with Lapilli (AL) unit, which drapes the Havre caldera, and interpret the fragmentation and dispersal processes that produced it. Seafloor images of the unit reveal multiple subunits, all ash-dominated. Sampling destroyed layering in all but two samples, but by combining seafloor imagery with granulometry and componentry, we were able to determine the subunits’ stratigraphy and spatial extents throughout the study area. Five subunits are distinguished; from the base these are Subunit 1, Subunit 2a, Subunit 3, Subunit 4 (comprising the coeval Subunit 4 west and Subunit 4 east), and Subunit 2b. The stratigraphic relationships of the four AL unit subunits to other seafloor products of the 2012 Havre eruption, coupled with the wealth of remote-operated vehicle observations and detailed AUV bathymetry, allow us to infer the overall order of events through the eruption. Ash formed by explosive fragmentation of a glassy vesicular magma and was dispersed by a buoyant thermal plume and dilute density currents from which Subunits 1 and 2 were deposited. Following a time break (days/weeks?), effusion of lava along the southern caldera rim led to additional ash generation; first by syn-extrusive ash venting, quenching, brecciation, and comminution (S3 and S4e) and then by gravitational collapse of a dome (S4w). Slow deposition of extremely fine ash sustained S2 deposition across the times of S3 and S4 emplacement, so that S2 ash was the last deposited. These thin ash deposits hold information critical for interpretation of the overall eruption, even though they are small in volume and bathymetrically unimpressive. Ash deposits formed during other submarine eruptions are similarly likely to offer new perspectives on associated lavas and coarse pumice beds, both modern and ancient, and on the eruptions that formed them. Submarine ash is widely dispersed prior to deposition, and tuff is likely to be the first product of eruption identified in reconnaissance exploration; it is the start of the trail to vent hydrothermal systems and associated mineralized deposits of submarine volcanoes, as well as a sensitive indicator of submarine eruptive processes.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated fire responses to the 2010 and 2015/2016 Amazonian droughts using a remote sensing data and found that the 2015-2016 drought surpassed the 2010 drought in intensity and extent.
Abstract: Extreme droughts in Amazonia cause anomalous increase in fire occurrence, disrupting the stability of environmental, social and economic systems. Thus, understanding how droughts affect fire patterns in this region is essential for anticipating and planning actions for remediation of possible impacts. Focused on the Brazilian Amazon biome, we investigated fire responses to the 2010 and 2015/2016 Amazonian droughts using a remote sensing data. Our results revealed that the 2015/2016 drought surpassed the 2010 drought in intensity and extent. During the 2010 drought, we found a maximum area of 846,800 km2 (24% of the Brazilian Amazon biome) with significant (p<0.05) rainfall decrease in the first trimester, while during the 2015/2016 the maximum area reached 1,702,800 km2 (47% of the Brazilian Amazon biome) in the last trimester of 2016. On the other hand, the 2010 drought had a maximum area of 840,400 km2 (23% of the Brazilian Amazon biome) with significant (p<0.05) land surface temperature increase in the first trimester, while during the 2015/2016 drought the maximum area was 2,188,800 km2 (61% of the Brazilian Amazon biome) in the last trimester of 2015. Unlike the 2010 drought, during the 2015/2016 drought, significant positive anomalies of active fire and CO2 emissions occurred mainly during the wet season, between October 2015 and March 2016. During the 2010 drought positive active fire anomalies resulted from the simultaneous increase of burned forest, non-forest vegetation and productive lands. During the 2015/2016 drought, however, this increase was dominated by burned forests. The two analysed droughts emitted together 475 Tg CO2, with 233 Tg CO2 in 2010, 147 Tg CO2 in 2015 and 95 Tg CO2 in 2016, which represented respectively 209%, 136%, 82% of the Brazil’s national targets for reducing carbon emissions from deforestation by 2020 (1288 Tg CO2 from 1996-2005 average deforestation or a rate of 0.11 Pg CO2 year-1). Finally, we anticipate that the increase of fires during the droughts showed here may intensify and can become more frequent in Amazonia due to changes in climatic variability if no regulations on fire use are implemented.

Journal ArticleDOI
TL;DR: In this paper, a literature survey of transmission and scanning electron microscopy studies to determine which phytoliths are cell wall phytologists was carried out, and two hypotheses were brought to a climax with two hypotheses, one to explain what happens to carbon in phytology as they undergo preparation in the laboratory, and the other looking at dissolution and breakdown in the soil.
Abstract: There has been much interest in the possibility that phytoliths might sequester substantial amounts of carbon and might continue to do so in soils and sediments after the death of the plant. This may contribute to mitigating climate change. However, this idea is controversial and it is unclear how much carbon is sequestered in phytoliths. High values would suggest that sequestration on a global scale could be significant, but low values would indicate insignificant sequestration. Different methodologies in preparing phytoliths give different carbon concentrations. Little interest has been shown in determining which types of phytoliths are most important for carbon sequestration. There are two main types of phytolith in plants, the cell wall types which are formed on a carbohydrate matrix, and the cell lumen types which are not. A literature survey of transmission and scanning electron microscopy studies to determine which phytoliths are cell wall phytoliths was carried out. Cell wall silicification was common in most plant organs and throughout the plant kingdom. Macrohairs, prickle hairs, and the wall protrusion of papillae are certainly cell wall types. The primary cell walls of many epidermal cells types are often silicified. Cell wall phytoliths have considerably higher carbon concentrations than lumen types. An attempt is made to model mixtures of cell wall and lumen phytoliths, containing different carbon concentrations. Literature data on carbon and nitrogen concentrations in phytoliths was used to produce C/N ratios. These showed that cell wall phytoliths had higher C/N ratios than lumen phytoliths, and that over-extraction of phytolith mixtures removes carbon preferentially from the cell wall types and leads to low C/N ratios. The dissolution of phytoliths in soils and sediments is considered, and it is unknown whether cell wall or lumen phytoliths break down faster. However, it is clear from the literature that cell wall phytoliths persist in soils and sediments for hundreds or thousands of years. The paper is brought to a climax with two hypotheses, one to explain what happens to carbon in phytoliths as they undergo preparatory procedures in the laboratory, and the other looking at dissolution and breakdown in the soil.

Journal ArticleDOI
TL;DR: In this paper, the authors provide an introduction to the Chinese next-generation geostationary meteorological satellites (FY-4 series) and compare them with other new generation geo-stationary weather satellites and associated non-meteorological applications.
Abstract: Meteorological satellites have become an irreplaceable tool for weather and land observation. Traditionally, geo-stationary satellites are commonly used in operational meteorological services due to their high temporal resolution properties. While polar-orbiting satellites, with their high spatial resolution properties, are more applied to monitor environmental change and natural disasters. The development of China’s next-generation geostationary meteorological satellites (FY-4 series) represents an exciting expansion in Chinese Non-meteorological remote sensing capabilities. The first satellite (FengYun-4A) of the FY-4 series was launched on 11 December 2016. The Advanced Geosynchronous Radiation Imager (AGRI) on board FY-4A has 14 spectral bands (increased from the five bands of FY-2) that are quantized with 12 bits per pixel (up from 10 bits for FY-2) and sampled at 1 km at nadir in the visible (VIS), 2 km in the near-infrared (NIR), and 4 km in the remaining IR spectral bands (compared with 1.25 km for VIS, no NIR, and 5 km for IR of FY-2). For the following series of FY-4A, the AGRI channel number will be gradually increased from 14 to 18 with IR spatial resolution of 2 km, and the full-disc temporal resolution will be enhanced from 15 to 5 min. With their improved spectral, spatial and temporal resolution properties, the FY-4 series will gradually approach the LEO sensors in spatial and spectral resolutions, which will offer greater opportunities and capacities for observing fine objects and rapid change of land, ocean and atmosphere. This review paper provides an introduction to the Chinese FY-4 observation capabilities, comparison of FY-4 with other new generation geo-stationary weather satellites, and associated non-meteorological applications. A series of typical examples based on recent and on-going operational work in NSMC/CMA that are using FY-4A data for non-meteorological applications were demonstrated and discussed, including (i) Aerosol monitoring; (ii) Sand storm monitoring; (iii)Volcanic ash detection and aviation applications ; (iv) Fire detection and dynamical evaluation; (v) Water body detection and (vi) Cyanobacterial Blooms monitoring. The paper concludes with a synthesis of these application areas and challenges we have to address for future research, technological innovation and in-depth applications.

Journal ArticleDOI
TL;DR: In this paper, the authors quantified deep (up to 20 m depth) weathering and mineral nutrient cycling in two montane, temperate forest ecosystems in Southern Germany: Black Forest (CON) and Bavarian Forest (MIT) from measurements of the inventories, turnover times, and fluxes of macronutrients (K, Ca, Mg, P, P).
Abstract: Mineral nutrient cycling between trees and the forest floor is key to forest ecosystem nutrition However, in sloping, well-drained landscapes the forest floor experiences permanent nutrient loss in particulate form by plant litter erosion and as solute after plant litter decomposition, solubilisation and export To prevent nutrient deficit, a replenishing mechanism must be in operation that we suggest to be sourced in the subsoil and the weathering zone beneath it, provided that atmospheric input is insufficient To explore such a mechanism, we quantified deep (up to 20 m depth) weathering and mineral nutrient cycling in two montane, temperate forest ecosystems in Southern Germany: Black Forest (CON) and Bavarian Forest (MIT) From measurements of the inventories, turnover times, and fluxes of macronutrients (K, Ca, Mg, P) we found evidence for a fast, shallow `organic nutrient cycle´, and a slow, deep `geogenic nutrient pathway´ We found that the finite nutrient pool size of the forest floor persists for a few years only Despite this loss, foliar nutrient concentrations in Picea abies and Fagus sylvatica do not indicate deficiency We infer that ultimately the biologically available fraction in the deep regolith (CON: 3 - 7 m, MIT: 3 - 17 m) balances nutrient loss from the forest floor and is also decisive for the level of the forest trees’ mineral nutrient stoichiometry Intriguingly, although the nutrient supply fluxes from chemical weathering at CON are twice those of MIT, nutrient uptake fluxes into trees do not differ The organic nutrient cycle apparently regulates its efficiency to cater for differences in its replenishment by the deep geogenic nutrient pathway, and thereby ensures long-term forest ecosystem nutrition

Journal ArticleDOI
TL;DR: In this article, seasonal and spatial variations of evapotranspiration (ET) for five Amazon subbasins and their response to the 2015/16 El Nino episode using a recently developed water-budget approach were analyzed.
Abstract: We analyzed seasonal and spatial variations of evapotranspiration (ET) for five Amazon sub-basins and their response to the 2015/16 El Nino episode using a recently developed water-budget approach. ET varied typically between ~7 and 10 cm/month with exception of the Xingu basin for which it varied between 10 and 15 cm/month. Outstanding features of ET seasonality are (i) generally weak seasonality, (ii) two ET peaks for the two very wet catchments Solimoes and Negro, with one occurring during the wet season and one during the drier season, and (iii) a steady increase of ET during the second half of the dry season for the three drier catchments (Madeira, Tapajos, Xingu). Peak ET occurs during the first half of the wet season consistent with leaf flush occurring before the onset of the wet season. With regards to inter-annual variation, we found firstly that for the Solimoes and Madeira catchments the period with large positive wet season anomalies (2012–2015) is associated with negative ET anomalies, and negative SIF (solar induced fluorescence) anomalies. Furthermore, we found negative ET of several cm/months and SIF (up to 50%) anomalies for most of the Amazon basin during the 2015/16 El Nino event suggesting down-regulation of productivity as a main factor of positive carbon flux anomalies during anomalously hot and dry conditions. These results are of interest in view of predicted warmer and more erratic future climate conditions.

Journal ArticleDOI
TL;DR: A comparison of ET, snow cover fraction, and changes in TWS estimates against remote sensing-based references confirms the significant role of the input meteorology in influencing the water budget characterization over HMA and points to the need for improving meteorological inputs.
Abstract: This study explores the uncertainties in terrestrial water budget estimation over High Mountain Asia (HMA) using a suite of uncoupled land surface model (LSM) simulations. The uncertainty in the water balance components of precipitation (P), evapotranspiration (ET), runoff(R), and terrestrial water storage (TWS) is significantly impacted by the uncertainty in the driving meteorology, with precipitation being the most important boundary condition. Ten gridded precipitation datasets along with a mix of model-, satellite-, and gauge-based products, are evaluated first to assess their suitability for LSM simulations over HMA. The datasets are evaluated by quantifying the systematic and random errors of these products as well as the temporal consistency of their trends. Though the broader spatial patterns of precipitation are generally well captured by the datasets, they differ significantly in their means and trends. In general, precipitation datasets that incorporate information from gauges are found to have higher accuracy with low Root Mean Square Errors and high correlation coefficient values. An ensemble of LSM simulations with selected subset of precipitation products is then used to produce the mean annual fluxes and their uncertainty over HMA in P, ET, and R to be 2.11±0.45, 1.26±0.11, and 0.85±0.36 mm per day, respectively. The mean annual estimates of the surface mass (water) balance components from this model ensemble are comparable to global estimates from prior studies. However, the uncertainty/spread of P, ET, and R is significantly larger than the corresponding estimates from global studies. A comparison of ET, snow cover fraction, and changes in TWS estimates against remote sensing-based references confirms the significant role of the input meteorology in influencing the water budget characterization over HMA and points to the need for improving meteorological inputs.