scispace - formally typeset
Search or ask a question

Showing papers in "Frontiers in Pharmacology in 2012"


Journal ArticleDOI
TL;DR: Before M. oleifera leaf formulations can be recommended as medication in the prevention or treatment of diabetes and CVD, it is necessary that the scientific basis of their efficacy, the therapeutic modalities of their administration and their possible side effects be more rigorously determined.
Abstract: Moringa oleifera (M. oleifera) is an angiosperm plant, native of the Indian subcontinent, where its various parts have been utilized throughout history as food and medicine. It is now cultivated in all tropical and sub-tropical regions of the world. The nutritional, prophylactic, and therapeutic virtues of this plant are being extolled on the Internet. Dietary consumption of its part is therein promoted as a strategy of personal health preservation and self-medication in various diseases. The enthusiasm for the health benefits of M. oleifera is in dire contrast with the scarcity of strong experimental and clinical evidence supporting them. Fortunately, the chasm is slowly being filled. In this article, I review current scientific data on the corrective potential of M. oleifera leaves in chronic hyperglycemia and dyslipidemia, as symptoms of diabetes and cardiovascular disease (CVD) risk. Reported studies in experimental animals and humans, although limited in number and variable in design, seem concordant in their support for this potential. However, before M. oleifera leaf formulations can be recommended as medication in the prevention or treatment of diabetes and CVD, it is necessary that the scientific basis of their efficacy, the therapeutic modalities of their administration and their possible side effects be more rigorously determined.

443 citations


Journal ArticleDOI
TL;DR: New evidence shows that many adult mechanisms, including functionally effective tight junctions are present in embryonic brain and some transporters are more active during development than in the adult, contributing to cerebral damage and later neurological disorders.
Abstract: The adult brain functions within a well-controlled stable environment, the properties of which are determined by cellular exchange mechanisms superimposed on the diffusion restraint provided by tight junctions at interfaces between blood, brain and cerebrospinal fluid (CSF). These interfaces are referred to as "the" blood-brain barrier. It is widely believed that in embryos and newborns, this barrier is immature or "leaky," rendering the developing brain more vulnerable to drugs or toxins entering the fetal circulation from the mother. New evidence shows that many adult mechanisms, including functionally effective tight junctions are present in embryonic brain and some transporters are more active during development than in the adult. Additionally, some mechanisms present in embryos are not present in adults, e.g., specific transport of plasma proteins across the blood-CSF barrier and embryo-specific intercellular junctions between neuroependymal cells lining the ventricles. However developing cerebral vessels appear to be more fragile than in the adult. Together these properties may render developing brains more vulnerable to drugs, toxins, and pathological conditions, contributing to cerebral damage and later neurological disorders. In addition, after birth loss of protection by efflux transporters in placenta may also render the neonatal brain more vulnerable than in the fetus.

403 citations


Journal ArticleDOI
TL;DR: It is found that SHP mRNA is not systematically down-regulated in hepatocyte in culture after 24 h treatment with rifampicin, and the phenomenon is unlikely critical for PXR-mediated induction of its target genes.
Abstract: The small/short heterodimer partner (SHP, NR0B2) is a nuclear receptor corepressor lacking a DNA binding domain. SHP is induced by bile acid-activated farnesoid X receptor (FXR) resulting in CYP7A1 gene suppression. In contrast, Pregnane X receptor (PXR) activation by its ligands was recently suggested to inhibit SHP gene transactivation to maximize the induction of PXR target genes. However, there are also conflicting reports in literature whether PXR or rodent Pxr activation down-regulates SHP/Shp expression. Moreover, the PXR-mediated regulation of the SHP gene has been studied only at the SHP mRNA and transactivation (gene reporter assay) levels. In this study, we studied the effect of rifampicin, a prototype PXR ligand, on SHP mRNA and protein expression in three primary human hepatocyte cultures. We found that SHP mRNA is not systematically down-regulated in hepatocyte in culture after 24 h treatment with rifampicin. Consistently, we did not observe down-regulation of SHP protein in primary human hepatocytes after 24 and 48 h of incubation with rifampicin. We can conclude that although we observed slight down-regulation of SHP mRNA and protein in several hepatocyte preparations, the phenomenon is unlikely critical for PXR-mediated induction of its target genes.

383 citations


Journal ArticleDOI
TL;DR: The main focus of this review will be the pathways affected by resveratrol, which may be beneficial in many disorders, particularly in diseases where oxidative stress plays an important role.
Abstract: Resveratrol is a polyphenol that plays a potentially important role in many disorders and has been studied in different diseases. The research on this chemical started through the “French paradox,” which describes improved cardiovascular outcomes despite a high-fat diet in French people. Since then, resveratrol has been broadly studied and shown to have antioxidant, anti-inflammatory, anti-proliferative, and anti-angiogenic effects, with those on oxidative stress possibly being most important and underlying some of the others, but many signaling pathways are among the molecular targets of resveratrol. In concert they may be beneficial in many disorders, particularly in diseases where oxidative stress plays an important role. The main focus of this review will be the pathways affected by resveratrol. Based on these mechanistic considerations, the involvement of resveratrol especially in cardiovascular diseases, cancer, neurodegenerative diseases, and possibly in longevity will be is addressed.

379 citations


Journal ArticleDOI
TL;DR: The concept that many neurological conditions are linked pathophysiologically to energy dysregulation could well provide a common research and experimental therapeutics platform, from which the course of several neurological diseases could be favorably influenced by dietary means.
Abstract: Dietary and metabolic therapies have been attempted in a wide variety of neurological diseases, including epilepsy, headache, neurotrauma, Alzheimer disease, Parkinson disease, sleep disorders, brain cancer, autism, pain, and multiple sclerosis. The impetus for using various diets to treat – or at least ameliorate symptoms of – these disorders stems from both a lack of effectiveness of pharmacological therapies, and also the intrinsic appeal of implementing a more “natural” treatment. The enormous spectrum of pathophysiological mechanisms underlying the aforementioned diseases would suggest a degree of complexity that cannot be impacted universally by any single dietary treatment. Yet, it is conceivable that alterations in certain dietary constituents could affect the course and impact the outcome of these brain disorders. Further, it is possible that a final common neurometabolic pathway might be influenced by a variety of dietary interventions. The most notable example of a dietary treatment with proven efficacy against a neurological condition is the high-fat, low-carbohydrate ketogenic diet (KD) used in patients with medically intractable epilepsy. While the mechanisms through which the KD works remain unclear, there is now compelling evidence that its efficacy is likely related to the normalization of aberrant energy metabolism. The concept that many neurological conditions are linked pathophysiologically to energy dysregulation could well provide a common research and experimental therapeutics platform, from which the course of several neurological diseases could be favorably influenced by dietary means. Here we provide an overview of studies using the KD in a wide panoply of neurologic disorders in which neuroprotection is an essential component.

368 citations


Journal ArticleDOI
TL;DR: Findings suggest that a potential intervention on HO-1 or its byproducts may need to take into account any potential alteration in the status of Nrf2 activation, as well as the potential pathways and mechanisms mediating vascular protection.
Abstract: Atherosclerosis is an inflammatory process of the vascular wall characterized by the infiltration of lipids and inflammatory cells. Oxidative modifications of infiltrating low-density lipoproteins and induction of oxidative stress play a major role in lipid retention in the vascular wall, uptake by macrophages and generation of foam cells, a hallmark of this disorder. The vasculature has a plethora of protective resources against oxidation and inflammation, many of them regulated by the Nrf2 transcription factor. Heme oxygenase-1 (HO-1) is a Nrf2-regulated gene that plays a critical role in the prevention of vascular inflammation. It is the inducible isoform of HO, responsible for the oxidative cleavage of heme groups leading to the generation of biliverdin, carbon monoxide, and release of ferrous iron. HO-1 has important antioxidant, antiinflammatory, antiapoptotic, antiproliferative, and immunomodulatory effects in vascular cells, most of which play a significant role in the protection against atherogenesis. HO-1 may also be an important feature in macrophage differentiation and polarization to certain subtypes. The biological effects of HO-1 are largely attributable to its enzymatic activity, which can be conceived as a system with three arms of action, corresponding to its three enzymatic byproducts. HO-1 mediated vascular protection may be due to a combination of systemic and vascular local effects. It is usually expressed at low levels but can be highly upregulated in the presence of several proatherogenic stimuli. The HO-1 system is amenable for use in the development of new therapies, some of them currently under experimental and clinical trials. Interestingly, in contrast to the HO-1 antiatherogenic actions, the expression of its transcriptional regulator Nrf2 leads to proatherogenic effects instead. This suggests that a potential intervention on HO-1 or its byproducts may need to take into account any potential alteration in the status of Nrf2 activation. This article reviews the available evidence that supports the antiatherogenic role of HO-1 as well as the potential pathways and mechanisms mediating vascular protection.

339 citations


Journal ArticleDOI
TL;DR: This review will focus on describing pivotal roles of AR in the pathogenesis of cardiovascular diseases as well as other diabetic complications, and the potential use of AR inhibitors as an emerging therapeutic strategy in preventing DM complications.
Abstract: Diabetes mellitus (DM) is a complex metabolic disorder arising from lack of insulin production or insulin resistance (Diagnosis and classification of diabetes mellitus, 2007). DM is a leading cause of morbidity and mortality in the developed world, particularly from vascular complications such as atherothrombosis in the coronary vessels. Aldose reductase (AR; ALR2; EC 1.1.1.21), a key enzyme in the polyol pathway, catalyzes nicotinamide adenosine dinucleotide phosphate-dependent reduction of glucose to sorbitol, leading to excessive accumulation of intracellular reactive oxygen species (ROS) in various tissues of DM including the heart, vasculature, neurons, eyes, and kidneys. As an example, hyperglycemia through such polyol pathway induced oxidative stress, may have dual heart actions, on coronary blood vessel (atherothrombosis) and myocardium (heart failure) leading to severe morbidity and mortality (reviewed in Heather and Clarke, 2011). In cells cultured under high glucose conditions, many studies have demonstrated similar AR-dependent increases in ROS production, confirming AR as an important factor for the pathogenesis of many diabetic complications. Moreover, recent studies have shown that AR inhibitors may be able to prevent or delay the onset of cardiovascular complications such as ischemia/reperfusion injury, atherosclerosis, and atherothrombosis. In this review, we will focus on describing pivotal roles of AR in the pathogenesis of cardiovascular diseases as well as other diabetic complications, and the potential use of AR inhibitors as an emerging therapeutic strategy in preventing DM complications.

321 citations


Journal ArticleDOI
TL;DR: Recent evidence supporting both the beneficial or detrimental performance of microglia in AD is discussed, and the attempt to find molecules/biomarkers for early diagnosis or therapeutic interventions is discussed.
Abstract: Contrary to early views, we now know that systemic inflammatory/immune responses transmit to the brain. The microglia, the resident "macrophages" of the brain's innate immune system, are most responsive, and increasing evidence suggests that they enter a hyper-reactive state in neurodegenerative conditions and aging. As sustained over-production of microglial pro-inflammatory mediators is neurotoxic, this raises great concern that systemic inflammation (that also escalates with aging) exacerbates or possibly triggers, neurological diseases (Alzheimer's, prion, motoneuron disease). It is known that inflammation has an essential role in the progression of Alzheimer's disease (AD), since amyloid-β (Aβ) is able to activate microglia, initiating an inflammatory response, which could have different consequences for neuronal survival. On one hand, microglia may delay the progression of AD by contributing to the clearance of Aβ, since they phagocyte Aβ and release enzymes responsible for Aβ degradation. Microglia also secrete growth factors and anti-inflammatory cytokines, which are neuroprotective. In addition, microglia removal of damaged cells is a very important step in the restoration of the normal brain environment, as if left such cells can become potent inflammatory stimuli, resulting in yet further tissue damage. On the other hand, as we age microglia become steadily less efficient at these processes, tending to become over-activated in response to stimulation and instigating too potent a reaction, which may cause neuronal damage in its own right. Therefore, it is critical to understand the state of activation of microglia in different AD stages to be able to determine the effect of potential anti-inflammatory therapies. We discuss here recent evidence supporting both the beneficial or detrimental performance of microglia in AD, and the attempt to find molecules/biomarkers for early diagnosis or therapeutic interventions.

300 citations


Journal ArticleDOI
TL;DR: Recent advances in the discovery and evaluation of ginsenosides as cancer therapeutic agents support further pre-clinical and clinical development of these agents for the treatment of primary and metastatic tumors.
Abstract: Conventional chemotherapeutic agents are often toxic not only to tumor cells but also to normal cells, limiting their therapeutic use in the clinic. Novel natural product anticancer compounds present an attractive alternative to synthetic compounds, based on their favorable safety and efficacy profiles. Several pre-clinical and clinical studies have demonstrated the anticancer potential of Panax ginseng, a widely used traditional Chinese medicine. The anti-tumor efficacy of ginseng is attributed mainly to the presence of saponins, known as ginsenosides. In this review, we focus on how ginsenosides exert their anticancer effects by modulation of diverse signaling pathways, including regulation of cell proliferation mediators (CDKs and cyclins), growth factors (c-myc, EGFR, and VEGF), tumor suppressors (p53 and p21), oncogenes (MDM2), cell death mediators (Bcl-2, Bcl-xL, XIAP, caspases, and death receptors), inflammatory response molecules (NF-κB and COX2), and protein kinases (JNK, Akt, and AMPK). We also discuss the structure-activity relationship (SAR) of various ginsenosides and their potential in the treatment of various human cancers. In summary, recent advances in the discovery and evaluation of ginsenosides as cancer therapeutic agents support further preclinical and clinical development of these agents for the treatment of primary and metastatic tumors.

273 citations


Journal ArticleDOI
TL;DR: Detailed information on the experimental and clinical evidence between the heme catabolic pathway and CVD, and those related diseases such as diabetes, metabolic syndrome, and obesity is provided.
Abstract: Bilirubin belongs to a phylogenetically old superfamily of tetrapyrrolic compounds, which have multiple biological functions. Although for decades bilirubin was believed to be only a waste product of the heme catabolic pathway at best, and a potentially toxic compound at worst; recent data has convincingly demonstrated that mildly elevated serum bilirubin levels are strongly associated with a lower prevalence of oxidative stress-mediated diseases. Indeed, serum bilirubin has been consistently shown to be negatively correlated to cardiovascular diseases (CVD), as well as to CVD-related diseases and risk factors such as arterial hypertension, diabetes mellitus, metabolic syndrome, and obesity. In addition, the clinical data are strongly supported by evidence arising from both in vitro and in vivo experimental studies. This data not only shows the protective effects of bilirubin per se; but additionally, of other products of the heme catabolic pathway such as biliverdin and carbon monoxide, as well as its key enzymes (heme oxygenase and biliverdin reductase); thus, further underlining the biological impacts of this pathway. In this review, detailed information on the experimental and clinical evidence between the heme catabolic pathway and CVD, and those related diseases such as diabetes, metabolic syndrome, and obesity is provided. All of these pathological conditions represent an important threat to human civilization, being the major killers in developed countries, with a steadily increasing prevalence. Thus, it is extremely important to search for novel markers of these diseases, as well as for novel therapeutic modalities to reverse this unfavorable situation. The heme catabolic pathway seems to fulfill the criteria for both diagnostic purposes as well as for potential therapeutical interventions.

229 citations


Journal ArticleDOI
TL;DR: The potential for HDI should always be assessed in the non-clinical safety assessment phase of drug development process and an increased level of awareness of HDI is necessary among health professionals and drug discovery scientists.
Abstract: Despite the lack of sufficient information on the safety of herbal products, their use as alternative and/or complimentary medicine is globally popular. There is also increasing interest in medicinal herbs as precursor of pharmacological actives. Of serious concern is their concurrent consumption with conventional drugs. Herb-drug interaction (HDI) is the single most important clinical consequences of this practice. Using a structured assessment procedure, the evidence of HDI presents with varying degree of clinical significance. While the potential for HDI for a number of herbal products is inferred from non-human studies, certain HDIs are well established through human studies and documented case reports. Various mechanisms of pharmacokinetic HDI have been identified and include the alteration in the gastrointestinal functions with consequent effects on drug absorption; induction and inhibition of metabolic enzymes; the induction and inhibition of transport proteins and stimulation of changes to hepatic and renal functions leading to alteration in drug elimination profiles. Due to the intrinsic pharmacologic properties of phytochemicals, pharmacodynamic HDIs are also known to occur. The effects could be synergistic, additive and/or antagonistic. Poor reporting on the part of patients and inability to promptly identify HDI by health providers are identified as major factors in compiling clinically relevant HDIs. A general overview and the significance of pharmacokinetic and pharmacodynamic HDI are provided, detailing basic mechanism and nature of evidence available. The potential of new chemical entities to be involved in HDIs should be considered in their non-clinical safety assessment during the drug development process. More clinically relevant research is also required in this area as current information on HDI is insufficient for clinical applications to increase the level of awareness among health professionals.

Journal ArticleDOI
TL;DR: The role of chondroitin sulfate proteoglycans and Tnc under pathological conditions is summarized, especially the matrix protein Tenascin C (Tnc) proved to be an important regulator of astrocyte precursor cell proliferation and migration during spinal cord development.
Abstract: Research of the past 25 years has shown that astrocytes do more than participating and building up the blood brain barrier and detoxify the active synapse by reuptake of neurotransmitters and ions. Indeed, astrocytes express neurotransmitter receptors and, as a consequence, respond to stimuli. Deeper knowledge of the differentiation processes during development of the central nervous system (CNS) might help explaining and even help treating neurological diseases like Alzheimer’s disease, Amyotrophic lateral sclerosis (ALS) and psychiatric disorders in which astrocytes have been shown to play a role. Astrocytes and oligodendrocytes develop from a multipotent stem cell that prior to this has produced primarily neuronal precursor cells. This switch towards the more astroglial differentiation is regulated by a change in receptor composition on the cell surface and responsiveness of the respective trophic factors Fibroblast growth factor (FGF) and Epidermal growth factor (EGF). The glial precursor cell is driven into the astroglial direction by signaling molecules like Ciliary neurotrophic factor (CNTF), Bone Morphogenetic Proteins (BMPs), and EGF. However, the early astrocytes influence their environment not only by releasing and responding to diverse soluble factors but also express a wide range of extracellular matrix (ECM) molecules, in particular proteoglycans of the lectican family and tenascins. Lately these ECM molecules have been shown to participate in glial development. In this regard, especially the matrix protein Tenascin C (Tnc) proved to be an important regulator of astrocyte precursor cell proliferation and migration during spinal cord development. On the other hand, ECM molecules expressed by reactive astrocytes are also known to act mostly in an inhibitory fashion under pathophysiological conditions. In this regard, we further summarize recent data concerning the role of chondroitin sulfate proteoglycans and Tnc under pathological conditions.

Journal ArticleDOI
TL;DR: This review provides an overview of experimental evidence that has led to the current understanding of the role of calcium signaling in death and dysfunction following TBI.
Abstract: Cell death and dysfunction after traumatic brain injury (TBI) is caused by a primary phase, related to direct mechanical disruption of the brain, and a secondary phase which consists of delayed events initiated at the time of the physical insult. Arguably, the calcium ion contributes greatly to the delayed cell damage and death after TBI. A large, sustained influx of calcium into cells can initiate cell death signaling cascades, through activation of several degradative enzymes, such as proteases and endonucleases. However, a sustained level of intracellular free calcium is not necessarily lethal, but the specific route of calcium entry may couple calcium directly to cell death pathways. Other sources of calcium, such as intracellular calcium stores, can also contribute to cell damage. In addition, calcium-mediated signal transduction pathways in neurons may be perturbed following injury. These latter types of alterations may contribute to abnormal physiology in neurons that do not necessarily die after a traumatic episode. This review provides an overview of experimental evidence that has led to our current understanding of the role of calcium signaling in death and dysfunction following TBI.

Journal ArticleDOI
TL;DR: The isolated pig bladder is a valid approach to study integrative bladder physiology, remains viable when perfused in vitro, responds to different routes of drug administration and provides a model to correlate movements of the bladder wall directly to variation of intravesical pressure.
Abstract: Characterising the integrative physiology of the bladder requires whole organ preparations. The purpose of this study was to validate an isolated large animal (pig) bladder preparation, through arterial and intravesical drug administration, intravesical pressure recording and filming of surface micromotions. Female pig bladders were obtained from the local abattoir and arterially perfused in vitro. Arterial and intravesical pressures were recorded at varying volumes. Bladder viability was assessed histologically and by monitoring inflow and outflow pH. Arterial drug administration employed boluses introduced into the perfusate. Intravesical administration involved slow instillation and a prolonged dwell-time. Surface micromotions were recorded by filming the separation of surface markers concurrently with intravesical pressure measurement. Adequate perfusion to all bladder layers was achieved for up to eight hours; there was no structural deterioration nor alteration in inflow and effluent perfusate pH. Arterial drug administration (carbachol and potassium chloride) showed consistent dose-dependent responses. Localised movements (micromotions) occurred over the bladder surface, with variable correlation with fluctuations of intravesical pressure. The isolated pig bladder is a valid approach to study integrative bladder physiology. It remains viable when perfused in vitro, responds to different routes of drug administration and provides a model to correlate movements of the bladder wall directly to variation of intravesical pressure.

Journal ArticleDOI
TL;DR: The BVR was reported to confer an antioxidant redox amplification cycle by which low, physiological bilirubin concentrations confer potent antioxidant protection via recycling of biliverdin from oxidized bilirubs by the BVR, linking this sink for oxidants to the NADPH pool.
Abstract: Reactive oxygen species (ROS) and signaling events are involved in the pathogenesis of endothelial dysfunction and represent a major contribution to vascular regulation. Molecular signaling is highly dependent on ROS. But depending on the amount of ROS production it might have toxic or protective effects. Despite a large number of negative outcomes in large clinical trials (e.g., HOPE, HOPE-TOO), antioxidant molecules and agents are important players to influence the critical balance between production and elimination of reactive oxygen and nitrogen species. However, chronic systemic antioxidant therapy lacks clinical efficacy, probably by interfering with important physiological redox signaling pathways. Therefore, it may be a much more promising attempt to induce intrinsic antioxidant pathways in order to increase the antioxidants not systemically but at the place of oxidative stress and complications. Among others, heme oxygenase (HO) has been shown to be important for attenuating the overall production of ROS in a broad range of disease states through its ability to degrade heme and to produce carbon monoxide and biliverdin/bilirubin. With the present review we would like to highlight the important antioxidant role of the HO system and especially discuss the contribution of the biliverdin, bilirubin, and biliverdin reductase (BVR) to these beneficial effects. The BVR was reported to confer an antioxidant redox amplification cycle by which low, physiological bilirubin concentrations confer potent antioxidant protection via recycling of biliverdin from oxidized bilirubin by the BVR, linking this sink for oxidants to the NADPH pool. To date the existence and role of this antioxidant redox cycle is still under debate and we present and discuss the pros and cons as well as our own findings on this topic.

Journal ArticleDOI
TL;DR: The present review highlights SirT mechanism(s) of action and deregulation in cancer, focusing on the therapeutic potential of SirT modulators both in cancer prevention and treatment.
Abstract: Sirtuins represent a promising new class of conserved histone deacetylases, originally identified in yeast. The activity of the sirtuin (SirT) family – made up of seven members (SirT1-7) – is NAD+ dependent. Sirtuins target a wide range of cellular proteins in nucleus, cytoplasm and mitochondria for post-translational modification by acetylation (SirT1, 2, 3 and 5) or ADP ribosylation (SirT4 and 6). Sirtuins regulate responses to stress and ensure that damaged DNA is not propagated, thus contrasting the accumulation of mutations. To date, sirtuins have emerged as potential therapeutic targets for treatment of human pathologies such as metabolic, cardiovascular and neurodegenerative diseases, and cancer. SirT1 is the founding member of this class of enzymes and is currently the best known of the group. SirT1 acts in various cellular processes, deacetylating both chromatin and non-histone proteins, and its role in cancer and aging has been extensively studied. SirT1 may play a critical role in tumor initiation and progression as well as drug resistance by blocking senescence and apoptosis, and by promoting cell growth and angiogenesis. Recently, growing interest in sirtuin modulation has led to the discovery and characterization of small molecules able to modify sirtuin activity. The present review highlights SirT mechanism(s) of action and deregulation in cancer, focusing on the therapeutic potential of SirT modulators both in cancer prevention and treatment.

Journal ArticleDOI
TL;DR: An overview of the main types of neuronal Ca2+ channels and their role in neuronal plasticity is provided and the participation of Ca2- signaling in neuronal aging and degeneration is discussed.
Abstract: Calcium (Ca2+) plays fundamental and diversified roles in neuronal plasticity. As second messenger of many signaling pathways, Ca2+ as been shown to regulate neuronal gene expression, energy production, membrane excitability, synaptogenesis, synaptic transmission, and other processes underlying learning and memory and cell survival. The flexibility of Ca2+ signaling is achieved by modifying cytosolic Ca2+ concentrations via regulated opening of plasmamembrane and subcellular Ca2+ sensitive channels. The spatiotemporal patterns of intracellular Ca2+ signals, and the ultimate cellular biological outcome, are also dependent upon termination mechanism, such as Ca2+ buffering, extracellular extrusion, and intra-organelle sequestration. Because of the central role played by Ca2+ in neuronal physiology, it is not surprising that even modest impairments of Ca2+ homeostasis result in profound functional alterations. Despite their heterogeneous etiology neurodegenerative disorders, as well as the healthy aging process, are all characterized by disruption of Ca2+ homeostasis and signaling. In this review we provide an overview of the main types of neuronal Ca2+ channels and their role in neuronal plasticity. We will also discuss the participation of Ca2+ signaling in neuronal aging and degeneration.

Journal ArticleDOI
TL;DR: The authors suggest that even this latter, NMDA receptor-based, hypothesis is likely too narrow and offer a review of typical glutamate and dopamine-based neurocircuitry, propose genetic vulnerabilities impacting glutamate neurocircuitsry, and provide a broad interpretation of a possible etiology of schizophrenia.
Abstract: The Dopamine Hypothesis of Schizophrenia is actively being challenged by the NMDA Receptor Hypofunctioning Hypothesis of Schizophrenia. The latter hypothesis may actually be the starting point in neuronal pathways that ultimately modifies dopamine pathways involved in generating both positive and negative symptoms of schizophrenia postulated by the former hypothesis. The authors suggest that even this latter, NMDA receptor-based, hypothesis is likely too narrow and offer a review of typical glutamate and dopamine-based neurocircuitry, propose genetic vulnerabilities impacting glutamate neurocircuitry, and a provide a broad interpretation of a possible etiology of schizophrenia. In conclusion, there is a brief review of potential schizophrenia treatments that rely on the etiologic theory provided in the body of the paper.

Journal ArticleDOI
TL;DR: The blood brain barrier (BBB) is a highly dynamic interface between the central nervous system (CNS) and periphery and is part of the larger neuro(glio)vascular unit which likely contributes to the neurotoxicities associated with psychostimulant drugs and HIV co-morbidity.
Abstract: The blood brain barrier (BBB) is a highly dynamic interface between the central nervous system (CNS) and periphery. The BBB is comprised of a number of components and is part of the larger neuro(glio)vascular unit. Current literature suggests that psychostimulant drugs of abuse alter the function of the BBB which likely contributes to the neurotoxicities associated with these drugs. In both preclinical and clinical studies, psychostimulants including methamphetamine, MDMA, cocaine, and nicotine, produce BBB dysfunction through alterations in tight junction protein expression and conformation, increased glial activation, increased enzyme activation related to BBB cytoskeleton remodeling, and induction of neuroinflammatory pathways. These detrimental changes lead to increased permeability of the BBB and subsequent vulnerability of the brain to peripheral toxins. In fact, abuse of these psychostimulants, notably methamphetamine and cocaine, has been shown to increase the invasion of peripheral bacteria and viruses into the brain. Much work in this field has focused on the co-morbidity of psychostimulant abuse and human immunodeficiency virus (HIV) infection. As psychostimulants alter BBB permeability, it is likely that this BBB dysfunction results in increased penetration of the HIV virus into the brain thus increasing the risk of and severity of neuro AIDS. This review will provide an overview of the specific changes in components within the BBB associated with psychostimulant abuse as well as the implications of these changes in exacerbating the neuropathology associated with psychostimulant drugs and HIV co-morbidity.

Journal ArticleDOI
TL;DR: Evidence questioning Ca2+-dependent gliotransmitter release from astrocytes in healthy brain tissue is examined, followed by a close examination of recent work suggesting that Ca2-dependentgliotransmitters release occurs as an early event in the development of neurological disorders and neuroinflammatory and neurodegenerative diseases.
Abstract: A prominent area of neuroscience research over the past 20 years has been the acute modulation of neuronal synaptic activity by Ca2+-dependent release of the transmitters ATP, D-serine, and glutamate (called gliotransmitters) by astrocytes. Although the physiological relevance of this mechanism is under debate, emerging evidence suggests that there are critical factors in addition to Ca2+ that are required for gliotransmitters to be released from astrocytes. Interestingly, these factors include activated microglia and the proinflammatory cytokine Tumor Necrosis Factor α (TNFα), chemotactic cytokine Stromal cell-Derived Factor-1α (SDF-1α), and inflammatory mediator prostaglandin E2 (PGE2). Of note, microglial activation and release of inflammatory molecules from activated microglia and reactive astrocytes can occur within minutes of a triggering stimulus. Therefore, activation of astrocytes by inflammatory molecules combined with Ca2+ elevations may lead to gliotransmitter release, and be an important step in the early sequence of events contributing to hyperexcitability, excitotoxicity and neurodegeneration in the damaged or diseased brain. In this review, we will first examine evidence questioning Ca2+-dependent gliotransmitter release from astrocytes in healthy brain tissue, followed by a close examination of recent work suggesting that Ca2+-dependent gliotransmitter release occurs as an early event in the development of neurological disorders and neuroinflammatory and neurodegenerative diseases.

Journal ArticleDOI
TL;DR: The mechanisms of phagocytic cell death and its potential roles in Alzheimer's Disease, Parkinson’s Disease, and Frontotemporal Dementia are discussed.
Abstract: Microglial phagocytosis of dead or dying neurons can be beneficial by preventing the release of damaging and/or pro-inflammatory intracellular components. However, there is now evidence that under certain conditions, such as inflammation, microglia can also phagocytose viable neurons, thus executing their death. Such phagocytic cell death may result from exposure of phosphatidylserine (PS) or other eat-me signals on otherwise viable neurons as a result of physiological activation or sub-toxic insult, and neuronal phagocytosis by activated microglia. In this review, we discuss the mechanisms of phagocytic cell death and its potential roles in Alzheimer’s Disease, Parkinson’s Disease, and Frontotemporal Dementia.

Journal ArticleDOI
TL;DR: These findings suggest strongly that sirtuins are tightly controlled and potentially responsive to different signal transduction pathways, thus connecting these regulators to different signaling pathways.
Abstract: Sirtuins are homologs of the yeast silencing information regulator 2 (Sir2) protein, an NAD+-dependent (histone) deacetylase. In mammals 7 different sirtuins, SIRT1-7, have been identified, which share a common catalytic core domain but possess distinct N- and C-terminal extensions. This core domain elicits NAD+-dependent deacetylase and in some cases also ADP-ribosyltransferase, demalonylase, and desuccinylase activities. Sirtuins have been implicated in key cellular processes, including cell survival, autophagy, apoptosis, gene transcription, DNA repair, stress response, and genome stability. In addition some sirtuins are associated with disease, including cancer and neurodegeneration. These findings suggest strongly that sirtuins are tightly controlled and potentially responsive to different signal transduction pathways. Here, we review the posttranslational regulation mechanisms of sirtuins and discuss their relevance regarding the physiological processes, with which the different sirtuins are associated. The available data suggest that the N- and C-terminal extensions are the targets of posttranslational modifications that can affect the functions of sirtuins. Mechanistically this can be explained by the interaction of these extensions with the catalytic core domain, which appears to be controlled by posttranslational modifications at least in some cases. In contrast little is known about posttranslational modifications and regulation of the catalytic domain itself. Together these findings point to key regulatory roles of the N- and C-terminal extensions in controlling sirtuin functions, thus connecting these regulators to different signaling pathways.

Journal ArticleDOI
TL;DR: Current knowledge on the possible involvement of the BGA in IBS is reviewed and new directions for potential future therapies of IBS are discussed.
Abstract: Irritable bowel syndrome (IBS) is a common gastrointestinal disorder with an estimated prevalence of 10-20%. Current understanding of the pathophysiology of IBS is incomplete due to the lack of a clearly identified pathological abnormality and due to the lack of reliable biomarkers. Possible mechanisms believed to contribute to IBS development and IBS like symptoms include physical stressors, such as infection or inflammation, psychological, and environmental factors, like anxiety, depression, and significant negative life events. Some of these mechanisms may involve the brain-gut axis (BGA). In this article we review the current knowledge on the possible involvement of the BGA in IBS and discuss new directions for potential future therapies of IBS.

Journal ArticleDOI
TL;DR: This review summarizes the main scientific advances on SIRT2 protein biology and explores its potential as a therapeutic target for treatment of age-related disorders.
Abstract: Sirtuin proteins are conserved regulators of aging that have recently emerged as important modifiers of several diseases which commonly occur later in life such as cancer, diabetes, cardiovascular, and neurodegenerative diseases. In mammals, there are seven sirtuins (SIRT1-7), which display diversity in subcellular localization and function. SIRT1 has received much of attention due to its possible impact on longevity, while important biological and therapeutic roles of other sirtuins have been underestimated and just recently recognized. Here we focus on SIRT2, a member of the sirtuin family, and discuss its role in cellular and tissue-specific functions. This review summarizes the main scientific advances on SIRT2 protein biology and explores its potential as a therapeutic target for treatment of age-related disorders.

Journal ArticleDOI
Dora Brites1
TL;DR: This review provides a comprehensive insight into cell susceptibilities and molecular targets of UCB in neurons, astrocytes, and oligodendrocyttes, and on phenotypic and functional responses of microglia to UCB, as well as novel and promising additional therapeutic approaches to BIND.
Abstract: Unconjugated hyperbilirubinemia is a common condition in the first week of postnatal life. Although generally harmless, some neonates may develop very high levels of unconjugated bilirubin (UCB), which may surpass the protective mechanisms of the brain at preventing UCB accumulation. In this case, both short-term and long-term neurodevelopmental disabilities, such as acute and chronic UCB encephalopathy, known as kernicterus, or more subtle alterations designed as bilirubin-induced neurological dysfunction (BIND) may be produced. There is a tremendous variability in babies’ vulnerability towards UCB for reasons not yet explained, but preterm birth, sepsis, hypoxia and haemolytic disease are comprised as risk factors. Therefore, UCB levels and neurological abnormalities are not strictly correlated. Even nowadays, the mechanisms of UCB neurotoxicity are still unclear, as are specific biomarkers, and little is known about lasting sequelae attributable to hyperbilirubinemia. On autopsy, UCB was shown to be within neurons, neuronal processes and microglia, and to produce loss of neurons, demyelination and gliosis. In isolated cell cultures, UCB was shown to impair neuronal arborization and to induce the release of proinflammatory cytokines from microglia and astrocytes. However, cell dependent-sensitivity to UCB toxicity and the role of each nerve cell type remain understood. This review provides a comprehensive insight into cell susceptibilities and molecular targets of UCB in neurons, astrocytes, and oligodendrocytes, and on phenotypic and functional responses of microglia to UCB. Interplay among glia elements and cross-talk with neurons, with a special emphasis in the UCB-induced immunostimulation, and the role of sepsis in BIND pathogenesis are highlighted. New and interesting data on the anti-inflammatory and antioxidant activities of different pharmacological agents are also presented, as novel and promising additional therapeutic approaches to BIND.

Journal ArticleDOI
TL;DR: This work has a useful framework to understand key folding defect(s) caused by ΔF508 that provides a molecular target for the next generation of CFTR small molecule correctors aimed at the specific defect present in the majority of CF patients.
Abstract: In the past decade much has been learned about how CFTR folds and misfolds as the etiologic cause of cystic fibrosis (CF) CFTR folding is complex and hierarchical, takes place in multiple cellular compartments and physical environments, and involves several large networks of folding machineries Insertion of transmembrane (TM) segments into the endoplasmic reticulum (ER) membrane and tertiary folding of cytosolic domains begin cotranslationally as the nascent polypeptide emerges from the ribosome, whereas posttranslational folding establishes critical domain-domain contacts needed to form a physiologically stable structure Within the membrane, N- and C-terminal TM helices are sorted into bundles that project from the cytosol to form docking sites for nucleotide binding domains, NBD1 and NBD2, which in turn form a sandwich dimer for ATP binding While tertiary folding is required for domain assembly, proper domain assembly also reciprocally affects folding of individual domains analogous to a jigsaw puzzle wherein the structure of each interlocking piece influences its neighbors Superimposed on this process is an elaborate proteostatic network of cellular chaperones and folding machineries that facilitate the timing and coordination of specific folding steps in and across the ER membrane While the details of this process require further refinement, we finally have a useful framework to understand key folding defect(s) caused by ∆F508 that provides a molecular target(s) for the next generation of CFTR small molecule correctors aimed at the specific defect present in the majority of CF patients

Journal ArticleDOI
TL;DR: Recent findings on the role of BVR and the bile pigments in inflammation in context with its activity as an enzyme, receptor, and transcriptional regulator are summarized.
Abstract: Biliverdin (BV) has emerged as a cytoprotective and important anti-inflammatory molecule. Conversion of BV to bilirubin (BR) is catalyzed by biliverdin reductase (BVR) and is required for the downstream signaling and nuclear localization of BVR. Recent data by others and us make clear that BVR is a critical regulator of innate immune responses resulting from acute insult and injury and moreover, that a lack of BVR results in an enhanced pro-inflammatory phenotype. In macrophages, BVR is regulated by its substrate BV which leads to activation of the PI3K-Akt-IL10 axis and inhibition of TLR4 expression via direct binding of BVR to the TLR4 promoter. In this review, we will summarize recent findings on the role of BVR and the bile pigments in inflammation in context with its activity as an enzyme, receptor and transcriptional regulator.

Journal ArticleDOI
TL;DR: The emerging role of probiotics in the prevention and/or treatment of allergic disease are discussed with a focus on the evidence from animal and human studies.
Abstract: The prevalence of allergic disease has increased dramatically in Western countries over the past few decades. The hygiene hypothesis, whereby reduced exposure to microbial stimuli in early life programs the immune system toward a Th2-type allergic response, is suggested to be a major mechanism to explain this phenomenon in developed populations. Such microbial exposures are recognized to be critical regulators of intestinal microbiota development. Furthermore, intestinal microbiota has an important role in signaling to the developing mucosal immune system. Intestinal dysbiosis has been shown to precede the onset of clinical allergy, possibly through altered immune regulation. Existing treatments for allergic diseases such as eczema, asthma, and food allergy are limited and so the focus has been to identify alternative treatment or preventive strategies. Over the past 10 years, a number of clinical studies have investigated the potential of probiotic bacteria to ameliorate the pathological features of allergic disease. This novel approach has stemmed from numerous data reporting the pleiotropic effects of probiotics that include immunomodulation, restoration of intestinal dysbiosis as well as maintaining epithelial barrier integrity. In this mini-review, the emerging role of probiotics in the prevention and/or treatment of allergic disease are discussed with a focus on the evidence from animal and human studies.

Journal ArticleDOI
TL;DR: The structure, function, and biophysical properties of VGSC as well as their pharmacology and associated channelopathies are outlined and some of the recent advances in this field are highlighted.
Abstract: Voltage-gated sodium channels (VGSC) are multi-molecular protein complexes expressed in both excitable and non-excitable cells. They are primarily formed by a pore-forming multi-spanning integral membrane glycoprotein (α-subunit) that can be associated with one or more regulatory β-subunits. The latter are single-span integral membrane proteins that modulate the sodium current (INa) and can also function as cell-adhesion molecules (CAMs). In-vitro some of the cell-adhesive functions of the β-subunits may play important physiological roles independently of the α-subunits. Other endogenous regulatory proteins named “channel partners” or “channel interacting proteins” (ChiPs) like caveolin-3 and calmodulin/calmodulin kinase II (CaMKII) can also interact and modulate the expression and/or function of VGSC. In addition to their physiological roles in cell excitability and cell adhesion, VGSC are the site of action of toxins (like tetrodotoxin and saxitoxin), and pharmacologic agents (like antiarrhythmic drugs, local anesthetics, antiepileptic drugs, and newly developed analgesics). Mutations in genes that encode α- and/or β-subunits as well as the ChiPs can affect the structure and biophysical properties of VGSC, leading to the development of diseases termed sodium “channelopathies”. This review will outline the structure, function and biophysical properties of VGSC as well as their pharmacology and associated channelopathies and highlight some of the recent advances in this field

Journal ArticleDOI
TL;DR: This review discusses the multifactorial aspects of clinical drug resistance and emerging therapeutic approaches in recurrent OCC, emphasizing recent advances in targeted therapies, immunotherapy, and potential relevance of new concepts such as epithelial-mesenchymal transition and cancer stem cell hypothesis to drug resistance.
Abstract: Oral cavity cancer (OCC) is associated with high incidence of loco-regional recurrences, which account for the majority of treatment failures post-surgery and radiotherapy. The time-course of relapse manifestation and metastasis are unpredictable. Relapsed OCC represents a major clinical challenge in part due to their aggressive and invasive behaviors. Chemotherapy remains the only option for advanced OCC whenever salvage surgery or re-irradiation is not feasible, but its efficacy is limited as a result of the drug resistance development. Alternatives to use of different permutations of standard cytotoxic drugs or combinations with modulators of drug resistance have led to incremental therapeutic benefits. The introduction of targeted agents and biologics against selective targets that drive cancer progression has opened-up optimism to achieve superior therapeutic activity and overcome drug resistance because, unlike the non-selective cytotoxic, the target can be monitored at molecular levels to identify patients who can benefit from the drug. This review discusses the multifactorial aspects of clinical drug resistance and emerging therapeutic approaches in recurrent OCC, emphasizing recent advances in targeted therapies, immunotherapy, and potential relevance of new concepts such as epithelial-mesenchymal transition and cancer stem cell hypothesis to drug resistance.