scispace - formally typeset
Search or ask a question
JournalISSN: 1664-042X

Frontiers in Physiology 

Frontiers Media
About: Frontiers in Physiology is an academic journal published by Frontiers Media. The journal publishes majorly in the area(s): Medicine & Biology. It has an ISSN identifier of 1664-042X. It is also open access. Over the lifetime, 15354 publications have been published receiving 305143 citations.


Papers
More filters
Journal Article
TL;DR: The 1983 book, free at last, with corrections and bookmarks as mentioned in this paper, was the first book to be published with CM (TeX) fonts, from the original troff, but now with CM fonts.
Abstract: The 1983 book, free at last, with corrections and bookmarks. From the original troff, but now with CM (TeX) fonts.

1,333 citations

Journal ArticleDOI
TL;DR: The aim of this review is to present current knowledge of the decline in human muscle mass and strength with advancing age and the associated risk to health and survival and to review the underlying changes in muscle characteristics and the etiology of sarcopenia.
Abstract: Changing demographics make it ever more important to understand the modifiable risk factors for disability and loss of independence with advancing age. For more than two decades there has been increasing interest in the role of sarcopenia, the age related loss of muscle or lean mass, in curtailing active and healthy aging. There is now evidence to suggest that lack of strength, or dynapenia, is a more constant factor in compromised wellbeing in old age and it is apparent that the decline in muscle mass and the decline in strength can take quite different trajectories. This demands recognition of the concept of muscle quality; that is the force generating per capacity per unit cross-sectional area (CSA). An understanding of the impact of aging on skeletal muscle will require attention to both the changes in muscle size and the changes in muscle quality. The aim of this review is to present current knowledge of the decline in human muscle mass and strength with advancing age and the associated risk to health and survival and to review the underlying changes in muscle characteristics and the aetiology of sarcopenia. Cross-sectional studies comparing young (18-45yrs) and old (>65yrs) samples show dramatic variation based on the technique used and population studied. The median of values of rate of loss reported across studies is 0.47% per year in men and 0.37% per year in women. Longitudinal studies show that in people aged 75yrs, muscle mass is lost at a rate of 0.64-0.70% per year in women and 0.80-0.98% per year in men. Strength is lost more rapidly. Longitudinal studies show that at age 75yrs, strength is lost at a rate of 3-4% per year in men and 2.5-3% per year in women. Studies that assessed changes in mass and strength in the same sample report a loss of strength 2 – 5 times faster than loss of mass. Loss of strength is a more consistent risk for disability and death than is loss of muscle mass.

926 citations

Journal ArticleDOI
TL;DR: The ratio of LF to HF (LF/HF) could be used to quantify the changing relationship between sympathetic and parasympathetic nerve activities (i.e., the sympatho-vagal balance) in both health and disease and it is vital to provide a critical assessment of the assumptions upon which this concept is based.
Abstract: Power spectral analysis of the beat-to-beat variations of heart rate or the heart period (R–R interval) has become widely used to quantify cardiac autonomic regulation (Appel et al., 1989; Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, 1996; Berntson et al., 1997; Denver et al., 2007; Thayler et al., 2010; Billman, 2011). This technique partitions the total variance (the “power”) of a continuous series of beats into its frequency components, typically identifying two or three main peaks: Very Low Frequency (VLF) <0.04 Hz, Low Frequency (LF), 0.04–0.15 Hz, and High Frequency (HF) 0.15–0.4 Hz. It should be noted that the HF peak is shifted to a higher range (typically 0.24–1.04 Hz) in infants and during exercise (Berntson et al., 1997). The HF peak is widely believed to reflect cardiac parasympathetic nerve activity while the LF, although more complex, is often assumed to have a dominant sympathetic component (Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, 1996; Berntson et al., 1997; Billman, 2011). Based upon these assumptions, Pagani and co-workers proposed that the ratio of LF to HF (LF/HF) could be used to quantify the changing relationship between sympathetic and parasympathetic nerve activities (i.e., the sympatho-vagal balance) (Pagani et al., 1984, 1986; Malliani et al., 1991) in both health and disease. However, this concept has been challenged (Kingwell et al., 1994; Koh et al., 1994; Hopf et al., 1995; Eckberg, 1997; Houle and Billman, 1999; Billman, 2011). Despite serious and largely under-appreciated limitations, the LF/HF ratio has gained wide acceptance as a tool to assess cardiovascular autonomic regulation where increases in LF/HF are assumed to reflect a shift to “sympathetic dominance” and decreases in this index correspond to a “parasympathetic dominance.” Therefore, it is vital to provide a critical assessment of the assumptions upon which this concept is based.

874 citations

Journal Article
TL;DR: In this paper, the isotope effect has been used to show that superconductivity is essentially an extreme case of diamagnetism rather than a limit of infinite conductivity.
Abstract: Although superconductivity falls into the domain where one would expect ordinary non-relativistic quantum mechanics to be valid, it has proved to be extremely difficult to obtain an adequate theoretical explanation of this remarkable phenomenon. In spite of the large amount of excellent experimental and theoretical work devoted to the problem, there remain major unsettled questions. However, the area in which the answers are to be found has been narrowed considerably. There are very strong indications, if not quite a proof, that superconductivity is essentially an extreme case of diamagnetism rather than a limit of infinite conductivity. The isotope effect indicates that the superconducting phase arises from interactions between electrons and lattice vibrations.

759 citations

Journal ArticleDOI
TL;DR: The physiology of monocytes and macrophages in acute wound healing and the different phenotypes described in the literature for both in vitro and in vivo models are discussed.
Abstract: Macrophages play key roles in all phases of adult wound healing, which are inflammation, proliferation, and remodeling. As wounds heal, the local macrophage population transitions from predominantly pro-inflammatory (M1-like phenotypes) to anti-inflammatory (M2-like phenotypes). Non-healing chronic wounds, such as pressure, arterial, venous, and diabetic ulcers indefinitely remain in inflammation-the first stage of wound healing. Thus, local macrophages retain pro-inflammatory characteristics. This review discusses the physiology of monocytes and macrophages in acute wound healing and the different phenotypes described in the literature for both in vitro and in vivo models. We also discuss aberrations that occur in macrophage populations in chronic wounds, and attempts to restore macrophage function by therapeutic approaches. These include endogenous M1 attenuation, exogenous M2 supplementation and endogenous macrophage modulation/M2 promotion via mesenchymal stem cells, growth factors, biomaterials, heme oxygenase-1 (HO-1) expression, and oxygen therapy. We recognize the challenges and controversies that exist in this field, such as standardization of macrophage phenotype nomenclature, definition of their distinct roles and understanding which phenotype is optimal in order to promote healing in chronic wounds.

754 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20231,243
20222,959
20212,174
20201,773
20191,642
20181,894