scispace - formally typeset
Search or ask a question

Showing papers in "Frontiers of Physics in China in 2022"


Journal ArticleDOI
TL;DR: Based on the Pancharatnam-Berry phase principle, the unit cells with the cross-circular polarization gradient phase were carefully designed and constructed into a metasurface as discussed by the authors .
Abstract: In view of the fact that most invisibility devices focus on linear polarization cloaking and that the characteristics of mid-infrared cloaking are rarely studied, we propose a cross-circularly polarized invisibility carpet cloaking device in the mid-infrared band. Based on the Pancharatnam-Berry phase principle, the unit cells with the cross-circular polarization gradient phase were carefully designed and constructed into a metasurface. In order to achieve tunable cross-circular polarization carpet cloaks, a phase change material is introduced into the design of the unit structure. When the phase change material is in amorphous and crystalline states, the proposed metasurface unit cells can achieve high-efficiency cross-polarization conversion, and reflection intensity can be tuned. According to the phase compensation principle of carpet cloaking, we construct a metasurface cloaking device with a phase gradient using the designed unit structure. From the near- and far-field distributions, the cross-circular polarization cloaking property is confirmed in the broadband wavelength range of 9.3–11.4 µm. The proposed cloaking device can effectively resist detection of cross-circular polarization.

40 citations


Journal ArticleDOI
TL;DR: In this paper, a review of the memristive (resistive switching) phenomena and the development of new-generation memristors are demonstrated involving graphene (GR), transition-metal dichalcogenides (TMDs), and hexagonal boron nitride (h-BN) based memristor.
Abstract: The rapid development of big-data analytics (BDA), internet of things (IoT) and artificial intelligent Technology (AI) demand outstanding electronic devices and systems with faster processing speed, lower power consumption, and smarter computer architecture. Memristor, as a promising Non-Volatile Memory (NVM) device, can effectively mimic biological synapse, and has been widely studied in recent years. The appearance and development of two-dimensional materials (2D material) accelerate and boost the progress of memristor systems owing to a bunch of the particularity of 2D material compared to conventional transition metal oxides (TMOs), therefore, 2D material-based memristors are called as new-generation intelligent memristors. In this review, the memristive (resistive switching) phenomena and the development of new-generation memristors are demonstrated involving graphene (GR), transition-metal dichalcogenides (TMDs) and hexagonal boron nitride (h-BN) based memristors. Moreover, the related progress of memristive mechanisms is remarked.

33 citations


Journal ArticleDOI
TL;DR: In this paper, the progress of narrow-bandgap materials from many aspects, such as background, nonlinear optical properties, energy band structure, methods of preparation, and applications, is reviewed.
Abstract: Narrow-bandgap materials possess the intriguing optical-electric properties and unique structures, which can be widely applied in the field of photonics, energy optoelectronic sensing and biomedicine, etc. Nowadays, the researches on nonlinear optical properties of narrow-bandgap materials have attracted extensive attention worldwide. In this paper, we review the progress of narrow-bandgap materials from many aspects, such as background, nonlinear optical properties, energy band structure, methods of preparation, and applications. These materials have obvious nonlinear optical characteristics and the interaction with the short pulse laser excitation shows the extremely strong nonlinear absorption characteristics, which leads to the optical limiting or saturable absorption related to Pauli blocking and excited state absorption. Especially, some of these novel narrow-bandgap materials have been utilized for the generation of ultrashort pulse that covers the range from the visible to mid-infrared wavelength regions. Hence, the study on these materials paves a new way for the advancement of optoelctronics devices.

27 citations


Journal ArticleDOI
TL;DR: The geometric phase of light has been demonstrated in various platforms of the linear optical regime, raising interest both for fundamental science as well as applications, such as flat optical elements as discussed by the authors.
Abstract: The geometric phase of light has been demonstrated in various platforms of the linear optical regime, raising interest both for fundamental science as well as applications, such as flat optical elements. Recently, the concept of geometric phases has been extended to nonlinear optics, following advances in engineering both bulk nonlinear photonic crystals and nonlinear metasurfaces. These new technologies offer a great promise of applications for nonlinear manipulation of light. In this review, we cover the recent theoretical and experimental advances in the field of geometric phases accompanying nonlinear frequency conversion. We first consider the case of bulk nonlinear photonic crystals, in which the interaction between propagating waves is quasi-phase-matched, with an engineerable geometric phase accumulated by the light. Nonlinear photonic crystals can offer efficient and robust frequency conversion in both the linearized and fully-nonlinear regimes of interaction, and allow for several applications including adiabatic mode conversion, electromagnetic nonreciprocity and novel topological effects for light. We then cover the rapidly-growing field of nonlinear Pancharatnam-Berry metasurfaces, which allow the simultaneous nonlinear generation and shaping of light by using ultrathin optical elements with subwavelength phase and amplitude resolution. We discuss the macroscopic selection rules that depend on the rotational symmetry of the constituent meta-atoms, the order of the harmonic generations, and the change in circular polarization. Continuous geometric phase gradients allow the steering of light beams and shaping of their spatial modes. More complex designs perform nonlinear imaging and multiplex nonlinear holograms, where the functionality is varied according to the generated harmonic order and polarization. Recent advancements in the fabrication of three dimensional nonlinear photonic crystals, as well as the pursuit of quantum light sources based on nonlinear metasurfaces, offer exciting new possibilities for novel nonlinear optical applications based on geometric phases.

25 citations


Journal ArticleDOI
TL;DR: In this paper, the authors review the emergence and development of the geometric heat pump, originating from the topological geometric phase effect, and cover various quantum and classical transport systems with different internal dynamics.
Abstract: The second law of thermodynamics dictates that heat simultaneously flows from the hot to cold bath on average. To go beyond this picture, a range of works in the past decade show that, other than the average dynamical heat flux determined by instantaneous thermal bias, a non-trivial flux contribution of intrinsic geometric origin is generally present in temporally driven systems. This additional heat flux provides a free lunch for the pumped heat and could even drive heat against the bias. We review here the emergence and development of this so called “geometric heat pump”, originating from the topological geometric phase effect, and cover various quantum and classical transport systems with different internal dynamics. The generalization from the adiabatic to the non-adiabatic regime and the application of control theory are also discussed. Then, we briefly discuss the symmetry restriction on the heat pump effect, such as duality, supersymmetry and time-reversal symmetry. Finally, we examine open problems concerning the geometric heat pump process and elucidate their prospective significance in devising thermal machines with high performance.

24 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the experimental progresses on quantum confinement in GQDs mainly by using scanning tunneling microscopy (STM) and scanning tunnel-tuning spectroscopy(STS) and divided them into bound-state GQD and edge-terminated GD according to their different confinement strength.
Abstract: Graphene quantum dots (GQDs) not only have potential applications on spin qubit, but also serve as essential platforms to study the fundamental properties of Dirac fermions, such as Klein tunneling and Berry phase. By now, the study of quantum confinement in GQDs still attract much attention in condensed matter physics. In this article, we review the experimental progresses on quantum confinement in GQDs mainly by using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Here, the GQDs are divided into Klein GQDs, bound-state GQDs and edge-terminated GQDs according to their different confinement strength. Based on the realization of quasi-bound states in Klein GQDs, external perpendicular magnetic field is utilized as a manipulation approach to trigger and control the novel properties by tuning Berry phase and electron-electron (e-e) interaction. The tip-induced edge-free GQDs can serve as an intuitive mean to explore the broken symmetry states at nanoscale and single-electron accuracy, which are expected to be used in studying physical properties of different two-dimensional materials. Moreover, high-spin magnetic ground states are successfully introduced in edge-terminated GQDs by designing and synthesizing triangulene zigzag nanographenes.

20 citations


Journal ArticleDOI
TL;DR: In this paper , a short review of the recent theoretical and experimental progress in the field of optomagnetic coupling and optical manipulation based on cavity-optomagnonics is presented.
Abstract: Abstract Recently, the photon—magnon coherent interaction based on the collective spins excitation in ferromagnetic materials has been achieved experimentally. Under the prospect, the magnons are proposed to store and process quantum information. Meanwhile, cavity-optomagnonics which describes the interaction between photons and magnons has been developing rapidly as an interesting topic of the cavity quantum electrodynamics. Here in this short review, we mainly introduce the recent theoretical and experimental progress in the field of optomagnetic coupling and optical manipulation based on cavity-optomagnonics. According to the frequency range of the electromagnetic field, cavity optomagnonics can be divided into microwave cavity optomagnonics and optical cavity optomagnonics, due to the different dynamics of the photon—magnon interaction. As the interaction between the electromagnetic field and the magnetic materials is enhanced in the cavity-optomagnonic system, it provides great significance to explore the nonlinear characteristics and quantum properties for different magnetic systems. More importantly, the electromagnetic response of optomagnonics covers the frequency range from gigahertz to terahertz which provides a broad frequency platform for the multi-mode controlling in quantum systems.

18 citations


Journal ArticleDOI
TL;DR: In this paper, a measurement-based entanglement purification protocol (MBEPP) for ECSs to distill some high-quality ECS from a large number of low-quality copies was proposed.
Abstract: The entangled coherent states (ECSs) have been widely used to realize quantum information processing tasks. However, the ECSs may suffer from photon loss and decoherence due to the inherent noise in quantum channel, which may degrade the fidelity of ECSs. To overcome these obstacles, we present a measurement-based entanglement purification protocol (MBEPP) for ECSs to distill some high-quality ECSs from a large number of low-quality copies. We first show the principle of this MBEPP without considering the photon loss. After that, we prove that this MBEPP is feasible to correct the error resulted from the photon loss. Additionally, this MBEPP only requires to operate the Bell state measurement without performing local two-qubit gates on the noisy pairs and the purified high-quality ECSs can be preserved for other applications. This MBEPP may have application potential in the implementation of long-distance quantum communication.

16 citations


Journal ArticleDOI
TL;DR: In this paper, the thermal conductivities of anodes, cathodes, electrolytes, separator and separator in Li-ion batteries are reviewed. But, the authors focus on the thermal energy transport in Li ion batteries and do not consider the effects of delithiation degree and temperature of materials.
Abstract: In recent years, lithium ion (Li-ion) batteries have served as significant power sources in portable electronic devices and electric vehicles because of their high energy density and rate capability. There are growing concerns towards the safety of Li-ion batteries, in which thermal conductivities of anodes, cathodes, electrolytes and separator play key roles for determining the thermal energy transport in Li-ion battery. In this review, we summarize the state-of-the-art studies on the thermal conductivities of commonly used anodes, cathodes, electrolytes and separator in Li-ion batteries, including both theoretical and experimental reports. First, the thermal conductivities of anodes and cathodes are discussed, and the effects of delithiation degree and temperature of materials are also discussed. Then, we review the thermal conductivities of commonly used electrolytes, especially on solid electrolytes. Finally, the basic concept of interfacial thermal conductance and simulation methods are presented, as well as the interfacial thermal conductance between separator and cathodes. This perspective review would provide atomic perspective knowledge to understand thermal transport in Li-ion battery, which will be beneficial to the thermal management and temperature control in electrochemical energy storage devices.

16 citations


Peer ReviewDOI
TL;DR: An overview of the basic microbubble physics and bubble-specific imaging techniques that enable this modality is presented, and a discussion on new and emerging applications is followed.
Abstract: The development of microbubble contrast agents has broadened the scope of medical ultrasound imaging. Along with dedicated imaging techniques, these agents provide enhanced echoes from the blood pool and have enabled diagnostic ultrasound to assess and quantify microvascular blood flow. Contrast-enhanced ultrasound is currently used worldwide with clinical indications in cardiology and radiology, and it continues to evolve and develop through innovative technological advancements. In this review article, we present an overview of the basic microbubble physics and bubble-specific imaging techniques that enable this modality, and follow this with a discussion on new and emerging applications.

16 citations


Journal ArticleDOI
TL;DR: In this article, the authors highlight recent research progress on accelerating the design of 2D systems using the CALYPSO methodology and present challenges and perspectives for future developments in 2D structure prediction methods.
Abstract: The dimensionality of structures allows materials to be classified into zero-, one-, two-, and three-dimensional systems. Two-dimensional (2D) systems have attracted a great deal of attention and typically include surfaces, interfaces, and layered materials. Due to their varied properties, 2D systems hold promise for applications such as electronics, optoelectronics, magnetronics, and valleytronics. The design of 2D systems is an area of intensive research because of the rapid development of ab initio structure-searching methods. In this paper, we highlight recent research progress on accelerating the design of 2D systems using the CALYPSO methodology. Challenges and perspectives for future developments in 2D structure prediction methods are also presented.


Journal ArticleDOI
TL;DR: In this article, the development of the calculation model of equivalent thermal conductivity of micro/nano-porous polymeric materials in recent years is summarized, and the predicted calculation models of thermal conductivities are introduced separately according to the conductive and radiative thermal conduction models.
Abstract: Micro/nano-porous polymeric material is considered a unique industrial material due to its extremely low thermal conductivity, low density, and high surface area. Therefore, it is necessary to establish an accurate thermal conductivity prediction model suiting their applicable conditions and provide a theoretical basis for expanding their applications. In this work, the development of the calculation model of equivalent thermal conductivity of micro/nano-porous polymeric materials in recent years is summarized. Firstly, it reviews the process of establishing the overall equivalent thermal conductivity calculation model for micro/nanoporous polymers. Then, the predicted calculation models of thermal conductivity are introduced separately according to the conductive and radiative thermal conductivity models. In addition, the thermal conduction part is divided into the gaseous thermal conductivity model, solid thermal conductivity model and gas-solid coupling model. Finally, it is concluded that, compared with other porous materials, there are few studies on heat transfer of micro/nanoporous polymers, especially on the particular heat transfer mechanisms such as scale effects at the micro/nanoscale. In particular, the following aspects of porous polymers still need to be further studied: micro scaled thermal radiation, heat transfer characteristics of particular morphologies at the nanoscales, heat transfer mechanism and impact factors of micro/nanoporous polymers. Such studies would provide a more accurate prediction of thermal conductivity and a broader application in energy conversion and storage systems.

DOI
TL;DR: A robust checkerboard corner detection method for camera calibration based on improved YOLOX deep learning network and Harris algorithm that is not only more accurate than the existing methods, but also robust against the types of degradation.
Abstract: Camera calibration plays an important role in various optical measurement and computer vision applications. Accurate calibration parameters of a camera can give a better performance. The key step to camera calibration is to robustly detect feature points (typically in the form of checkerboard corners) in the images captured by the camera. This paper proposes a robust checkerboard corner detection method for camera calibration based on improved YOLOX deep learning network and Harris algorithm. To get high checkerboard corner detection robustness against the images with poor quality (i.e., degradation, including focal blur, heavy noise, extreme poses, and large lens distortions), we first detect the corner candidate areas through the improved YOLOX network which attention mechanism is added. Then, the Harris algorithm is performed on these areas to detect sub-pixel corner points. The proposed method is not only more accurate than the existing methods, but also robust against the types of degradation. The experimental results on different datasets demonstrate its superior robustness, accuracy, and wide effectiveness.

Journal ArticleDOI
TL;DR: In this article, a scheme for nonadiabatic holonomic quantum computation (NHQC+) of two Rydberg atoms by using invariant-based reverse engineering (IBRE) was proposed.
Abstract: In this paper, we propose a scheme for implementing the nonadiabatic holonomic quantum computation (NHQC+) of two Rydberg atoms by using invariant-based reverse engineering (IBRE). The scheme is based on Forster resonance induced by strong dipole-dipole interaction between two Rydberg atoms, which provides a selective coupling mechanism to simply the dynamics of system. Moreover, for improving the fidelity of the scheme, the optimal control method is introduced to enhance the gate robustness against systematic errors. Numerical simulations show the scheme is robust against the random noise in control fields, the deviation of dipole-dipole interaction, the Forster defect, and the spontaneous emission of atoms. Therefore, the scheme may provide some useful perspectives for the realization of quantum computation with Rydberg atoms.

Journal ArticleDOI
TL;DR: In this paper , an affine transformation for the SubBytes part of AES-128 was proposed to solve the problem that the initial state of the output qubits in SubBytes is not the ∣0⟩⊗8 state.
Abstract: Advanced Encryption Standard (AES) is one of the most widely used block ciphers nowadays, and has been established as an encryption standard in 2001. Here we design AES-128 and the sample-AES (S-AES) quantum circuits for deciphering. In the quantum circuit of AES-128, we perform an affine transformation for the SubBytes part to solve the problem that the initial state of the output qubits in SubBytes is not the ∣0⟩⊗8 state. After that, we are able to encode the new round sub-key on the qubits encoding the previous round sub-key, and this improvement reduces the number of qubits used by 224 compared with Langenberg et al.’s implementation. For S-AES, a complete quantum circuit is presented with only 48 qubits, which is already within the reach of existing noisy intermediate-scale quantum computers.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the charging and discharging dynamics of a three-level counterdiabatic stimulated Raman adiabatic passage quantum battery via shortcuts to adiability, which can compensate for undesired transitions.
Abstract: Quantum batteries are energy storage devices that satisfy quantum mechanical principles. How to improve the battery's performance such as stored energy and power is a crucial element in the quantum battery. Here, we investigate the charging and discharging dynamics of a three-level counterdiabatic stimulated Raman adiabatic passage quantum battery via shortcuts to adiabaticity, which can compensate for undesired transitions to realize a fast adiabatic evolution through the application of an additional control field to an initial Hamiltonian. The scheme can significantly speed up the charging and discharging processes of a three-level quantum battery and obtain more stored energy and higher power compared with the original stimulated Raman adiabatic passage. We explore the effect of both the amplitude and the delay time of driving fields on the performances of the quantum battery. Possible experimental implementation in superconducting circuit and nitrogen-vacancy center is also discussed.

Journal ArticleDOI
TL;DR: In this article , the effects of initial perturbations on the Rayleigh-Taylor instability (RTI), Kelvin-Helmholtz instability (KHI), and the coupled RTKHI systems are investigated using a multiple-relaxation-time discrete Boltzmann model.
Abstract: In the paper, the effects of initial perturbations on the Rayleigh-Taylor instability (RTI), Kelvin-Helmholtz instability (KHI), and the coupled Rayleigh-Taylor-Kelvin-Helmholtz instability (RTKHI) systems are investigated using a multiple-relaxation-time discrete Boltzmann model. Six different perturbation interfaces are designed to study the effects of the initial perturbations on the instability systems. Based on the mean heat flux strength $D_{3,1}$, the effects of initial interfaces on the coupled RTKHI are examined in detail. The research is focused on two aspects: (i) the main mechanism in the early stage of the RTKHI, (ii) the transition point from KHI-like to RTI-like for the case where the KHI dominates at earlier time and the RTI dominates at later time. It is found that the early main mechanism is related to the shape of the initial interface, which is represented by both the bilateral contact angle $\theta_{1}$ and the middle contact angle $\theta_{2}$. The influence of inverted parabolic and inverted ellipse perturbations ($\theta_{1}<90$) on the transition point of the RTKHI system is greater than that of other interfaces.


Journal ArticleDOI
TL;DR: In this paper, an approach to largely enhance the photogalvanic effect (PGE) photocurrent by applying an inhomogenous mechanical stretch, based on quantum transport simulations, is proposed.
Abstract: The photogalvanic effect (PGE) occurring in noncentrosymmetric materials enables the generation of a dc photocurrent at zero bias with a high polarization sensitivity, which makes it very attractive in photodetection. However, the magnitude of the PGE photocurrent is usually small, leading to a low photoresponsivity, and therefore hampers its practical application in photodetection. Here, we propose an approach to largely enhancing the PGE photocurrent by applying an inhomogenous mechanical stretch, based on quantum transport simulations. We model a two-dimensional photodetector consisting of the wide-bandgap MgCl2/ZnBr2 vertical van der Waals heterojunction with the noncentrosymmetric C3v symmetry. Polarization-sensitive PGE photocurrent is generated under the vertical illumination of linearly polarized light. By applying inhomogenous mechanical stretch on the lattice, the photocurrent can be largely increased by up to 3 orders of magnitude due to the significantly increased device asymmetry. Our results propose an effective way to enhance the PGE by inhomogenous mechanical strain, showing the potential of the MgCl2/ZnBr2 vertical heterojunction in the low-power UV photodetection.

Journal ArticleDOI
Zhi-Rong Zhong1, Lei Chen1, Jian-Qi Sheng1, Li-Tuo Shen1, Shi-Biao Zheng1 
TL;DR: In this paper, the authors proposed a scheme to achieve a multiphonon-resonance quantum Rabi model and adiabatic passage in a strong-coupling cavity optomechanical system.
Abstract: In this paper, we propose a scheme to achieve a multiphonon-resonance quantum Rabi model and adiabatic passage in a strong-coupling cavity optomechanical system. In the scheme, when the driving bichromatic laser beam is adjusted to the off-resonant j-order red- and blue-sideband, the interaction between the cavity and mechanical oscillator leads to a j-phonon resonance quantum Rabi model. Moreover, we show that there exists a resonant multi-phonon coupling via intermediate states connected by counter-rotating processes when the frequency of the simulated bosonic mode is near a fraction of the transition frequency of the simulated two-level system. As a typical example, we theoretically analyze the two-phonon resonance quantum Rabi model, and derive an effective Hamiltonian of the six-phonon coupling. Finally, we present a method of six-phonon generation based on adiabatic passage across the resonance. Numerical simulations confirm the validity of the proposed scheme. Theoretically, the proposed scheme can be extended to the realization of 3j-phonon state.

Journal ArticleDOI
TL;DR: In this paper , an error-detected hyperparallel Toffoli (hyper-Toffoli) gate for a three-photon system based on the interface between polarized photon and cavity-nitrogen-vacancy (NV) center system is presented.
Abstract: We present an error-detected hyperparallel Toffoli (hyper-Toffoli) gate for a three-photon system based on the interface between polarized photon and cavity-nitrogen-vacancy (NV) center system. This hyper-Toffoli gate can be used to perform double Toffoli gate operations simultaneously on both the polarization and spatial-mode degrees of freedom (DoFs) of a three-photon system with a low decoherence, shorten operation time, and less quantum resources required, in compared with those on two independent three-photon systems in one DoF only. As the imperfect cavity-NV-center interactions are transformed into the detectable failures rather than infidelity based on the heralding mechanism of detectors, a near-unit fidelity of the quantum hyper-Toffoli gate can be implemented. By recycling the procedures, the efficiency of our protocol for the hyper-Toffoli gate is improved further. Meanwhile, the evaluation of gate performance with achieved experiment parameters shows that it is feasible with current experimental technology and provides a promising building block for quantum compute.


Journal ArticleDOI
TL;DR: In this article, an unselective ground-state blockade (UGSB) is proposed in the context of Rydberg antiblockade (RAB), where the evolution of two atoms is suppressed when they populate in an identical ground state.
Abstract: A dynamics regime of Rydberg atoms, unselective ground-state blockade (UGSB), is proposed in the context of Rydberg antiblockade (RAB), where the evolution of two atoms is suppressed when they populate in an identical ground state. UGSB is used to implement a SWAP gate in one step without individual addressing of atoms. Aiming at circumventing common issues in RAB-based gates including atomic decay, Doppler dephasing, and fluctuations in the interatomic coupling strength, we modify the RAB condition to achieve a dynamical SWAP gate whose robustness is much greater than that of the nonadiabatic holonomic one in the conventional RAB regime. In addition, on the basis of the proposed SWAP gates, we further investigate the implementation of a three-atom Fredkin gate by combining Rydberg blockade and RAB. The present work may facilitate to implement the RAB-based gates of strongly coupled atoms in experiment.


Journal ArticleDOI
TL;DR: In this article, the authors investigated K-based electrocatalysts theoretically and demonstrated that K3Sb/graphene performs excellent activity and inhibits hydrogen evolution on alternating reaction pathway.
Abstract: Instead of the energy-intensive Haber-Bosch process, electrochemical nitrogen reduction reaction (NRR) is an exciting new carbon neutral technique for ammonia synthesis under ambient conditions. In this work, we investigated K-based electrocatalysts theoretically and demonstrated that K3Sb/graphene performs excellent activity and inhibits hydrogen evolution on alternating reaction pathway. The first hydrogenation step from N2* to NNH* was found to be the most energetic and limiting step (0.61 eV). Graphene substrate plays the critical role to promote electronic conductivity between K3Sb and dinitrogen.

Journal ArticleDOI
TL;DR: In this article, a quantum control scheme with the help of Lyapunov control function in the optomechanics system is proposed, which can achieve cooling of nanomechanical resonator and quantum fluctuation transfer between membranes.
Abstract: We propose a quantum control scheme with the help of Lyapunov control function in the optomechanics system. The principle of the idea is to design suitable control fields to steer the Lyapunov control function to zero as t → ∞ while the quantum system is driven to the target state. Such an evolution makes no limit on the initial state and one needs not manipulate the laser pulses during the evolution. To prove the effectiveness of the scheme, we show two useful applications in the optomechanics system: one is the cooling of nanomechanical resonator and the other is the quantum fluctuation transfer between membranes. Numerical simulation demonstrates that the perfect and fast cooling of nanomechanical resonator and quantum fluctuation transfer between membranes can be rapidly achieved. Besides, some optimizations are made on the traditional Lyapunov control waveform and the optimized bang-bang control fields makes Lyapunov function V decrease faster. The optimized quantum control scheme can achieve the same goal with greater efficiency. Hence, we hope that this work may open a new avenue of the experimental realization of cooling mechanical oscillator, quantum fluctuations transfer between membranes and other quantum optomechanics tasks and become an alternative candidate for quantum manipulation of macroscopic mechanical devices in the near future.

Journal ArticleDOI
TL;DR: In this paper , the authors proposed a complete and deterministic HBSA scheme encoded in spatial and polarization degrees of freedom (DOF) of two-photon system assisted by a fixed frequency-based entanglement and a time interval DOF.
Abstract: Hyperentangled Bell states analysis (HBSA) is an essential building block for certain hyper-parallel quantum information processing. We propose a complete and deterministic HBSA scheme encoded in spatial and polarization degrees of freedom (DOFs) of two-photon system assisted by a fixed frequency-based entanglement and a time interval DOF. The parity information the spatial-based and polarization-based hyper-entanglement can be distinguished by the distinct time intervals of the photon pairs, and the phase information can be distinguished by the detection signature. Compared with previous schemes, the number of the auxiliary entanglements is reduced from two to one by introducing time interval DOF. Moreover, the additional frequency and time interval DOFs suffer less from the collective channel noise.


Journal ArticleDOI
TL;DR: In this paper, the experimental results show that diffraction-free and quasi-diffraction free beams have better storage performances when compared with ordinary images possessing similar spatial profiles, while the Bessel and Airy beams are able to maintain their spatial profiles with a long storage time while the side-lobes of the Airy beam are gradually depleted with the increment of the storage time.
Abstract: In this article we report on the experimental investigation of light storage for several types of diffraction-free beams (Bessel and Airy beams) and quasi-diffraction-free beams by utilizing electromagnetically induced transparency (EIT) technique in a hot atomic gas cell. The experimental results show that the diffraction-free and quasi-diffraction-free beams have better storage performances when compared with ordinary images possessing similar spatial profiles. Meanwhile, the Bessel beams and the quasi-diffraction-free images are able to maintain their spatial profiles with a long storage time while the side-lobes of the Airy beam are gradually depleted with the increment of the storage time. We quantitatively analyze the storage results and give physical explanations behind these phenomena. Furthermore, the self-healing of the retrieved diffraction-free beams is verified, signifying that their characteristics preserve well after storage.