scispace - formally typeset
Search or ask a question
JournalISSN: 1445-4416

Functional Plant Biology 

CSIRO Publishing
About: Functional Plant Biology is an academic journal published by CSIRO Publishing. The journal publishes majorly in the area(s): Photosynthesis & Stomatal conductance. It has an ISSN identifier of 1445-4416. Over the lifetime, 3091 publications have been published receiving 130230 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Attention is drawn to the perception and signalling processes (chemical and hydraulic) of water deficits, which are essential for a holistic understanding of plant resistance to stress, which is needed to improve crop management and breeding techniques.
Abstract: In the last decade, our understanding of the processes underlying plant response to drought, at the molecular and whole-plant levels, has rapidly progressed. Here, we review that progress. We draw attention to the perception and signalling processes (chemical and hydraulic) of water deficits. Knowledge of these processes is essential for a holistic understanding of plant resistance to stress, which is needed to improve crop management and breeding techniques. Hundreds of genes that are induced under drought have been identified. A range of tools, from gene expression patterns to the use of transgenic plants, is being used to study the specific function of these genes and their role in plant acclimation or adaptation to water deficit. However, because plant responses to stress are complex, the functions of many of the genes are still unknown. Many of the traits that explain plant adaptation to drought - such as phenology, root size and depth, hydraulic conductivity and the storage of reserves - are those associated with plant development and structure, and are constitutive rather than stress induced. But a large part of plant resistance to drought is the ability to get rid of excess radiation, a concomitant stress under natural conditions. The nature of the mechanisms responsible for leaf photoprotection, especially those related to thermal dissipation, and oxidative stress are being actively researched. The new tools that operate at molecular, plant and ecosystem levels are revolutionising our understanding of plant response to drought, and our ability to monitor it. Techniques such as genome-wide tools, proteomics, stable isotopes and thermal or fluorescence imaging may allow the genotype-phenotype gap to be bridged, which is essential for faster progress in stress biology research.

3,287 citations

Journal ArticleDOI
TL;DR: This review is to assess the mode of action and role of antioxidants in protecting plants from stress caused by the presence of heavy metals in the environment.
Abstract: The contamination of soils and water with metals has created a major environmental problem, leading to considerable losses in plant productivity and hazardous health effects. Exposure to toxic metals can intensify the production of reactive oxygen species (ROS), which are continuously produced in both unstressed and stressed plants cells. Some of the ROS species are highly toxic and must be detoxified by cellular stress responses, if the plant is to survive and grow. The aim of this review is to assess the mode of action and role of antioxidants in protecting plants from stress caused by the presence of heavy metals in the environment.

1,065 citations

Journal ArticleDOI
TL;DR: Chlorophyll a fluorescence will remain as the one-most powerful tool for probing excitation energy transfer, primary photochemistry, electron flow on both the donor and the acceptor side of photosystem II (PSII) of oxygenic PSII.
Abstract: In 1931, using their eyes as instruments, H . Kautsky and A . Hirsch related the time course of chlorophyll a fluorescence with photosynthesis in a less-than-one-page article in Naturwissenschaften (see Kautsky's photograph). Chlorophyll a fluorescence is now being used by hundreds of investigators as a probe for various aspects of photosynthesis-from excitation energy transfer in picosecond time scale to CO2 fixation in minutes . It is not only a much used, but also a much abused, tool. It is used because of it being a non-invasive, rapid and a highly sensitive probe, and misused because it is sometimes not recognised that it is affected by various photosynthetic and other reactions. I submit that, like any other technique, if it is used with care and with due regard for its time dependence and competing parameters. it will remain as the one-most powerful tool for probing excitation energy transfer, primary photochemistry, electron flow on both the donor and the acceptor side of photosystem II (PSII) of oxygenic PSII. Further, it is very useful in the quick assay of PSII mutations, and down- regulation and other adjustments to stress (excess light, heat, heavy metal, nutrients and certain herbicides). In this paper, I will present my viewpoint, not a review, on the conceptual and experimental developments in this field. Whenever appropriate, and without any shame and humility, I will include some of my involvement in the excitement surrounding this field. I hope that this paper will serve as a starting point for further discussion of not only the history, but the practical use of chlorophyll a fluorescence as an intrinsic probe of stresses to plants, as well as individual reactions of oxygenic photosynthesis, when combined with other parallel measurements.

989 citations

Journal ArticleDOI
TL;DR: Cell wall swelling may be related to a loosening of the xyloglucan-cellulose network and to pectin solubilisation, and these processes combined with the loss of pectic side chains increase wall porosity.
Abstract: Fruit softening during ripening involves a coordinated series of modifications to the polysaccharide components of the primary cell wall and middle lamella, resulting in a weakening of the structure. Degradation of polysaccharides and alterations in the bonding between polymers cause an increase in cell separation and a softening and swelling of the wall, which, combined with alterations in turgor, bring about fruit softening and textural changes. A wide range in the extent of cell wall pectic modifications has been observed between species, whereas the depolymerisation of xyloglucan is relatively limited and more consistent. The earliest events to be initiated are usually a loss of pectic galactan side chains and the depolymerisation of matrix glycans, which may begin before ripening, followed by a loss of pectic arabinan side chains and pectin solubilisation. The depolymerisation of pectins may begin during early to mid-ripening, but is usually most pronounced late in ripening. However, some of these events may be absent or occur at very low levels in some species. Cell wall swelling may be related to a loosening of the xyloglucan-cellulose network and to pectin solubilisation, and these processes combined with the loss of pectic side chains increase wall porosity. An increase in wall porosity later in ripening may allow increased access of degradative enzymes to their substrates.

719 citations

Journal ArticleDOI
TL;DR: Evolution of 'suites of traits' are evident in wild wetland species and in rice, adapted to particular flooding regimes, and among traits for improved internal aeration and recovery are those for anoxia tolerance and recovery.
Abstract: Flooding regimes of different depths and durations impose selection pressures for various traits in terrestrial wetland plants. Suites of adaptive traits for different flooding stresses, such as soil waterlogging (short or long duration) and full submergence (short or long duration - shallow or deep), are reviewed. Synergies occur amongst traits for improved internal aeration, and those for anoxia tolerance and recovery, both for roots during soil waterlogging and shoots during submergence. Submergence tolerance of terrestrial species has recently been classified as either the Low Oxygen Quiescence Syndrome (LOQS) or the Low Oxygen Escape Syndrome (LOES), with advantages, respectively, in short duration or long duration (shallow) flood-prone environments. A major feature of species with the LOQS is that shoots do not elongate upon submergence, whereas those with the LOES show rapid shoot extension. In addition, plants faced with long duration deep submergence can demonstrate aspects of both syndromes; shoots do not elongate, but these are not quiescent, as new aquatic-type leaves are formed. Enhanced entries of O2 and CO2 from floodwaters into acclimated leaves, minimises O2 deprivation and improves underwater photosynthesis, respectively. Evolution of 'suites of traits' are evident in wild wetland species and in rice, adapted to particular flooding regimes.

663 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202381
2022154
2021133
202096
201997
201886