scispace - formally typeset
Search or ask a question
JournalISSN: 1560-2745

Fungal Diversity 

Springer Science+Business Media
About: Fungal Diversity is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Genus & Dothideomycetes. It has an ISSN identifier of 1560-2745. Over the lifetime, 589 publications have been published receiving 41294 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This overview will highlight the chemical potential of endophytic fungi with focus on the detection of pharmaceutically valuable plant constituents, e.g. paclitaxel, camptothecin and podophyllotoxin, as products of fungal biosynthesis, and new bioactive metabolites reported in recent years from fungal endophytes of terrestrial and mangrove plants.
Abstract: Bioactive natural products from endophytic fungi, isolated from higher plants, are attracting considerable attention from natural product chemists and biologists alike as indicated by the steady increase of publications devoted to this topic during recent years (113 research articles on secondary metabolites from endophytic fungi in the period of 2008–2009, 69 in 2006–2007, 36 in 2004–2005, 14 in 2002–2003, and 18 in 2000–2001). This overview will highlight the chemical potential of endophytic fungi with focus on the detection of pharmaceutically valuable plant constituents, e.g. paclitaxel, camptothecin and podophyllotoxin, as products of fungal biosynthesis. In addition, it will cover new bioactive metabolites reported in recent years (2008–2009) from fungal endophytes of terrestrial and mangrove plants. The presented compounds are selected based on their antimicrobial, antiparasitic, cytotoxic as well as neuroprotective activities. Furthermore, possible factors influencing natural product production in endophytes cultivated in vitro and hence the success of bioprospecting from endophytes are likewise discussed in this review.

558 citations

Journal ArticleDOI
TL;DR: Dothideomycetes comprise a highly diverse range of fungi characterized mainly by asci with two wall layers (bitunicate asci) and often with fissitunicate dehiscence, and it is hoped that by illustrating types they provide stimulation and interest so that more work is carried out in this remarkable group of fungi.
Abstract: Dothideomycetes comprise a highly diverse range of fungi characterized mainly by asci with two wall layers (bitunicate asci) and often with fissitunicate dehiscence. Many species are saprobes, with many asexual states comprising important plant pathogens. They are also endophytes, epiphytes, fungicolous, lichenized, or lichenicolous fungi. They occur in terrestrial, freshwater and marine habitats in almost every part of the world. We accept 105 families in Dothideomycetes with the new families Anteagloniaceae, Bambusicolaceae, Biatriosporaceae, Lichenoconiaceae, Muyocopronaceae, Paranectriellaceae, Roussoellaceae, Salsugineaceae, Seynesiopeltidaceae and Thyridariaceae introduced in this paper. Each family is provided with a description and notes, including asexual and asexual states, and if more than one genus is included, the type genus is also characterized. Each family is provided with at least one figure-plate, usually illustrating the type genus, a list of accepted genera, including asexual genera, and a key to these genera. A phylogenetic tree based on four gene combined analysis add support for 64 of the families and 22 orders, including the novel orders, Dyfrolomycetales, Lichenoconiales, Lichenotheliales, Monoblastiales, Natipusillales, Phaeotrichales and Strigulales. The paper is expected to provide a working document on Dothideomycetes which can be modified as new data comes to light. It is hoped that by illustrating types we provide stimulation and interest so that more work is carried out in this remarkable group of fungi.

501 citations

Journal ArticleDOI
Guo Jie Li1, Kevin D. Hyde2, Kevin D. Hyde3, Kevin D. Hyde4  +161 moreInstitutions (45)
TL;DR: This paper is a compilation of notes on 142 fungal taxa, including five new families, 20 new genera, and 100 new species, representing a wide taxonomic and geographic range.
Abstract: Notes on 113 fungal taxa are compiled in this paper, including 11 new genera, 89 new species, one new subspecies, three new combinations and seven reference specimens. A wide geographic and taxonomic range of fungal taxa are detailed. In the Ascomycota the new genera Angustospora (Testudinaceae), Camporesia (Xylariaceae), Clematidis, Crassiparies (Pleosporales genera incertae sedis), Farasanispora, Longiostiolum (Pleosporales genera incertae sedis), Multilocularia (Parabambusicolaceae), Neophaeocryptopus (Dothideaceae), Parameliola (Pleosporales genera incertae sedis), and Towyspora (Lentitheciaceae) are introduced. Newly introduced species are Angustospora nilensis, Aniptodera aquibella, Annulohypoxylon albidiscum, Astrocystis thailandica, Camporesia sambuci, Clematidis italica, Colletotrichum menispermi, C. quinquefoliae, Comoclathris pimpinellae, Crassiparies quadrisporus, Cytospora salicicola, Diatrype thailandica, Dothiorella rhamni, Durotheca macrostroma, Farasanispora avicenniae, Halorosellinia rhizophorae, Humicola koreana, Hypoxylon lilloi, Kirschsteiniothelia tectonae, Lindgomyces okinawaensis, Longiostiolum tectonae, Lophiostoma pseudoarmatisporum, Moelleriella phukhiaoensis, M. pongdueatensis, Mucoharknessia anthoxanthi, Multilocularia bambusae, Multiseptospora thysanolaenae, Neophaeocryptopus cytisi, Ocellularia arachchigei, O. ratnapurensis, Ochronectria thailandica, Ophiocordyceps karstii, Parameliola acaciae, P. dimocarpi, Parastagonospora cumpignensis, Pseudodidymosphaeria phlei, Polyplosphaeria thailandica, Pseudolachnella brevifusiformis, Psiloglonium macrosporum, Rhabdodiscus albodenticulatus, Rosellinia chiangmaiensis, Saccothecium rubi, Seimatosporium pseudocornii, S. pseudorosae, Sigarispora ononidis and Towyspora aestuari. New combinations are provided for Eutiarosporella dactylidis (sexual morph described and illustrated) and Pseudocamarosporium pini. Descriptions, illustrations and / or reference specimens are designated for Aposphaeria corallinolutea, Cryptovalsa ampelina, Dothiorella vidmadera, Ophiocordyceps formosana, Petrakia echinata, Phragmoporthe conformis and Pseudocamarosporium pini. The new species of Basidiomycota are Agaricus coccyginus, A. luteofibrillosus, Amanita atrobrunnea, A. digitosa, A. gleocystidiosa, A. pyriformis, A. strobilipes, Bondarzewia tibetica, Cortinarius albosericeus, C. badioflavidus, C. dentigratus, C. duboisensis, C. fragrantissimus, C. roseobasilis, C. vinaceobrunneus, C. vinaceogrisescens, C. wahkiacus, Cyanoboletus hymenoglutinosus, Fomitiporia atlantica, F. subtilissima, Ganoderma wuzhishanensis, Inonotus shoreicola, Lactifluus armeniacus, L. ramipilosus, Leccinum indoaurantiacum, Musumecia alpina, M. sardoa, Russula amethystina subp. tengii and R. wangii are introduced. Descriptions, illustrations, notes and / or reference specimens are designated for Clarkeinda trachodes, Dentocorticium ussuricum, Galzinia longibasidia, Lentinus stuppeus and Leptocorticium tenellum. The other new genera, species new combinations are Anaeromyces robustus, Neocallimastix californiae and Piromyces finnis from Neocallimastigomycota, Phytophthora estuarina, P. rhizophorae, Salispina, S. intermedia, S. lobata and S. spinosa from Oomycota, and Absidia stercoraria, Gongronella orasabula, Mortierella calciphila, Mucor caatinguensis, M. koreanus, M. merdicola and Rhizopus koreanus in Zygomycota.

488 citations

Journal ArticleDOI
TL;DR: The present paper introduces the FoF database to the scientific community and briefly reviews some of the problems associated with classification and identification of the main fungal groups.
Abstract: Taxonomic names are key links between various databases that store information on different organisms. Several global fungal nomenclural and taxonomic databases (notably Index Fungorum, Species Fungorum and MycoBank) can be sourced to find taxonomic details about fungi, while DNA sequence data can be sourced from NCBI, EBI and UNITE databases. Although the sequence data may be linked to a name, the quality of the metadata is variable and generally there is no corresponding link to images, descriptions or herbarium material. There is generally no way to establish the accuracy of the names in these genomic databases, other than whether the submission is from a reputable source. To tackle this problem, a new database (FacesofFungi), accessible at www.facesoffungi.org (FoF) has been established. This fungal database allows deposition of taxonomic data, phenotypic details and other useful data, which will enhance our current taxonomic understanding and ultimately enable mycologists to gain better and updated insights into the current fungal classification system. In addition, the database will also allow access to comprehensive metadata including descriptions of voucher and type specimens. This database is user-friendly, providing links and easy access between taxonomic ranks, with the classification system based primarily on molecular data (from the literature and via updated web-based phylogenetic trees), and to a lesser extent on morphological data when molecular data are unavailable. In FoF species are not only linked to the closest phylogenetic representatives, but also relevant data is provided, wherever available, on various applied aspects, such as ecological, industrial, quarantine and chemical uses. The data include the three main fungal groups (Ascomycota, Basidiomycota, Basal fungi) and fungus-like organisms. The FoF webpage is an output funded by the Mushroom Research Foundation which is an NGO with seven directors with mycological expertise. The webpage has 76 curators, and with the help of these specialists, FoF will provide an updated natural classification of the fungi, with illustrated accounts of species linked to molecular data. The present paper introduces the FoF database to the scientific community and briefly reviews some of the problems associated with classification and identification of the main fungal groups. The structure and use of the database is then explained. We would like to invite all mycologists to contribute to these web pages.

458 citations

Journal ArticleDOI
TL;DR: Sooty moulds have been well-studied at the morphological level, but they are poorly represented in a natural classification based on phylogeny and their biochemical potential for obtaining novel bioactive compounds for medical application is underexplored.
Abstract: Sooty moulds are a remarkable, but poorly understood group of fungi. They coat fruits and leaves superficially with black mycelia, which reduces photosynthesis rates of host plants. Few researchers have, however, tried to quantify their economic importance. Sooty moulds have been well-studied at the morphological level, but they are poorly represented in a natural classification based on phylogeny. Representatives are presently known in Antennulariellaceae, Capnodiaceae, Chaetothyriaceae, Coccodiniaceae, Euantennariaceae, Metacapnodiaceae and Trichomeriaceae and several miscellaneous genera. However, molecular data is available for only five families. Most sooty mould colonies comprise numerous species and thus it is hard to confirm relationships between genera or sexual and asexual states. Future studies need to obtain single spore isolates of species to test their phylogenetic affinities and linkages between morphs. Next generation sequencing has shown sooty mould colonies to contain many more fungal species than expected, but it is not clear which species are dominant or active in the communities. They are more common in tropical, subtropical and warm temperate regions and thus their prevalence in temperate regions is likely to increase with global warming. Sooty moulds are rarely parasitized by fungicolous taxa and these may have biocontrol potential. They apparently grow in extreme environments and may be xerophilic. This needs testing as xerophilic taxa may be of interest for industrial applications. Sooty moulds grow on sugars and appear to out-compete typical “weed” fungi and bacteria. They may produce antibiotics for this purpose and their biochemical potential for obtaining novel bioactive compounds for medical application is underexplored.

446 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20238
202221
202127
202019
201919
201824