scispace - formally typeset
Search or ask a question

Showing papers in "Future Microbiology in 2012"


Journal ArticleDOI
TL;DR: The modular structure of endolysins is reviewed, in which cell wall binding and catalytic functions are separated, as well as their mechanism of action, lytic activity and potential as antimicrobials.
Abstract: Endolysins are enzymes used by bacteriophages at the end of their replication cycle to degrade the peptidoglycan of the bacterial host from within, resulting in cell lysis and release of progeny virions. Due to the absence of an outer membrane in the Gram-positive bacterial cell wall, endolysins can access the peptidoglycan and destroy these organisms when applied externally, making them interesting antimicrobial candidates, particularly in light of increasing bacterial drug resistance. This article reviews the modular structure of these enzymes, in which cell wall binding and catalytic functions are separated, as well as their mechanism of action, lytic activity and potential as antimicrobials. It particularly focuses on molecular engineering as a means of optimizing endolysins for specific applications, highlights new developments that may render these proteins active against Gram-negative and intracellular pathogens and summarizes the most recent applications of endolysins in the fields of medicine, food safety, agriculture and biotechnology.

526 citations


Journal ArticleDOI
TL;DR: This review will focus on natural plant products as a useful source of antimicrobial molecules, active in particular, on bacteria and fungi, which are useful as alternative strategies to control infectious diseases.
Abstract: The increasing incidence of drug-resistant pathogens has drawn the attention of the pharmaceutical and scientific communities towards studies on the potential antimicrobial activity of plant-derived substances, an untapped source of antimicrobial chemotypes, which are used in traditional medicine in different countries. The aim of this review is to provide recent insights regarding the possibilities of the most important natural antimicrobial compounds derived from plant sources containing a wide variety of secondary metabolites, which are useful as alternative strategies to control infectious diseases. This review will focus on natural plant products as a useful source of antimicrobial molecules, active in particular, on bacteria and fungi. When considering that many of these compounds, which have been used for centuries, are a source of new drugs and that there are ever-increasing technical breakthroughs, it can be envisaged that in the next years some different molecules discovered by ingenious screeni...

440 citations


Journal ArticleDOI
TL;DR: The biochemical and molecular studies on E. cloacae have shown genomic heterogeneity, comprising six species, which are capable of overproducing AmpC β-lactamases by derepression of a chromosomal gene or by the acquisition of a transferable ampC gene on plasmids conferring the antibiotic resistance.
Abstract: Species of the Enterobacter cloacae complex are widely encountered in nature, but they can act as pathogens. The biochemical and molecular studies on E. cloacae have shown genomic heterogeneity, comprising six species: Enterobacter cloacae, Enterobacter asburiae, Enterobacter hormaechei, Enterobacter kobei, Enterobacter ludwigii and Enterobacter nimipressuralis, E. cloacae and E. hormaechei are the most frequently isolated in human clinical specimens. Phenotypic identification of all species belonging to this taxon is usually difficult and not always reliable; therefore, molecular methods are often used. Although the E. cloacae complex strains are among the most common Enterobacter spp. causing nosocomial bloodstream infections in the last decade, little is known about their virulence-associated properties. By contrast, much has been published on the antibiotic-resistance features of these microorganisms. In fact, they are capable of overproducing AmpC β-lactamases by derepression of a chromosomal gene or...

401 citations


Journal ArticleDOI
TL;DR: The evolution, origin and spread of antimicrobial resistance and resistance determinants (with a focus on extended-spectrum cephalosporins) in N. gonorrhoeae is reviewed and essential actions to meet the large public health challenge that arises with the possible emergence of untreatable gonorrhea are highlighted.
Abstract: The new superbug Neisseria gonorrhoeae has retained resistance to antimicrobials previously recommended for first-line treatment and has now demonstrated its capacity to develop resistance to the extended-spectrum cephalosporin, ceftriaxone, the last remaining option for first-line empiric treatment of gonorrhea. An era of untreatable gonorrhea may be approaching, which represents an exceedingly serious public health problem. Herein, we review the evolution, origin and spread of antimicrobial resistance and resistance determinants (with a focus on extended-spectrum cephalosporins) in N. gonorrhoeae, detail the current situation regarding verified treatment failures with extended-spectrum cephalosporins and future treatment options, and highlight essential actions to meet the large public health challenge that arises with the possible emergence of untreatable gonorrhea. Essential actions include: implementing action/response plans globally and nationally; enhancing surveillance of gonococcal antimicrobial resistance, treatment failures and antimicrobial use/misuse; and improving prevention, early diagnosis and treatment of gonorrhea. Novel treatment strategies, antimicrobials (or other compounds) and, ideally, a vaccine must be developed.

395 citations


Journal ArticleDOI
TL;DR: Evidence suggests that these mechanisms of resistance have been developed as a general stress response of biofilms that enables the cells in the biofilm to respond to all of the changes in the environment that they may encounter.
Abstract: Bacterial biofilms are the basis of many persistent diseases. The persistence of these infections is primarily attributed to the increased antibiotic resistance exhibited by the cells within the biofilms. This resistance is multifactorial; there are multiple mechanisms of resistance that act together in order to provide an increased overall level of resistance to the biofilm. These mechanisms are based on the function of wild-type genes and are not the result of mutations. This article reviews the known mechanisms of resistance, including the ability of the biofilm matrix to prevent antibiotics from reaching the cells and the function of individual genes that are preferentially expressed in biofilms. Evidence suggests that these mechanisms have been developed as a general stress response of biofilms that enables the cells in the biofilm to respond to all of the changes in the environment that they may encounter.

342 citations


Journal ArticleDOI
TL;DR: This review discusses the potential contribution of different described S. suis virulence factors at each step of the pathogenesis of the infection and briefly discusses other described virulence factor candidates and virulence markers for which a precise role has not yet been clearly established.
Abstract: Streptococcus suis is a major swine pathogen responsible for important economic losses to the swine industry worldwide. It is also an emerging zoonotic agent of meningitis and streptococcal toxic shock-like syndrome. Since the recent recognition of the high prevalence of S. suis human disease in southeast and east Asia, the interest of the scientific community in this pathogen has significantly increased. In the last few years, as a direct consequence of these intensified research efforts, large amounts of data on putative virulence factors have appeared in the literature. Although the presence of some proposed virulence factors does not necessarily define a S. suis strain as being virulent, several cell-associated or secreted factors are clearly important for the pathogenesis of the S. suis infection. In order to cause disease, S. suis must colonize the host, breach epithelial barriers, reach and survive in the bloodstream, invade different organs, and cause exaggerated inflammation. In this review, we discuss the potential contribution of different described S. suis virulence factors at each step of the pathogenesis of the infection. Finally, we briefly discuss other described virulence factors, virulence factor candidates and virulence markers for which a precise role at specific steps of the pathogenesis of the S. suis infection has not yet been clearly established.

332 citations


Journal ArticleDOI
TL;DR: This review summarizes the latest research on the association between microbial ecology and host weight and Germ-free mice provide a complementary approach for characterizing the properties of the human gut microbiota.
Abstract: The human gut microbiota is a metabolic organ that is determined by a dynamic process of selection and competition. Age, dietary habits and geographical origin of people have an important impact on the intestinal microbiota. The role of the microbiota is still largely unknown, but the bacteria of the gut flora do contribute enzymes that are absent in humans and play an essential role in the catabolism of dietary fibers. Germ-free mice provide a complementary approach for characterizing the properties of the human gut microbiota. Recently, microbial changes in the human gut were proposed to be one of the possible causes of obesity. This review summarizes the latest research on the association between microbial ecology and host weight.

308 citations


Journal ArticleDOI
TL;DR: Recent findings and future challenges in the study of antibiotic resistance through metagenomic approaches are discussed, especially for the unculturable majority of environmental bacteria.
Abstract: The consequences of bacterial infections have been curtailed by the introduction of a wide range of antibiotics. However, infections continue to be a leading cause of mortality, in part due to the evolution and acquisition of antibiotic-resistance genes. Antibiotic misuse and overprescription have created a driving force influencing the selection of resistance. Despite the problem of antibiotic resistance in infectious bacteria, little is known about the diversity, distribution and origins of resistance genes, especially for the unculturable majority of environmental bacteria. Functional and sequence-based metagenomics have been used for the discovery of novel resistance determinants and the improved understanding of antibiotic-resistance mechanisms in clinical and natural environments. This review discusses recent findings and future challenges in the study of antibiotic resistance through metagenomic approaches.

277 citations


Journal ArticleDOI
TL;DR: SQ109 is a new TB drug candidate with a novel mechanism of action that was safe and well tolerated in Phase I and early Phase II clinical trials and is described as a promising new antitubercular drug.
Abstract: Existing drugs have limited efficacy against the rising threat of drug-resistant TB, have significant side effects, and must be given in combinations of four to six drugs for at least 6 months for drug-sensitive TB and up to 24 months for drug-resistant TB. The long treatment duration has led to increased patient noncompliance with therapy. This, in turn, drives the development of additional drug resistance in a spiral that has resulted in some forms of TB being currently untreatable by existing drugs. New antitubercular drugs in development, particularly those with mechanisms of action that are different from existing first- and second-line TB drugs, are anticipated to be effective against both drug-sensitive and drug-resistant TB. SQ109 is a new TB drug candidate with a novel mechanism of action that was safe and well tolerated in Phase I and early Phase II clinical trials. We describe herein the identification, development and characterization of SQ109 as a promising new antitubercular drug.

223 citations


Journal ArticleDOI
TL;DR: Clinical trials utilizing NDV strains and NDV-based autologous tumor cell vaccines will expand knowledge of these novel anticancer strategies and will ultimately result in the successful use of the virus in the clinical setting.
Abstract: Newcastle disease virus (NDV) is an avian paramyxovirus, which has been demonstrated to possess significant oncolytic activity against mammalian cancers. This review summarizes the research leading to the elucidation of the mechanisms of NDV-mediated oncolysis, as well as the development of novel oncolytic agents through the use of genetic engineering. Clinical trials utilizing NDV strains and NDV-based autologous tumor cell vaccines will expand our knowledge of these novel anticancer strategies and will ultimately result in the successful use of the virus in the clinical setting.

190 citations


Journal ArticleDOI
TL;DR: Novel agents and therapeutic strategies are being tested and, in some instances, show promise as anti-B.
Abstract: Burkholderia pseudomallei is the etiologic agent of melioidosis. This multifaceted disease is difficult to treat, resulting in high morbidity and mortality. Treatment of B. pseudomallei infections is lengthy and necessitates an intensive phase (parenteral ceftazidime, amoxicillin–clavulanic acid or meropenem) and an eradication phase (oral trimethoprim–sulfamethoxazole). The main resistance mechanisms affecting these antibiotics include enzymatic inactivation, target deletion and efflux from the cell, and are mediated by chromosomally encoded genes. Overproduction and mutations in the class A PenA β-lactamase cause ceftazidime and amoxicillin–clavulanic acid resistance. Deletion of the penicillin binding protein 3 results in ceftazidime resistance. BpeEF–OprC efflux pump expression causes trimethoprim and trimethoprim–sulfamethoxazole resistance. Although resistance is still relatively rare, therapeutic efficacies may be compromised by resistance emergence due to increased use of antibiotics in endemic re...

Journal ArticleDOI
TL;DR: Recent advances in diagnostic modalities and antifungal chemotherapy are reviewed, and their impact on evolving prophylaxis and treatment paradigms are reviewed.
Abstract: Invasive fungal infections are a major problem in solid organ transplant (SOT) recipients. Overall, the most common fungal infection in SOT is candidiasis, followed by aspergillosis and cryptococcosis, except in lung transplant recipients, where aspergillosis is most common. Development of invasive disease hinges on the interplay between host factors (e.g., integrity of anatomical barriers, innate and acquired immunity) and fungal factors (e.g., exposure, virulence and resistance to prophylaxis). In this article, we describe the epidemiology and clinical features of the most common fungal infections in organ transplantation. Within this context, we review recent advances in diagnostic modalities and antifungal chemotherapy, and their impact on evolving prophylaxis and treatment paradigms.

Journal ArticleDOI
TL;DR: Depending on the selective β-lactam, different combinations of PBP genes and mutations within are involved in conferring resistance, and astoundingly in non-PBP genes as well.
Abstract: Alterations in the target enzymes for β-lactam antibiotics, the penicillin-binding proteins (PBPs), have been recognized as a major resistance mechanism in Streptococcus pneumoniae. Mutations in PBPs that confer a reduced affinity to β-lactams have been identified in laboratory mutants and clinical isolates, and document an astounding variability of sites involved in this phenotype. Whereas point mutations are selected in the laboratory, clinical isolates display a mosaic structure of the affected PBP genes, the result of interspecies gene transfer and recombination events. Depending on the selective β-lactam, different combinations of PBP genes and mutations within are involved in conferring resistance, and astoundingly in non-PBP genes as well.

Journal ArticleDOI
TL;DR: The current state of T4SS research is discussed, with an emphasis on intracellular bacterial pathogens of humans and the diverse array of translocated effectors used to manipulate host cells.
Abstract: Many bacterial pathogens employ multicomponent protein complexes to deliver macromolecules directly into their eukaryotic host cell to promote infection. Some Gram-negative pathogens use a versatile Type IV secretion system (T4SS) that can translocate DNA or proteins into host cells. T4SSs represent major bacterial virulence determinants and have recently been the focus of intense research efforts designed to better understand and combat infectious diseases. Interestingly, although the two major classes of T4SSs function in a similar manner to secrete proteins, the translocated 'effectors' vary substantially from one organism to another. In fact, differing effector repertoires likely contribute to organism-specific host cell interactions and disease outcomes. In this review, we discuss the current state of T4SS research, with an emphasis on intracellular bacterial pathogens of humans and the diverse array of translocated effectors used to manipulate host cells.

Journal ArticleDOI
TL;DR: Strain K12, the prototype S. salivarius probiotic, originally introduced to counter Streptococcus pyogenes infections, now has an expanded repertoire of health-promoting applications, and other potential applications include upregulation of immunological defenses against respiratory viral infections and treatment of oral candidosis.
Abstract: Considerable human illness can be linked to the development of oral microbiota disequilibria. The predominant oral cavity commensal, Streptococcus salivarius has emerged as an important source of safe and efficacious probiotics, capable of fostering more balanced, health-associated oral microbiota. Strain K12, the prototype S. salivarius probiotic, originally introduced to counter Streptococcus pyogenes infections, now has an expanded repertoire of health-promoting applications. K12 and several more recently proposed S. salivarius probiotics are now being applied to control diverse bacterial consortia infections including otitis media, halitosis and dental caries. Other potential applications include upregulation of immunological defenses against respiratory viral infections and treatment of oral candidosis. An overview of the key steps required for probiotic development is also presented.

Journal ArticleDOI
TL;DR: The recent studies that have worked to elucidate the mechanism by which type 3 fimbrial expression is controlled and the Studies that have established the importance of type 2 fimbriae for biofilm formation and nosocomial infection by K. pneumoniae are highlighted.
Abstract: The Gram-negative opportunistic pathogen Klebsiella pneumoniae is responsible for causing a spectrum of nosocomial and community-acquired infections. Globally, K. pneumoniae is a frequently encountered hospital-acquired opportunistic pathogen that typically infects patients with indwelling medical devices. Biofilm formation on these devices is important in the pathogenesis of these bacteria, and in K. pneumoniae, type 3 fimbriae have been identified as appendages mediating the formation of biofilms on biotic and abiotic surfaces. The factors influencing the regulation of type 3 fimbrial gene expression are largely unknown but recent investigations have indicated that gene expression is regulated, at least in part, by the intracellular levels of cyclic di-GMP. In this review, we have highlighted the recent studies that have worked to elucidate the mechanism by which type 3 fimbrial expression is controlled and the studies that have established the importance of type 3 fimbriae for biofilm formation and nosocomial infection by K. pneumoniae.

Journal ArticleDOI
TL;DR: Progress in vaccine development, opportunities for better diagnostic tests, novel insights into pathogenesis and an increasing evidence base for improving treatment should impact the current high mortality and morbidity of TBM, if translated to global and local guidelines.
Abstract: Tuberculous meningitis (TBM) is the most severe form of TB. Despite treatment, mortality and long-term disability remain unacceptably high. Prevention, early recognition, diagnosis and treatment are fundamental to improving outcomes. However, an effective vaccine remains elusive, initial symptoms are nonspecific, and sensitive diagnostic tests are not available. There has been progress in our understanding of the immunopathology of TBM, and several factors have been found to be associated with susceptibility to infection, disease progression and clinical outcome. However, these have not yet impacted on treatment. Early treatment initiation and uninterrupted continuation, severity on presentation, seizures, stroke, cranial nerve involvement, cerebrospinal fluid cell count and lactate levels, hyponatreamia and coinfection with HIV are all found to be important prognostic factors for outcome. Pathogen lineage (Beijing genotype) and host genetics (polymorphisms in TLR2, TIRAP and LTA4H genes) can influence susceptibility to TBM. However, these findings have not yet impacted on treatment. Progress in vaccine development, opportunities for better diagnostic tests, novel insights into pathogenesis and an increasing evidence base for improving treatment should impact the current high mortality and morbidity, if translated to global and local guidelines.

Journal ArticleDOI
TL;DR: Advances in sequencing technologies have made it feasible to capture whole-genome sequence variation for each sample under study, providing the potential to detect all changes at all positions in the genome from single nucleotide changes to large-scale insertions and deleting.
Abstract: Evolution of bacterial pathogen populations has been detected in a variety of ways including phenotypic tests, such as metabolic activity, reaction to antisera and drug resistance and genotypic tests that measure variation in chromosome structure, repetitive loci and individual gene sequences. While informative, these methods only capture a small subset of the total variation and, therefore, have limited resolution. Advances in sequencing technologies have made it feasible to capture whole-genome sequence variation for each sample under study, providing the potential to detect all changes at all positions in the genome from single nucleotide changes to large-scale insertions and deletions. In this review, we focus on recent work that has applied this powerful new approach and summarize some of the advances that this has brought in our understanding of the details of how bacterial pathogens evolve.

Journal ArticleDOI
TL;DR: Progress made in elucidating the molecular mechanisms of bacterial BBB-crossing is summarized, highlighting common themes of host-pathogen interaction, and the potential role of the BBB in innate defense during infection is summarized.
Abstract: Bacterial meningitis is among the top ten causes of infectious disease-related deaths worldwide, with up to half of the survivors left with permanent neurological sequelae. The blood–brain barrier (BBB), composed mainly of specialized brain microvascular endothelial cells, maintains biochemical homeostasis in the CNS by regulating the passage of nutrients, molecules and cells from the blood to the brain. Despite its highly restrictive nature, certain bacterial pathogens are able to gain entry into the CNS resulting in serious disease. In recent years, important advances have been made in understanding the molecular and cellular events that are involved in the development of bacterial meningitis. In this review, we summarize the progress made in elucidating the molecular mechanisms of bacterial BBB-crossing, highlighting common themes of host–pathogen interaction, and the potential role of the BBB in innate defense during infection.

Journal ArticleDOI
TL;DR: Both aspects of pneumococcal influenza virus infection are reviewed, with a particular focus on the age-related differences in pneumitiscal colonization rates and invasive pneumococCal disease.
Abstract: Historically, most research on infectious diseases has focused on infections with single pathogens. However, infections with pathogens often occur in the context of pre-existing viral and bacterial infections. Clinically, this is of particular relevance for coinfections with Streptococcus pneumoniae and influenza virus, which together are an important cause of global morbidity and mortality. In recent years new evidence has emerged regarding the underlying mechanisms of influenza virus-induced susceptibility to secondary pneumococcal infections, in particular regarding the sustained suppression of innate recognition of S. pneumoniae. Conversely, it is also increasingly being recognized that there is not a unidirectional effect of the virus on S. pneumoniae, but that asymptomatic pneumococcal carriage may also affect subsequent influenza virus infection and the clinical outcome. Here, we will review both aspects of pneumococcal influenza virus infection, with a particular focus on the age-related differences in pneumococcal colonization rates and invasive pneumococcal disease.


Journal ArticleDOI
TL;DR: What has been learnt since the discovery of the master regulator of dormancy, DosR, and the key gaps in knowledge that remain are summarized.
Abstract: With 2 million deaths per year, TB remains the most significant bacterial killer. The long duration of chemotherapy and the large pool of latently infected people represent challenges in disease control. To develop drugs that effectively eradicate latent infection and shorten treatment duration, the pathophysiology of the causative agent Mycobacterium tuberculosis needs to be understood. The discovery that the tubercle bacillus can develop a drug-tolerant dormant form and the identification of the underlying genetic program 10 years ago paved the way for a deeper understanding of the life of the parasite inside human lesions and for new approaches to antimycobacterial drug discovery. Here, we summarize what we have learnt since the discovery of the master regulator of dormancy, DosR, and the key gaps in our knowledge that remain. Furthermore, we discuss a possible wider clinical relevance of DosR for ‘nontuberculous mycobacteria’.

Journal ArticleDOI
TL;DR: The range of factors thought to influence the development of Plasmodium falciparum cerebral malaria in humans are examined and the evidence to support their role is reviewed.
Abstract: Cerebral malaria is one of a number of clinical syndromes associated with infection by human malaria parasites of the genus Plasmodium. The etiology of cerebral malaria derives from sequestration of parasitized red cells in brain microvasculature and is thought to be enhanced by the proinflammatory status of the host and virulence characteristics of the infecting parasite variant. In this article we examine the range of factors thought to influence the development of Plasmodium falciparum cerebral malaria in humans and review the evidence to support their role.

Journal ArticleDOI
TL;DR: Two key, but mechanistically very different, induction mechanisms are: ribosome-sensed induction, characteristic of the macrolide-lincosamide-streptogramin B antibiotics and tetracycline resistance, leading to ribosomal modifications or efflux pump activation; and resistance by cell surface-associated sensing of β-lactams and the polypeptide bacitracin,leading to drug inactivation or resistance due to cell wall alterations.
Abstract: A major contributor to the emergence of antibiotic resistance in Gram-positive bacterial pathogens is the expansion of acquired, inducible genetic elements. Although acquired, inducible antibiotic resistance is not new, the interest in its molecular basis has been accelerated by the widening distribution and often 'silent' spread of the elements responsible, the diagnostic challenges of such resistance and the mounting limitations of available agents to treat Gram-positive infections. Acquired, inducible antibiotic resistance elements belong to the accessory genome of a species and are horizontally acquired by transformation/recombination or through the transfer of mobile DNA elements. The two key, but mechanistically very different, induction mechanisms are: ribosome-sensed induction, characteristic of the macrolide-lincosamide-streptogramin B antibiotics and tetracycline resistance, leading to ribosomal modifications or efflux pump activation; and resistance by cell surface-associated sensing of β-lactams (e.g., oxacillin), glycopeptides (e.g., vancomycin) and the polypeptide bacitracin, leading to drug inactivation or resistance due to cell wall alterations.

Journal ArticleDOI
TL;DR: The pathogenesis of C. neoformans from the environment to the brain, the current understanding of the mechanisms of cryptococcal transmission into the brain and cryptococCal meningitis are discussed, and an insight into future cryptococcosis research and the development of novel therapies is given.
Abstract: Brain infection by the fungus Cryptococcus neoformans results in inflammation of the meninges and brain parenchyma, a condition known as meningoencephalitis. One million people are estimated to suffer cryptococcal meningitis globally and >60% of these cases die within 3 months of diagnosis. Humans are believed to contract infection by inhalation of spores or dried yeast cells, which subsequently colonize the lung tissue. In the lungs, cryptococci may be cleared by the lung phagocytes, stay latent, cause pulmonary infection and/or disseminate to other body parts, preferentially the brain, culminating in cryptococcal meningoencephalitis. In this review, we discuss the pathogenesis of C. neoformans from the environment to the brain, the current understanding of the mechanisms of cryptococcal transmission into the brain and cryptococcal meningitis. We also give an insight into future cryptococcosis research and the development of novel therapies.

Journal ArticleDOI
TL;DR: Corynebacterium ulcerans has been increasingly isolated as emerging zoonotic agent of diphtheria from companion animals such as cats or dogs, indicating the enduring threat of this thought-to-be controlled disease.
Abstract: Diphtheria, caused by toxigenic strains of Corynebacterium diphtheriae, is an ancient disease with high incidence and mortality that has always been characterized by epidemic waves of occurrence. Whilst towards the beginning of the 1980s, many European countries were progressing towards the elimination of diphtheria, an epidemic re-emergence of diphtheria in the Russian Federation and the Newly Independent States of the former Soviet Union demonstrated a continuous threat of the disease into the 1990s. At present, the epidemic is under control and only sporadic cases are observed in Europe. However, the circulation of toxigenic strains is still observed in all parts of the world, posing a constant threat to the population with low levels of seroprotection. More recently, Corynebacterium ulcerans has been increasingly isolated as emerging zoonotic agent of diphtheria from companion animals such as cats or dogs, indicating the enduring threat of this thought-to-be controlled disease.

Journal ArticleDOI
TL;DR: This review proposes the use of new technologies, such as synchrotron radiation, to study the mechanisms of biofilm formation and the design of new materials and antifungal compounds that can eradicate nosocomial Candida infections due toBiofilm formation on medical implants.
Abstract: Biofilms of Candida albicans, Candida parapsilosis, Candida glabrata and Candida tropicalis are associated with high indices of hospital morbidity and mortality. Major factors involved in the formation and growth of Candida biofilms are the chemical composition of the medical implant and the cell wall adhesins responsible for mediating Candida-Candida, Candida-human host cell and Candida-medical device adhesion. Strategies for elucidating the mechanisms that regulate the formation of Candida biofilms combine tools from biology, chemistry, nanoscience, material science and physics. This review proposes the use of new technologies, such as synchrotron radiation, to study the mechanisms of biofilm formation. In the future, this information is expected to facilitate the design of new materials and antifungal compounds that can eradicate nosocomial Candida infections due to biofilm formation on medical implants. This will reduce dissemination of candidiasis and hopefully improve the quality of life of patients.

Journal ArticleDOI
TL;DR: The current understanding of effector-mediated processes is discussed and new techniques and approaches that may help to find a solution to this worldwide problem are discussed.
Abstract: Salmonella is one of the most successful bacterial pathogens that infect humans in both developed and developing countries. In order to cause infection, Salmonella uses type III secretion systems to inject bacterial effector proteins into host cells. In the age of antibiotic resistance, researchers have been looking for new strategies to reduce Salmonella infection. To understand infection and to analyze type III secretion as a potential therapeutic target, research has focused on identification of effectors, characterization of effector functions and how they contribute to disease. Many effector-mediated processes have been identified that contribute to infection but thus far no specific treatment has been found. In this perspective we discuss our current understanding of effector-mediated processes and discuss new techniques and approaches that may help us to find a solution to this worldwide problem.

Journal ArticleDOI
TL;DR: The aim of this review is to focus on the main characteristics of BSIs caused by ESBL-producing Enterobacteriaceae, with particular emphasis on risk factors for these infections and factors related to mortality.
Abstract: Extended-spectrum β-lactamases (ESBLs) have been increasingly described worldwide, especially among Enterobacteriaceae isolates, and recently not only in the nosocomial, but also in the community setting. Bloodstream infections (BSIs) caused by ESBL-producing Enterobacteriaceae have been associated with increased rates of treatment failure, mortality and hospital costs. Any delay in the initiation of adequate antibiotic therapy is potentially lethal for patients with BSIs caused by ESBL-producing Enterobacteriaceae. The awareness of changes in bacterial resistance patterns, the careful knowledge of risk factors for ESBL infection and of factors facilitating adverse outcome, giving attention to local epidemiology, can improve the efficacy of empirical treatment protocols. The aim of this review is to focus on the main characteristics of BSIs caused by ESBL-producing Enterobacteriaceae, with particular emphasis on risk factors for these infections and factors related to mortality.

Journal ArticleDOI
TL;DR: The current state of research in this field is reviewed and an outlook of the development of humanized small animal models to study P. falciparum infection is provided that will accelerate fundamental research into human parasite biology and could accelerate drug and vaccine design in the future.
Abstract: Malaria is a disease caused by infection with Plasmodium parasites that are transmitted by mosquito bite. Five different species of Plasmodium infect humans with severe disease, but human malaria is primarily caused by Plasmodium falciparum. The burden of malaria on the developing world is enormous, and a fully protective vaccine is still elusive. One of the biggest challenges in the quest for the development of new antimalarial drugs and vaccines is the lack of accessible animal models to study P. falciparum infection because the parasite is restricted to the great apes and human hosts. Here, we review the current state of research in this field and provide an outlook of the development of humanized small animal models to study P. falciparum infection that will accelerate fundamental research into human parasite biology and could accelerate drug and vaccine design in the future.