scispace - formally typeset
Search or ask a question
JournalISSN: 1177-6250

Gene regulation and systems biology 

SAGE Publishing
About: Gene regulation and systems biology is an academic journal. The journal publishes majorly in the area(s): Gene expression & Gene. It has an ISSN identifier of 1177-6250. It is also open access. Over the lifetime, 152 publications have been published receiving 3196 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that common centrality measures result in different valuations of the vertices and that novel measures tailored to specific biological investigations are useful for the analysis of biological networks, in particular gene regulatory networks.
Abstract: The structural analysis of biological networks includes the ranking of the vertices based on the connection structure of a network. To support this analysis we discuss centrality measures which indicate the importance of vertices, and demonstrate their applicability on a gene regulatory network. We show that common centrality measures result in different valuations of the vertices and that novel measures tailored to specific biological investigations are useful for the analysis of biological networks, in particular gene regulatory networks.

289 citations

Journal ArticleDOI
TL;DR: The expression of several BMC miRNAs was found to increase in AD relative to NEC levels, and may differ between AD subjects bearing one or two APOE4 alleles.
Abstract: Various coding genes representing multiple functional categories are downregulated in blood mononuclear cells (BMC) of patients with sporadic Alzheimer disease (AD). Noncoding microRNAs (miRNA) regulate gene expression by degrading messages or inhibiting translation. Using BMC as a paradigm for the study of systemic alterations in AD, we investigated whether peripheral miRNA expression is altered in this condition. MicroRNA levels were assessed using the microRNA microarray (MMChip) containing 462 human miRNA, and the results validated by real time PCR. Sixteen AD patients and sixteen normal elderly controls (NEC) were matched for ethnicity, age, gender and education. The expression of several BMC miRNAs was found to increase in AD relative to NEC levels, and may differ between AD subjects bearing one or two APOE4 alleles. As compared to NEC, miRNAs significantly upregulated in AD subjects and confirmed by qPCR were miR-34a and 181b. Predicted target genes downregulated in Alzheimer BMC that correlated with the upregulated miRNAs were largely represented in the functional categories of Transcription/Translation and Synaptic Activity. Several miRNAs targeting the same genes were within the functional category of Injury response/Redox homeostasis. Taken together, induction of microRNA expression in BMC may contribute to the aberrant systemic decline in mRNA levels in sporadic AD.

232 citations

Journal ArticleDOI
TL;DR: It is suggested that considering promoter elements according to their involvement in early ( polymerase binding) or later (polymerase isomerization) steps in transcription initiation rather than simply from their match to conventional promoter consensus sequences is a more instructive form of promoter classification.
Abstract: Bacterial RNA polymerase is composed of a core of subunits (beta, beta', alpha1, alpha2, omega), which have RNA synthesizing activity, and a specificity factor (sigma), which identifies the start of transcription by recognizing and binding to sequences elements within promoter DNA. Four core promoter consensus sequences, the -10 element, the extended -10 (TGn) element, the -35 element, and the UP elements, have been known for many years; the importance of a nontemplate G at position -5 has been recognized more recently. However, the functions of these elements are not the same. The AT-rich UP elements, the -35 elements ((-35)TTGACA(-30)), and the extended -10 ((-15)TGn(-13)) are recognized as double stranded binding elements, whereas the -5 nontemplate G is recognized in the context of single-stranded DNA at the transcription bubble. Furthermore, the -10 element ((-12)TATAAT(-7)) is recognized as both double strand DNA for the T:A bp at position -12 and as nontemplate, single-strand DNA from positions -11 to -7. The single-strand sequences at positions -11 to -7 as well as the -5 contribute to later steps in transcription initiation that involve isomerization of polymerase and separation of the promoter DNA around the transcription start site. Recent work has demonstrated that the double strand elements may be used in various combinations to yield an effective promoter. Thus, while some minimal number of contacts is required for promoter function, polymerase allows the elements to be mixed and matched. Interestingly, which particular elements are used does not appear to fundamentally alter the transcription bubble generated in the stable complex. In this review, we discuss the multiple steps involved in forming a transcriptionally competent polymerase/promoter complex, and we examine what is known about polymerase recognition of core promoter elements. We suggest that considering promoter elements according to their involvement in early (polymerase binding) or later (polymerase isomerization) steps in transcription initiation rather than simply from their match to conventional promoter consensus sequences is a more instructive form of promoter classification.

145 citations

Journal ArticleDOI
TL;DR: Examination of signalling pathways underlying Trichoderma biocontrol revealed that mycoparasitism-associated coiling and chitinase production as well as secondary metabolism are affected by the internal cAMP level; in addition, a cross talk between regulation of light responses and the cAMP signalling pathway was found in Trichodma atroviride.
Abstract: Fungi of the genus Trichoderma are used as biocontrol agents against several plant pathogenic fungi like Rhizoctonia spp., Pythium spp., Botrytis cinerea and Fusarium spp. which cause both soil-borne and leaf- or flower-borne diseases of agricultural plants. Plant disease control by Trichoderma is based on complex interactions between Trichoderma, the plant pathogen and the plant. Until now, two main components of biocontrol have been identified: direct activity of Trichoderma against the plant pathogen by mycoparasitism and induced systemic resistance in plants. As the mycoparasitic interaction is host-specific and not merely a contact response, it is likely that signals from the host fungus are recognised by Trichoderma and provoke transcription of mycoparasitism-related genes. In the last few years examination of signalling pathways underlying Trichoderma biocontrol started and it was shown that heterotrimeric G-proteins and mitogen-activated protein (MAP) kinases affected biocontrol-relevant processes such as the production of hydrolytic enzymes and antifungal metabolites and the formation of infection structures. MAPK signalling was also found to be involved in induction of plant systemic resistance in Trichoderma virens and in the hyperosmotic stress response in Trichoderma harzianum. Analyses of the function of components of the cAMP pathway during Trichoderma biocontrol revealed that mycoparasitism-associated coiling and chitinase production as well as secondary metabolism are affected by the internal cAMP level; in addition, a cross talk between regulation of light responses and the cAMP signalling pathway was found in Trichoderma atroviride.

116 citations

Journal ArticleDOI
TL;DR: It is found that NRF1 target genes play a pivotal role in regulation of extra-mitochondrial biological processes, including RNA metabolism, splicing, cell cycle, DNA damage repair, protein translation initiation, and ubiquitin-mediated protein degradation.
Abstract: Nuclear respiratory factor 1 (NRF1) serves as a transcription factor that activates the expression of a wide range of nuclear genes essential for mitochondrial biogenesis and function, including mitochondrial respiratory complex subunits, heme biosynthetic enzymes, and regulatory factors involved in the replication and transcription of mitochondrial DNA. Increasing evidence indicates that mitochondrial function is severely compromised in the brains of aging-related neurodegenerative diseases. To identify the comprehensive set of human NRF1 target genes potentially relevant to the pathogenesis of neurodegenerative diseases, we analyzed the NRF1 chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) dataset retrieved from the Encyclopedia of DNA Elements (ENCODE) project. Overall, we identified 2,470 highly stringent ChIP-Seq peaks on protein-coding genes in SK-N-SH human neuroblastoma cells. They were accumulated in the proximal promoter regions with an existence of the NRF1-binding consensus sequence. The set of ChIP-Seq-based NRF1 target genes included known NRF1 targets such as EIF2S1, EIF2S2, CYCS, FMR1, FXR2, E2F6, CD47, and TOMM34. By pathway analysis, the molecules located in the core pathways related to mitochondrial respiratory function were determined to be highly enriched in NRF1 target genes. Furthermore, we found that NRF1 target genes play a pivotal role in regulation of extra-mitochondrial biological processes, including RNA metabolism, splicing, cell cycle, DNA damage repair, protein translation initiation, and ubiquitin-mediated protein degradation. We identified a panel of neurodegenerative disease-related genes, such as PARK2 (Parkin), PARK6 (Pink1), PARK7 (DJ-1), and PAELR (GPR37) for Parkinson's disease, as well as PSENEN (Pen2) and MAPT (tau) for Alzheimer's disease, as previously unrecognized NRF1 targets. These results suggest a logical hypothesis that aberrant regulation of NRF1 and its targets might contribute to the pathogenesis of human neurodegenerative diseases via perturbation of diverse mitochondrial and extra-mitochondrial functions.

114 citations

Network Information
Related Journals (5)
BMC Bioinformatics
11.9K papers, 642K citations
81% related
BMC Genomics
16K papers, 658.3K citations
80% related
Bioinformatics
17.4K papers, 2.1M citations
79% related
Nucleic Acids Research
48.8K papers, 4.7M citations
78% related
Biochemical and Biophysical Research Communications
93.7K papers, 3.3M citations
77% related
Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20192
20181
201711
201614
20153
201412