scispace - formally typeset
Search or ask a question

Showing papers in "Genes & Development in 2020"


Journal ArticleDOI
TL;DR: The regulation and functions of the SASP are summarized and the therapeutic potential of SASP modulation as complimentary or an alternative to current senolytic approaches are highlighted.
Abstract: Cellular senescence is a stress response that elicits a permanent cell cycle arrest and triggers profound phenotypic changes such as the production of a bioactive secretome, referred to as the senescence-associated secretory phenotype (SASP). Acute senescence induction protects against cancer and limits fibrosis, but lingering senescent cells drive age-related disorders. Thus, targeting senescent cells to delay aging and limit dysfunction, known as "senotherapy," is gaining momentum. While drugs that selectively kill senescent cells, termed "senolytics" are a major focus, SASP-centered approaches are emerging as alternatives to target senescence-associated diseases. Here, we summarize the regulation and functions of the SASP and highlight the therapeutic potential of SASP modulation as complimentary or an alternative to current senolytic approaches.

336 citations


Journal ArticleDOI
Dea Slade1
TL;DR: Clinical performance of four PARP inhibitors used in cancer therapy are highlighted and the predictive biomarkers of inhibitor sensitivity, mechanisms of resistance as well as the means of overcoming them through combination therapy are discussed.
Abstract: Oxidative and replication stress underlie genomic instability of cancer cells. Amplifying genomic instability through radiotherapy and chemotherapy has been a powerful but nonselective means of killing cancer cells. Precision medicine has revolutionized cancer therapy by putting forth the concept of selective targeting of cancer cells. Poly(ADP-ribose) polymerase (PARP) inhibitors represent a successful example of precision medicine as the first drugs targeting DNA damage response to have entered the clinic. PARP inhibitors act through synthetic lethality with mutations in DNA repair genes and were approved for the treatment of BRCA mutated ovarian and breast cancer. PARP inhibitors destabilize replication forks through PARP DNA entrapment and induce cell death through replication stress-induced mitotic catastrophe. Inhibitors of poly(ADP-ribose) glycohydrolase (PARG) exploit and exacerbate replication deficiencies of cancer cells and may complement PARP inhibitors in targeting a broad range of cancer types with different sources of genomic instability. Here I provide an overview of the molecular mechanisms and cellular consequences of PARP and PARG inhibition. I highlight clinical performance of four PARP inhibitors used in cancer therapy (olaparib, rucaparib, niraparib, and talazoparib) and discuss the predictive biomarkers of inhibitor sensitivity, mechanisms of resistance as well as the means of overcoming them through combination therapy.

294 citations


Journal ArticleDOI
TL;DR: An extended mitochondria-to-nucleus retrograde signaling pathway that initiates formation of CCF during senescence is outlined and is a potential target for drug-based interventions to inhibit the proaging SASP.
Abstract: Cellular senescence is a potent tumor suppressor mechanism but also contributes to aging and aging-related diseases. Senescence is characterized by a stable cell cycle arrest and a complex proinflammatory secretome, termed the senescence-associated secretory phenotype (SASP). We recently discovered that cytoplasmic chromatin fragments (CCFs), extruded from the nucleus of senescent cells, trigger the SASP through activation of the innate immunity cytosolic DNA sensing cGAS-STING pathway. However, the upstream signaling events that instigate CCF formation remain unknown. Here, we show that dysfunctional mitochondria, linked to down-regulation of nuclear-encoded mitochondrial oxidative phosphorylation genes, trigger a ROS-JNK retrograde signaling pathway that drives CCF formation and hence the SASP. JNK links to 53BP1, a nuclear protein that negatively regulates DNA double-strand break (DSB) end resection and CCF formation. Importantly, we show that low-dose HDAC inhibitors restore expression of most nuclear-encoded mitochondrial oxidative phosphorylation genes, improve mitochondrial function, and suppress CCFs and the SASP in senescent cells. In mouse models, HDAC inhibitors also suppress oxidative stress, CCF, inflammation, and tissue damage caused by senescence-inducing irradiation and/or acetaminophen-induced mitochondria dysfunction. Overall, our findings outline an extended mitochondria-to-nucleus retrograde signaling pathway that initiates formation of CCF during senescence and is a potential target for drug-based interventions to inhibit the proaging SASP.

155 citations


Journal ArticleDOI
TL;DR: It is proposed that 53BP1 has evolved to avoid mutagenic repair outcomes and does so by controlling the processing of DNA ends and the dynamics of double-strand break (DSB) repair pathway choice.
Abstract: 53BP1 is an enigmatic DNA damage response factor that gained prominence because it determines the efficacy of PARP1 inhibitory drugs (PARPi) in BRCA1-deficient cancers. Recent studies have elevated 53BP1 from its modest status of (yet another) DNA damage factor to master regulator of double-strand break (DSB) repair pathway choice. Our review of the literature suggests an alternative view. We propose that 53BP1 has evolved to avoid mutagenic repair outcomes and does so by controlling the processing of DNA ends and the dynamics of DSBs. The consequences of 53BP1 deficiency, such as diminished PARPi efficacy in BRCA1-deficient cells and altered repair of damaged telomeres, can be explained from this viewpoint. We further propose that some of the fidelity functions of 53BP1 coevolved with class switch recombination (CSR) in the immune system. We speculate that, rather than being deterministic in DSB repair pathway choice, 53BP1 functions as a DSB escort that guards against illegitimate and potentially tumorigenic recombination.

154 citations


Journal ArticleDOI
TL;DR: A wealth of structural and functional data that have enabled a deeper understanding of Pol II transcription mechanisms are summarized and mechanistic questions that remain unanswered or controversial are highlighted.
Abstract: RNA polymerase II (Pol II) transcribes all protein-coding genes and many noncoding RNAs in eukaryotic genomes. Although Pol II is a complex, 12-subunit enzyme, it lacks the ability to initiate transcription and cannot consistently transcribe through long DNA sequences. To execute these essential functions, an array of proteins and protein complexes interact with Pol II to regulate its activity. In this review, we detail the structure and mechanism of over a dozen factors that govern Pol II initiation (e.g., TFIID, TFIIH, and Mediator), pausing, and elongation (e.g., DSIF, NELF, PAF, and P-TEFb). The structural basis for Pol II transcription regulation has advanced rapidly in the past decade, largely due to technological innovations in cryoelectron microscopy. Here, we summarize a wealth of structural and functional data that have enabled a deeper understanding of Pol II transcription mechanisms; we also highlight mechanistic questions that remain unanswered or controversial.

144 citations


Journal ArticleDOI
TL;DR: The findings suggest a novel model for the Ythdf reader function, in which there is profound dosage-dependent redundancy when all three readers are equivalently coexpressed in the same cell types.
Abstract: The N6-methyladenosine (m6A) modification is the most prevalent post-transcriptional mRNA modification, regulating mRNA decay and splicing. It plays a major role during normal development, differentiation, and disease progression. The modification is regulated by a set of writer, eraser, and reader proteins. The YTH domain family of proteins consists of three homologous m6A-binding proteins, Ythdf1, Ythdf2, and Ythdf3, which were suggested to have different cellular functions. However, their sequence similarity and their tendency to bind the same targets suggest that they may have overlapping roles. We systematically knocked out (KO) the Mettl3 writer, each of the Ythdf readers, and the three readers together (triple-KO). We then estimated the effect in vivo in mouse gametogenesis, postnatal viability, and in vitro in mouse embryonic stem cells (mESCs). In gametogenesis, Mettl3-KO severity is increased as the deletion occurs earlier in the process, and Ythdf2 has a dominant role that cannot be compensated by Ythdf1 or Ythdf3, due to differences in readers' expression pattern across different cell types, both in quantity and in spatial location. Knocking out the three readers together and systematically testing viable offspring genotypes revealed a redundancy in the readers' role during early development that is Ythdf1/2/3 gene dosage-dependent. Finally, in mESCs there is compensation between the three Ythdf reader proteins, since the resistance to differentiate and the significant effect on mRNA decay occur only in the triple-KO cells and not in the single KOs. Thus, we suggest a new model for the Ythdf readers function, in which there is profound dosage-dependent redundancy when all three readers are equivalently coexpressed in the same cell types.

138 citations


Journal ArticleDOI
TL;DR: Findings reveal the complexity of cellular responses to MDM2 and MDMX and suggest thatMDM2-MDMX inhibition might be useful for preventing degenerative diseases involving ferroptosis and may predict sensitivity of some cancers to ferroPTosis inducers.
Abstract: MDM2 and MDMX, negative regulators of the tumor suppressor p53, can work separately and as a heteromeric complex to restrain p53's functions. MDM2 also has pro-oncogenic roles in cells, tissues, and animals that are independent of p53. There is less information available about p53-independent roles of MDMX or the MDM2-MDMX complex. We found that MDM2 and MDMX facilitate ferroptosis in cells with or without p53. Using small molecules, RNA interference reagents, and mutant forms of MDMX, we found that MDM2 and MDMX, likely working in part as a complex, normally facilitate ferroptotic death. We observed that MDM2 and MDMX alter the lipid profile of cells to favor ferroptosis. Inhibition of MDM2 or MDMX leads to increased levels of FSP1 protein and a consequent increase in the levels of coenzyme Q10, an endogenous lipophilic antioxidant. This suggests that MDM2 and MDMX normally prevent cells from mounting an adequate defense against lipid peroxidation and thereby promote ferroptosis. Moreover, we found that PPARα activity is essential for MDM2 and MDMX to promote ferroptosis, suggesting that the MDM2-MDMX complex regulates lipids through altering PPARα activity. These findings reveal the complexity of cellular responses to MDM2 and MDMX and suggest that MDM2-MDMX inhibition might be useful for preventing degenerative diseases involving ferroptosis. Furthermore, they suggest that MDM2/MDMX amplification may predict sensitivity of some cancers to ferroptosis inducers.

128 citations


Journal ArticleDOI
TL;DR: The current understanding of the mechanisms by which PARPs promote or suppress proinflammatory activation of macrophages, and various roles PARPs play in virus infections are given.
Abstract: Poly-adenosine diphosphate-ribose polymerases (PARPs) promote ADP-ribosylation, a highly conserved, fundamental posttranslational modification (PTM). PARP catalytic domains transfer the ADP-ribose moiety from NAD+ to amino acid residues of target proteins, leading to mono- or poly-ADP-ribosylation (MARylation or PARylation). This PTM regulates various key biological and pathological processes. In this review, we focus on the roles of the PARP family members in inflammation and host-pathogen interactions. Here we give an overview the current understanding of the mechanisms by which PARPs promote or suppress proinflammatory activation of macrophages, and various roles PARPs play in virus infections. We also demonstrate how innovative technologies, such as proteomics and systems biology, help to advance this research field and describe unanswered questions.

128 citations


Journal ArticleDOI
TL;DR: Together, the accumulated data support the increasingly compelling view that (ADP-ribosyl)hydrolases are a vital element within ADP- ribosyl signaling pathways and they hold the potential for novel therapeutic approaches as well as a deeper understanding of ADp-ribsylation as a whole.
Abstract: ADP-ribosylation is an intricate and versatile posttranslational modification involved in the regulation of a vast variety of cellular processes in all kingdoms of life. Its complexity derives from the varied range of different chemical linkages, including to several amino acid side chains as well as nucleic acids termini and bases, it can adopt. In this review, we provide an overview of the different families of (ADP-ribosyl)hydrolases. We discuss their molecular functions, physiological roles, and influence on human health and disease. Together, the accumulated data support the increasingly compelling view that (ADP-ribosyl)hydrolases are a vital element within ADP-ribosyl signaling pathways and they hold the potential for novel therapeutic approaches as well as a deeper understanding of ADP-ribosylation as a whole.

106 citations


Journal ArticleDOI
TL;DR: This review revisits the current models explaining imprinting regulation in plants, and discusses novel regulatory mechanisms that could function independently of parental DNA methylation asymmetries in the establishment of imprinting.
Abstract: Genomic imprinting is an epigenetic phenomenon leading to parentally biased gene expression. Throughout the years, extensive efforts have been made to characterize the epigenetic marks underlying imprinting in animals and plants. As a result, DNA methylation asymmetries between parental genomes emerged as the primary factor controlling the imprinting status of many genes. Nevertheless, the data accumulated so far suggest that this process cannot solely explain the imprinting of all genes. In this review, we revisit the current models explaining imprinting regulation in plants, and discuss novel regulatory mechanisms that could function independently of parental DNA methylation asymmetries in the establishment of imprinting.

95 citations


Journal ArticleDOI
TL;DR: An overview of the studies in experimental mouse models that convincingly show that both the cell of origin and the genetic driver lesions play a critical role in shaping the phenotypes of lung tumors and illustrate that there is far from a direct one-to-one relationship between the cell-of-origin and the cancer subtype.
Abstract: As one of the most common forms of cancer, lung cancers present as a collection of different histological subtypes. These subtypes are characterized by distinct sets of driver mutations and phenotypic appearance, and they often show varying degrees of heterogenicity, aggressiveness, and response/resistance to therapy. Intriguingly, lung cancers are also capable of showing features of multiple subtypes or converting from one subtype to another. The intertumoral and intratumoral heterogeneity of lung cancers as well as incidences of subtype transdifferentiation raise the question of to what extent the tumor characteristics are dictated by the cell of origin rather than the acquired driver lesions. We provide here an overview of the studies in experimental mouse models that try to address this question. These studies convincingly show that both the cell of origin and the genetic driver lesions play a critical role in shaping the phenotypes of lung tumors. However, they also illustrate that there is far from a direct one-to-one relationship between the cell of origin and the cancer subtype, as most epithelial cells can be reprogrammed toward diverse lung cancer fates when exposed to the appropriate set of driver mutations.

Journal ArticleDOI
TL;DR: A systematic screen to uncover new RNA methyltransferases demonstrates that the methyltransferase-like 5 (METTL5) protein catalyzes m6A in 18S rRNA at position A1832 and highlights the importance of m 6A in rRNA in stemness, differentiation, development, and diseases.
Abstract: Covalent chemical modifications of cellular RNAs directly impact all biological processes. However, our mechanistic understanding of the enzymes catalyzing these modifications, their substrates and biological functions, remains vague. Amongst RNA modifications N6-methyladenosine (m6A) is widespread and found in messenger (mRNA), ribosomal (rRNA), and noncoding RNAs. Here, we undertook a systematic screen to uncover new RNA methyltransferases. We demonstrate that the methyltransferase-like 5 (METTL5) protein catalyzes m6A in 18S rRNA at position A1832 We report that absence of Mettl5 in mouse embryonic stem cells (mESCs) results in a decrease in global translation rate, spontaneous loss of pluripotency, and compromised differentiation potential. METTL5-deficient mice are born at non-Mendelian rates and develop morphological and behavioral abnormalities. Importantly, mice lacking METTL5 recapitulate symptoms of patients with DNA variants in METTL5, thereby providing a new mouse disease model. Overall, our biochemical, molecular, and in vivo characterization highlights the importance of m6A in rRNA in stemness, differentiation, development, and diseases.

Journal ArticleDOI
TL;DR: Mechanistic studies reveal that RAB39b mutation promotes PI3K-AKT-mTOR activity and alters cortical neurogenesis, leading to macrocephaly and autistic-like behaviors, and provides new insights into neurodevelopmental dysregulation and common pathways associated with ASD across species.
Abstract: Dysregulation of early neurodevelopment is implicated in macrocephaly/autism disorders. However, the mechanism underlying this dysregulation, particularly in human cells, remains poorly understood. Mutations in the small GTPase gene RAB39b are associated with X-linked macrocephaly, autism spectrum disorder (ASD), and intellectual disability. The in vivo roles of RAB39b in the brain remain unknown. We generated Rab39b knockout (KO) mice and found that they exhibited cortical neurogenesis impairment, macrocephaly, and hallmark ASD behaviors, which resembled patient phenotypes. We also produced mutant human cerebral organoids that were substantially enlarged due to the overproliferation and impaired differentiation of neural progenitor cells (NPCs), which resemble neurodevelopmental deficits in KO mice. Mechanistic studies reveal that RAB39b interacts with PI3K components and its deletion promotes PI3K-AKT-mTOR signaling in NPCs of mouse cortex and cerebral organoids. The mTOR activity is robustly enhanced in mutant outer radial glia cells (oRGs), a subtype of NPCs barely detectable in rodents but abundant in human brains. Inhibition of AKT signaling rescued enlarged organoid sizes and NPC overproliferation caused by RAB39b mutations. Therefore, RAB39b mutation promotes PI3K-AKT-mTOR activity and alters cortical neurogenesis, leading to macrocephaly and autistic-like behaviors. Our studies provide new insights into neurodevelopmental dysregulation and common pathways associated with ASD across species.

Journal ArticleDOI
TL;DR: A combined allosteric/torpedo mechanism, in which PP1-dependent slowing down of polymerases over termination regions facilitates their pursuit/capture by XRN2 following PAS processing is suggested.
Abstract: The allosteric and torpedo models have been used for 30 yr to explain how transcription terminates on protein-coding genes. The former invokes termination via conformational changes in the transcription complex and the latter proposes that degradation of the downstream product of poly(A) signal (PAS) processing is important. Here, we describe a single mechanism incorporating features of both models. We show that termination is completely abolished by rapid elimination of CPSF73, which causes very extensive transcriptional readthrough genome-wide. This is because CPSF73 functions upstream of modifications to the elongation complex and provides an entry site for the XRN2 torpedo. Rapid depletion of XRN2 enriches these events that we show are underpinned by protein phosphatase 1 (PP1) activity, the inhibition of which extends readthrough in the absence of XRN2. Our results suggest a combined allosteric/torpedo mechanism, in which PP1-dependent slowing down of polymerases over termination regions facilitates their pursuit/capture by XRN2 following PAS processing.

Journal ArticleDOI
TL;DR: It is demonstrated that PcG targets coalesce in vivo, and that developmentally induced expression of one of the target loci disrupts this spatial arrangement, and it is shown that transcriptional activation and the loss of PRC1-mediated interactions are separable events.
Abstract: Polycomb group (PcG) proteins silence gene expression by chemically and physically modifying chromatin. A subset of PcG target loci are compacted and cluster in the nucleus; a conformation that is thought to contribute to gene silencing. However, how these interactions influence gross nuclear organization and their relationship with transcription remains poorly understood. Here we examine the role of Polycomb-repressive complex 1 (PRC1) in shaping 3D genome organization in mouse embryonic stem cells (mESCs). Using a combination of imaging and Hi-C analyses, we show that PRC1-mediated long-range interactions are independent of CTCF and can bridge sites at a megabase scale. Impairment of PRC1 enzymatic activity does not directly disrupt these interactions. We demonstrate that PcG targets coalesce in vivo, and that developmentally induced expression of one of the target loci disrupts this spatial arrangement. Finally, we show that transcriptional activation and the loss of PRC1-mediated interactions are separable events. These findings provide important insights into the function of PRC1, while highlighting the complexity of this regulatory system.

Journal ArticleDOI
TL;DR: The role of PARP proteins and ADPRylation in all facets of this pathway, including gene regulation, mRNA processing, and protein abundance, is described.
Abstract: ADP-ribosylation (ADPRylation) is a posttranslational modification of proteins discovered nearly six decades ago, but many important questions remain regarding its molecular functions and biological roles, as well as the activity of the ADP-ribose (ADPR) transferase enzymes (PARP family members) that catalyze it. Growing evidence indicates that PARP-mediated ADPRylation events are key regulators of the protein biosynthetic pathway, leading from rDNA transcription and ribosome biogenesis to mRNA synthesis, processing, and translation. In this review we describe the role of PARP proteins and ADPRylation in all facets of this pathway. PARP-1 and its enzymatic activity are key regulators of rDNA transcription, which is a critical step in ribosome biogenesis. An emerging role of PARPs in alternative splicing of mRNAs, as well as direct ADPRylation of mRNAs, highlight the role of PARP members in RNA processing. Furthermore, PARP activity, stimulated by cellular stresses, such as viral infections and ER stress, leads to the regulation of mRNA stability and protein synthesis through posttranscriptional mechanisms. Dysregulation of PARP activity in these processes can promote disease states. Collectively, these results highlight the importance of PARP family members and ADPRylation in gene regulation, mRNA processing, and protein abundance. Future studies in these areas will yield new insights into the fundamental mechanisms and a broader utility for PARP-targeted therapeutic agents.

Journal ArticleDOI
TL;DR: Progress toward determining the role of newly defined factors in establishing features of Xi chromatin and in gene silencing by Xist RNA is discussed, including a summary of the current understanding of their relative contribution and interplay.
Abstract: The X inactive-specific transcript (Xist) gene is the master regulator of X chromosome inactivation in mammals. Xist produces a long noncoding (lnc)RNA that accumulates over the entire length of the chromosome from which it is transcribed, recruiting factors to modify underlying chromatin and silence X-linked genes in cis Recent years have seen significant progress in identifying important functional elements in Xist RNA, their associated RNA-binding proteins (RBPs), and the downstream pathways for chromatin modification and gene silencing. In this review, we summarize progress in understanding both how these pathways function in Xist-mediated silencing and the complex interplay between them.

Journal ArticleDOI
TL;DR: Poly(ADP-ribose) a dynamic and reversible posttranslational modification and the enzymes that catalyze it (PARP1, PARP2, tankyrase 1, andtankyrase 2) function to maintain genome stability through diverse mechanisms.
Abstract: Effective maintenance and stability of our genomes is essential for normal cell division, tissue homeostasis, and cellular and organismal fitness. The processes of chromosome replication and segregation require continual surveillance to insure fidelity. Accurate and efficient repair of DNA damage preserves genome integrity, which if lost can lead to multiple diseases, including cancer. Poly(ADP-ribose) a dynamic and reversible posttranslational modification and the enzymes that catalyze it (PARP1, PARP2, tankyrase 1, and tankyrase 2) function to maintain genome stability through diverse mechanisms. Here we review the role of these enzymes and the modification in genome repair, replication, and resolution in human cells.

Journal ArticleDOI
TL;DR: It is proposed that, in addition to its RNA processing role, UAP56/DDX39B is a key helicase required to eliminate harmful cotranscriptional RNA structures that otherwise would block transcription and replication.
Abstract: Nonscheduled R loops represent a major source of DNA damage and replication stress. Cells have different ways to prevent R-loop accumulation. One mechanism relies on the conserved THO complex in association with cotranscriptional RNA processing factors including the RNA-dependent ATPase UAP56/DDX39B and histone modifiers such as the SIN3 deacetylase in humans. We investigated the function of UAP56/DDX39B in R-loop removal. We show that UAP56 depletion causes R-loop accumulation, R-loop-mediated genome instability, and replication fork stalling. We demonstrate an RNA-DNA helicase activity in UAP56 and show that its overexpression suppresses R loops and genome instability induced by depleting five different unrelated factors. UAP56/DDX39B localizes to active chromatin and prevents the accumulation of RNA-DNA hybrids over the entire genome. We propose that, in addition to its RNA processing role, UAP56/DDX39B is a key helicase required to eliminate harmful cotranscriptional RNA structures that otherwise would block transcription and replication.

Journal ArticleDOI
TL;DR: regulation of the U7 snRNA by tRF-GG modulates heterochromatin-mediated transcriptional repression of MERVL elements by supporting an adequate supply of histone proteins, revealing a conserved mechanism for 5' tRNA fragment control of noncoding RNA biogenesis and, consequently, global chromatin organization.
Abstract: Small RNAs derived from mature tRNAs, referred to as tRNA fragments or "tRFs," are an emerging class of regulatory RNAs with poorly understood functions. We recently identified a role for one specific tRF-5' tRF-Gly-GCC, or tRF-GG-as a repressor of genes associated with the endogenous retroelement MERVL, but the mechanistic basis for this regulation was unknown. Here, we show that tRF-GG plays a role in production of a wide variety of noncoding RNAs-snoRNAs, scaRNAs, and snRNAs-that are dependent on Cajal bodies for stability and activity. Among these noncoding RNAs, regulation of the U7 snRNA by tRF-GG modulates heterochromatin-mediated transcriptional repression of MERVL elements by supporting an adequate supply of histone proteins. Importantly, the effects of inhibiting tRF-GG on histone mRNA levels, on activity of a histone 3' UTR reporter, and ultimately on MERVL regulation could all be suppressed by manipulating U7 RNA levels. We additionally show that the related RNA-binding proteins hnRNPF and hnRNPH bind directly to tRF-GG, and are required for Cajal body biogenesis, positioning these proteins as strong candidates for effectors of tRF-GG function in vivo. Together, our data reveal a conserved mechanism for 5' tRNA fragment control of noncoding RNA biogenesis and, consequently, global chromatin organization.

Journal ArticleDOI
TL;DR: NAD+ metabolism is discussed, how different subcellular pools of NAD+ are established and regulated, and how free NAD+ levels can control signaling by PARPs and redox metabolism.
Abstract: Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor for redox enzymes, but also moonlights as a substrate for signaling enzymes. When used as a substrate by signaling enzymes, it is consumed, necessitating the recycling of NAD+ consumption products (i.e., nicotinamide) via a salvage pathway in order to maintain NAD+ homeostasis. A major family of NAD+ consumers in mammalian cells are poly-ADP-ribose-polymerases (PARPs). PARPs comprise a family of 17 enzymes in humans, 16 of which catalyze the transfer of ADP-ribose from NAD+ to macromolecular targets (namely, proteins, but also DNA and RNA). Because PARPs and the NAD+ biosynthetic enzymes are subcellularly localized, an emerging concept is that the activity of PARPs and other NAD+ consumers are regulated in a compartmentalized manner. In this review, I discuss NAD+ metabolism, how different subcellular pools of NAD+ are established and regulated, and how free NAD+ levels can control signaling by PARPs and redox metabolism.

Journal ArticleDOI
TL;DR: It is reported that YAP/TAZ directly promote FOS transcription that in turn contributes to the biological function of YAP-TAZ, revealing a feed-forward interplay between immediate early transcription of AP-1 and Hippo pathway function.
Abstract: Yes-associated protein (YAP) and its homolog transcriptional coactivator with PDZ-binding motif (TAZ) are key effectors of the Hippo pathway to control cell growth and organ size, of which dysregulation yields to tumorigenesis or hypertrophy. Upon activation, YAP/TAZ translocate into the nucleus and bind to TEAD transcription factors to promote transcriptional programs for proliferation or cell specification. Immediate early genes, represented by AP-1 complex, are rapidly induced and control later-phase transcriptional program to play key roles in tumorigenesis and organ maintenance. Here, we report that YAP/TAZ directly promote FOS transcription that in turn contributes to the biological function of YAP/TAZ. YAP/TAZ bind to the promoter region of FOS to stimulate its transcription. Deletion of YAP/TAZ blocks the induction of immediate early genes in response to mitogenic stimuli. FOS induction contributes to expression of YAP/TAZ downstream target genes. Genetic deletion or chemical inhibition of AP-1 suppresses growth of YAP-driven cancer cells, such as Lats1/2-deficient cancer cells as well as Gαq/11 mutated uveal melanoma. Furthermore, AP-1 inhibition almost completely abrogates the hepatomegaly induced by YAP overexpression. Our findings reveal a feed-forward interplay between immediate early transcription of AP-1 and Hippo pathway function.

Journal ArticleDOI
TL;DR: It is shown that Atg7 limits p53 activation and p53-mediated neurodegeneration, NRF2 mitigates lethal intestine degeneration upon autophagy loss, and their findings illustrate the tissue-specific roles for Autophagy and functional dependencies on the p53 andNRF2 stress response mechanisms.
Abstract: Autophagy captures intracellular components and delivers them to lysosomes for degradation and recycling. Conditional autophagy deficiency in adult mice causes liver damage, shortens life span to 3 mo due to neurodegeneration, and is lethal upon fasting. As autophagy deficiency causes p53 induction and cell death in neurons, we sought to test whether p53 mediates the lethal consequences of autophagy deficiency. Here, we conditionally deleted Trp53 (p53 hereafter) and/or the essential autophagy gene Atg7 throughout adult mice. Compared with Atg7 Δ/Δ mice, the life span of Atg7 Δ/Δ p53 Δ/Δ mice was extended due to delayed neurodegeneration and resistance to death upon fasting. Atg7 also suppressed apoptosis induced by p53 activator Nutlin-3, suggesting that autophagy inhibited p53 activation. To test whether increased oxidative stress in Atg7 Δ/Δ mice was responsible for p53 activation, Atg7 was deleted in the presence or absence of the master regulator of antioxidant defense nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2-/-Atg7 Δ/Δ mice died rapidly due to small intestine damage, which was not rescued by p53 codeletion. Thus, Atg7 limits p53 activation and p53-mediated neurodegeneration. In turn, NRF2 mitigates lethal intestine degeneration upon autophagy loss. These findings illustrate the tissue-specific roles for autophagy and functional dependencies on the p53 and NRF2 stress response mechanisms.

Journal ArticleDOI
TL;DR: The current understanding of the connections between splicing and cancer is discussed, with a focus on the most recent findings.
Abstract: Over the past decade there has been increased awareness of the potential role of alternative splicing in the etiology of cancer. In particular, advances in RNA-Sequencing technology and analysis has led to a wave of discoveries in the last few years regarding the causes and functional relevance of alternative splicing in cancer. Here we discuss the current understanding of the connections between splicing and cancer, with a focus on the most recent findings. We also discuss remaining questions and challenges that must be addressed in order to use our knowledge of splicing to guide the diagnosis and treatment of cancer.

Journal ArticleDOI
TL;DR: The results suggest that the genome is reorganized in a sequential order, in which histone methylations occur first in prometaphase, histone acetylation, and CTCF in anaphase/telophase, transcription in cytokinesis, and long-range chromatin interactions in early G1.
Abstract: During mitosis, transcription of genomic DNA is dramatically reduced, before it is reactivated during nuclear reformation in anaphase/telophase. Many aspects of the underlying principles that mediate transcriptional memory and reactivation in the daughter cells remain unclear. Here, we used ChIP-seq on synchronized cells at different stages after mitosis to generate genome-wide maps of histone modifications. Combined with EU-RNA-seq and Hi-C analyses, we found that during prometaphase, promoters, enhancers, and insulators retain H3K4me3 and H3K4me1, while losing H3K27ac. Enhancers globally retaining mitotic H3K4me1 or locally retaining mitotic H3K27ac are associated with cell type-specific genes and their transcription factors for rapid transcriptional activation. As cells exit mitosis, promoters regain H3K27ac, which correlates with transcriptional reactivation. Insulators also gain H3K27ac and CCCTC-binding factor (CTCF) in anaphase/telophase. This increase of H3K27ac in anaphase/telophase is required for posttranscriptional activation and may play a role in the establishment of topologically associating domains (TADs). Together, our results suggest that the genome is reorganized in a sequential order, in which histone methylations occur first in prometaphase, histone acetylation, and CTCF in anaphase/telophase, transcription in cytokinesis, and long-range chromatin interactions in early G1. We thus provide insights into the histone modification landscape that allows faithful reestablishment of the transcriptional program and TADs during cell division.

Journal ArticleDOI
TL;DR: Through regulating adipocyte function and organismal energy balance, PARPs play a role in obesity and the consequences of obesity, as evidenced by studies on identical twins and SNPs affecting PARP activity.
Abstract: Poly(ADP-ribose) polymerases (PARPs or ARTDs), originally described as DNA repair factors, have metabolic regulatory roles. PARP1, PARP2, PARP7, PARP10, and PARP14 regulate central and peripheral carbohydrate and lipid metabolism and often channel pathological disruptive metabolic signals. PARP1 and PARP2 are crucial for adipocyte differentiation, including the commitment toward white, brown, or beige adipose tissue lineages, as well as the regulation of lipid accumulation. Through regulating adipocyte function and organismal energy balance, PARPs play a role in obesity and the consequences of obesity. These findings can be translated into humans, as evidenced by studies on identical twins and SNPs affecting PARP activity.

Journal ArticleDOI
TL;DR: A direct molecular link between the activity of two estrogen-related receptor (ERR) isoforms and the control of glutamine utilization and glutathione antioxidant production is unveiled and increased ERRγ expression/activation is identified as a hallmark of oxidative stress triggered by mitochondrial disruption or chemotherapy.
Abstract: Excessive reactive oxygen species (ROS) can cause oxidative stress and consequently cell injury contributing to a wide range of diseases. Addressing the critical gaps in our understanding of the adaptive molecular events downstream ROS provocation holds promise for the identification of druggable metabolic vulnerabilities. Here, we unveil a direct molecular link between the activity of two estrogen-related receptor (ERR) isoforms and the control of glutamine utilization and glutathione antioxidant production. ERRα down-regulation restricts glutamine entry into the TCA cycle, while ERRγ up-regulation promotes glutamine-driven glutathione production. Notably, we identify increased ERRγ expression/activation as a hallmark of oxidative stress triggered by mitochondrial disruption or chemotherapy. Enhanced tumor antioxidant capacity is an underlying feature of human breast cancer (BCa) patients that respond poorly to treatment. We demonstrate that pharmacological inhibition of ERRγ with the selective inverse agonist GSK5182 increases antitumor efficacy of the chemotherapeutic paclitaxel on poor outcome BCa tumor organoids. Our findings thus underscore the ERRs as novel redox sensors and effectors of a ROS defense program and highlight the potential therapeutic advantage of exploiting ERRγ inhibitors for the treatment of BCa and other diseases where oxidative stress plays a central role.

Journal ArticleDOI
TL;DR: Different human diseases that have been linked to defects in the Pol III transcription apparatus or to Pol III products imbalance are reviewed and the possible underlying mechanisms are discussed.
Abstract: RNA polymerase (Pol) III is responsible for transcription of different noncoding genes in eukaryotic cells, whose RNA products have well-defined functions in translation and other biological processes for some, and functions that remain to be defined for others For all of them, however, new functions are being described For example, Pol III products have been reported to regulate certain proteins such as protein kinase R (PKR) by direct association, to constitute the source of very short RNAs with regulatory roles in gene expression, or to control microRNA levels by sequestration Consistent with these many functions, deregulation of Pol III transcribed genes is associated with a large variety of human disorders Here we review different human diseases that have been linked to defects in the Pol III transcription apparatus or to Pol III products imbalance and discuss the possible underlying mechanisms

Journal ArticleDOI
TL;DR: It is found that PML is required for the ALT mechanism, and that this necessity stems from APBs' role in localizing the BLM-TOP3A-RMI (BTR) complex to ALT telomere ends.
Abstract: Telomeres consist of TTAGGG repeats bound by protein complexes that serve to protect the natural end of linear chromosomes. Most cells maintain telomere repeat lengths by using the enzyme telomerase, although there are some cancer cells that use a telomerase-independent mechanism of telomere extension, termed alternative lengthening of telomeres (ALT). Cells that use ALT are characterized, in part, by the presence of specialized PML nuclear bodies called ALT-associated PML bodies (APBs). APBs localize to and cluster telomeric ends together with telomeric and DNA damage factors, which led to the proposal that these bodies act as a platform on which ALT can occur. However, the necessity of APBs and their function in the ALT pathway has remained unclear. Here, we used CRISPR/Cas9 to delete PML and APB components from ALT-positive cells to cleanly define the function of APBs in ALT. We found that PML is required for the ALT mechanism, and that this necessity stems from APBs' role in localizing the BLM-TOP3A-RMI (BTR) complex to ALT telomere ends. Strikingly, recruitment of the BTR complex to telomeres in a PML-independent manner bypasses the need for PML in the ALT pathway, suggesting that BTR localization to telomeres is sufficient to sustain ALT activity.

Journal ArticleDOI
TL;DR: This work finds that following partial hepatectomy, the senescence-associated genes p21, p16Ink4a, and p19Arf become dynamically expressed in different cell types when regenerative capacity decreases, but without a full senescent response, and shows that treatment with a senescent-inhibiting drug improves regeneration, by disrupting aberrantly prolonged p21 expression.
Abstract: Young mammals possess a limited regenerative capacity in some tissues, which is lost upon maturation. We investigated whether cellular senescence might play a role in such loss during liver regeneration. We found that following partial hepatectomy, the senescence-associated genes p21, p16Ink4a, and p19Arf become dynamically expressed in different cell types when regenerative capacity decreases, but without a full senescent response. However, we show that treatment with a senescence-inhibiting drug improves regeneration, by disrupting aberrantly prolonged p21 expression. This work suggests that senescence may initially develop from heterogeneous cellular responses, and that senotherapeutic drugs might be useful in promoting organ regeneration.