scispace - formally typeset
Search or ask a question
JournalISSN: 0890-9369

Genes & Development 

Cold Spring Harbor Laboratory Press
About: Genes & Development is an academic journal published by Cold Spring Harbor Laboratory Press. The journal publishes majorly in the area(s): Transcription factor & Gene. It has an ISSN identifier of 0890-9369. It is also open access. Over the lifetime, 8403 publications have been published receiving 1854122 citations. The journal is also known as: Genes and development.


Papers
More filters
Journal ArticleDOI
TL;DR: The heritability of methylation states and the secondary nature of the decision to invite or exclude methylation support the idea that DNA methylation is adapted for a specific cellular memory function in development.
Abstract: The character of a cell is defined by its constituent proteins, which are the result of specific patterns of gene expression. Crucial determinants of gene expression patterns are DNA-binding transcription factors that choose genes for transcriptional activation or repression by recognizing the sequence of DNA bases in their promoter regions. Interaction of these factors with their cognate sequences triggers a chain of events, often involving changes in the structure of chromatin, that leads to the assembly of an active transcription complex (e.g., Cosma et al. 1999). But the types of transcription factors present in a cell are not alone sufficient to define its spectrum of gene activity, as the transcriptional potential of a genome can become restricted in a stable manner during development. The constraints imposed by developmental history probably account for the very low efficiency of cloning animals from the nuclei of differentiated cells (Rideout et al. 2001; Wakayama and Yanagimachi 2001). A “transcription factors only” model would predict that the gene expression pattern of a differentiated nucleus would be completely reversible upon exposure to a new spectrum of factors. Although many aspects of expression can be reprogrammed in this way (Gurdon 1999), some marks of differentiation are evidently so stable that immersion in an alien cytoplasm cannot erase the memory. The genomic sequence of a differentiated cell is thought to be identical in most cases to that of the zygote from which it is descended (mammalian B and T cells being an obvious exception). This means that the marks of developmental history are unlikely to be caused by widespread somatic mutation. Processes less irrevocable than mutation fall under the umbrella term “epigenetic” mechanisms. A current definition of epigenetics is: “The study of mitotically and/or meiotically heritable changes in gene function that cannot be explained by changes in DNA sequence” (Russo et al. 1996). There are two epigenetic systems that affect animal development and fulfill the criterion of heritability: DNA methylation and the Polycomb-trithorax group (Pc-G/trx) protein complexes. (Histone modification has some attributes of an epigenetic process, but the issue of heritability has yet to be resolved.) This review concerns DNA methylation, focusing on the generation, inheritance, and biological significance of genomic methylation patterns in the development of mammals. Data will be discussed favoring the notion that DNA methylation may only affect genes that are already silenced by other mechanisms in the embryo. Embryonic transcription, on the other hand, may cause the exclusion of the DNA methylation machinery. The heritability of methylation states and the secondary nature of the decision to invite or exclude methylation support the idea that DNA methylation is adapted for a specific cellular memory function in development. Indeed, the possibility will be discussed that DNA methylation and Pc-G/trx may represent alternative systems of epigenetic memory that have been interchanged over evolutionary time. Animal DNA methylation has been the subject of several recent reviews (Bird and Wolffe 1999; Bestor 2000; Hsieh 2000; Costello and Plass 2001; Jones and Takai 2001). For recent reviews of plant and fungal DNA methylation, see Finnegan et al. (2000), Martienssen and Colot (2001), and Matzke et al. (2001).

6,691 citations

Journal ArticleDOI
TL;DR: This work challenges previous assumptions about how the G1/S transition of the mammalian cell cycle is governed, helps explain some enigmatic features of cell cycle control that also involve the functions of the retinoblastoma protein (Rb) and the INK4 proteins, and changes the thinking about how either p16 loss or overexpression of cyclin D-dependent kinases contribute to cancer.
Abstract: Mitogen-dependent progression through the first gap phase (G1) and initiation of DNA synthesis (S phase) during the mammalian cell division cycle are cooperatively regulated by several classes of cyclin-dependent kinases (CDKs) whose activities are in turn constrained by CDK inhibitors (CKIs). CKIs that govern these events have been assigned to one of two families based on their structures and CDK targets. The first class includes the INK4 proteins (inhibitors of CDK4), so named for their ability to specifically inhibit the catalytic subunits of CDK4 and CDK6. Four such proteins [p16 (Serrano et al. 1993), p15 (Hannon and Beach 1994), p18 (Guan et al. 1994; Hirai et al. 1995), and p19 (Chan et al. 1995; Hirai et al. 1995)] are composed of multiple ankyrin repeats and bind only to CDK4 and CDK6 but not to other CDKs or to D-type cyclins. The INK4 proteins can be contrasted with more broadly acting inhibitors of the Cip/Kip family whose actions affect the activities of cyclin D-, E-, and A-dependent kinases. The latter class includes p21 (Gu et al. 1993; Harper et al. 1993; El-Deiry et al. 1993; Xiong et al. 1993a; Dulic et al. 1994; Noda et al. 1994), p27 (Polyak et al. 1994a,b; Toyoshima and Hunter 1994), and p57 (Lee et al. 1995; Matsuoka et al. 1995), all of which contain characteristic motifs within their amino-terminal moieties that enable them to bind both to cyclin and CDK subunits (Chen et al. 1995, 1996; Nakanishi et al. 1995; Warbrick et al. 1995; Lin et al. 1996; Russo et al. 1996). Based largely on in vitro experiments and in vivo overexpression studies, CKIs of the Cip/Kip family were initially thought to interfere with the activities of cyclin D-, E-, and A-dependent kinases. More recent work has altered this view and revealed that although the Cip/Kip proteins are potent inhibitors of cyclin Eand A-dependent CDK2, they act as positive regulators of cyclin Ddependent kinases. This challenges previous assumptions about how the G1/S transition of the mammalian cell cycle is governed, helps explain some enigmatic features of cell cycle control that also involve the functions of the retinoblastoma protein (Rb) and the INK4 proteins, and changes our thinking about how either p16 loss or overexpression of cyclin D-dependent kinases contribute to cancer. Here we focus on the biochemical interactions that occur between CKIs and cyclin Dand E-dependent kinases in cultured mammalian cells, emphasizing the manner by which different positive and negative regulators of the cell division cycle cooperate to govern the G1-to-S transition. To gain a more comprehensive understanding of the biology of CDK inhibitors, readers are encouraged to refer to a rapidly emerging but already extensive literature (for review, see Elledge and Harper 1994; Sherr and Roberts 1995; Chellappan et al. 1998; Hengst and Reed 1998a; Kiyokawa and Koff 1998; Nakayama 1998; Ruas and Peters 1998).

6,076 citations

Journal ArticleDOI
TL;DR: The mechanisms by which survival factors regulate the PI3K/c-Akt cascade, the evidence that activation of the PI 3K/ c-AKT pathway promotes cell survival, and the current spectrum of c- akt targets and their roles in mediating c- Akt-dependent cell survival are reviewed.
Abstract: The programmed cell death that occurs as part of normal mammalian development was first observed nearly a century ago (Collin 1906). It has since been established that approximately half of all neurons in the neuroaxis and >99.9% of the total number of cells generated during the course of a human lifetime go on to die through a process of apoptosis (for review, see Datta and Greenberg 1998; Vaux and Korsmeyer 1999). The induction of developmental cell death is a highly regulated process and can be suppressed by a variety of extracellular stimuli. The purification in the 1950s of the nerve growth factor (NGF), which promotes the survival of sympathetic neurons, set the stage for the discovery that peptide trophic factors promote the survival of a wide variety of cell types in vitro and in vivo (Levi-Montalcini 1987). The profound biological consequences of growth factor (GF) suppression of apoptosis are exemplified by the critical role of target-derived neurotrophins in the survival of neurons and the maintenance of functional neuronal circuits. (Pettmann and Henderson 1998). Recently, the ability of trophic factors to promote survival have been attributed, at least in part, to the phosphatidylinositide 38-OH kinase (PI3K)/c-Akt kinase cascade. Several targets of the PI3K/c-Akt signaling pathway have been recently identified that may underlie the ability of this regulatory cascade to promote survival. These substrates include two components of the intrinsic cell death machinery, BAD and caspase 9, transcription factors of the forkhead family, and a kinase, IKK, that regulates the NF-kB transcription factor. This article reviews the mechanisms by which survival factors regulate the PI3K/c-Akt cascade, the evidence that activation of the PI3K/c-Akt pathway promotes cell survival, and the current spectrum of c-Akt targets and their roles in mediating c-Akt-dependent cell survival.

4,260 citations

Journal ArticleDOI
TL;DR: Both the upstream components of the signaling pathway(s) that activates mammalian TOR (mTOR) and the downstream targets that affect protein synthesis are described.
Abstract: The evolutionarily conserved checkpoint protein kinase, TOR (target of rapamycin), has emerged as a major effector of cell growth and proliferation via the regulation of protein synthesis. Work in the last decade clearly demonstrates that TOR controls protein synthesis through a stunning number of downstream targets. Some of the targets are phosphorylated directly by TOR, but many are phosphorylated indirectly. In this review, we summarize some recent developments in this fast-evolving field. We describe both the upstream components of the signaling pathway(s) that activates mammalian TOR (mTOR) and the downstream targets that affect protein synthesis. We also summarize the roles of mTOR in the control of cell growth and proliferation, as well as its relevance to cancer and synaptic plasticity.

4,074 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate that 21 and 22-nt RNA fragments are the sequence-specific mediators of RNA interference in a Drosophila in vitro system, and provide evidence that the direction of dsRNA processing determines whether sense or antisense target RNA can be cleaved by the siRNA-protein complex.
Abstract: Double-stranded RNA (dsRNA) induces sequence-specific posttranscriptional gene silencing in many organisms by a process known as RNA interference (RNAi). Using a Drosophila in vitro system, we demonstrate that 21- and 22-nt RNA fragments are the sequence-specific mediators of RNAi. The short interfering RNAs (siRNAs) are generated by an RNase III–like processing reaction from long dsRNA. Chemically synthesized siRNA duplexes with overhanging 3 ends mediate efficient target RNA cleavage in the lysate, and the cleavage site is located near the center of the region spanned by the guiding siRNA. Furthermore, we provide evidence that the direction of dsRNA processing determines whether sense or antisense target RNA can be cleaved by the siRNA–protein complex.

3,980 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202363
202280
2021109
2020131
2019128
2018138