scispace - formally typeset
Search or ask a question

Showing papers in "Genetics in 1989"


Journal ArticleDOI
Fumio Tajima1
01 Nov 1989-Genetics
TL;DR: The relationship between the two estimates of genetic variation at the DNA level, namely the number of segregating sites and the average number of nucleotide differences estimated from pairwise comparison, is investigated in this article.
Abstract: The relationship between the two estimates of genetic variation at the DNA level, namely the number of segregating sites and the average number of nucleotide differences estimated from pairwise comparison, is investigated. It is found that the correlation between these two estimates is large when the sample size is small, and decreases slowly as the sample size increases. Using the relationship obtained, a statistical method for testing the neutral mutation hypothesis is developed. This method needs only the data of DNA polymorphism, namely the genetic variation within population at the DNA level. A simple method of computer simulation, that was used in order to obtain the distribution of a new statistic developed, is also presented. Applying this statistical method to the five regions of DNA sequences in Drosophila melanogaster, it is found that large insertion/deletion (greater than 100 bp) is deleterious. It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,417 citations


Journal ArticleDOI
01 May 1989-Genetics
TL;DR: A series of yeast shuttle vectors and host strains has been created to allow more efficient manipulation of DNA in Saccharomyces cerevisiae to perform most standard DNA manipulations in the same plasmid that is introduced into yeast.
Abstract: A series of yeast shuttle vectors and host strains has been created to allow more efficient manipulation of DNA in Saccharomyces cerevisiae. Transplacement vectors were constructed and used to derive yeast strains containing nonreverting his3, trp1, leu2 and ura3 mutations. A set of YCp and YIp vectors (pRS series) was then made based on the backbone of the multipurpose plasmid pBLUESCRIPT. These pRS vectors are all uniform in structure and differ only in the yeast selectable marker gene used (HIS3, TRP1, LEU2 and URA3). They possess all of the attributes of pBLUESCRIPT and several yeast-specific features as well. Using a pRS vector, one can perform most standard DNA manipulations in the same plasmid that is introduced into yeast.

8,364 citations


Journal ArticleDOI
01 Jan 1989-Genetics
TL;DR: In this paper, a set of analytical methods that modify and extend the classical theory for mapping such quantitative trait loci (QTLs) are described, and explicit graphs are provided that allow experimental geneticists to estimate, in any particular case, the number of progeny required to map QTLs underlying a quantitative trait.
Abstract: The advent of complete genetic linkage maps consisting of codominant DNA markers [typically restriction fragment length polymorphisms (RFLPs)] has stimulated interest in the systematic genetic dissection of discrete Mendelian factors underlying quantitative traits in experimental organisms. We describe here a set of analytical methods that modify and extend the classical theory for mapping such quantitative trait loci (QTLs). These include: (i) a method of identifying promising crosses for QTL mapping by exploiting a classical formula of SEWALL WRIGHT; (ii) a method (interval mapping) for exploiting the full power of RFLP linkage maps by adapting the approach of LOD score analysis used in human genetics, to obtain accurate estimates of the genetic location and phenotypic effect of QTLs; and (iii) a method (selective genotyping) that allows a substantial reduction in the number of progeny that need to be scored with the DNA markers. In addition to the exposition of the methods, explicit graphs are provided that allow experimental geneticists to estimate, in any particular case, the number of progeny required to map QTLs underlying a quantitative trait.

4,856 citations


Journal ArticleDOI
Fumio Tajima1
01 Nov 1989-Genetics
TL;DR: The expected number of segregating sites and the expectation of the average number of nucleotide differences among DNA sequences randomly sampled from a population, which is not in equilibrium, have been developed and indicate that the number of segregation sites is influenced by the size of the current population more strongly than is theaverage number ofucleotide differences.
Abstract: The expected number of segregating sites and the expectation of the average number of nucleotide differences among DNA sequences randomly sampled from a population, which is not in equilibrium, have been developed. The results obtained indicate that, in the case where the population size has changed drastically, the number of segregating sites is influenced by the size of the current population more strongly than is the average number of nucleotide differences, while the average number of nucleotide differences is affected by the size of the original population more severely than is the number of segregating sites. The results also indicate that the average number of nucleotide differences is affected by a population bottleneck more strongly than is the number of segregating sites.

1,316 citations


Journal ArticleDOI
01 Dec 1989-Genetics
TL;DR: A stochastic, finite population model is developed that describes the steady state effect of hitchhiking on the distribution of the number of selectively neutral polymorphic sites in a random sample.
Abstract: The number of selectively neutral polymorphic sites in a random sample of genes can be affected by ancestral selectively favored substitutions at linked loci. The degree to which this happens depends on when in the history of the sample the selected substitutions happen, the strength of selection and the amount of crossing over between the sampled locus and the loci at which the selected substitutions occur. This phenomenon is commonly called hitchhiking. Using the coalescent process for a random sample of genes from a selectively neutral locus that is linked to a locus at which selection is taking place, a stochastic, finite population model is developed that describes the steady state effect of hitchhiking on the distribution of the number of selectively neutral polymorphic sites in a random sample. A prediction of the model is that, in regions of low crossing over, strongly selected substitutions in the history of the sample can substantially reduce the number of polymorphic sites in a random sample of genes from that expected under a neutral model.

1,085 citations


Journal ArticleDOI
01 Feb 1989-Genetics
TL;DR: It is shown that two sampling plans whose differences have been stressed by previous authors can be treated in a uniform way and the temporal method is best suited for use with organisms having high juvenile mortality and, perhaps, a limited effective population size.
Abstract: The temporal method for estimating effective population size (Ne) from the standardized variance in allele frequency change (F) is presented in a generalized form. Whereas previous treatments of this method have adopted rather limiting assumptions, the present analysis shows that the temporal method is generally applicable to a wide variety of organisms. Use of a revised model of gene sampling permits a more generalized interpretation of Ne than that used by some other authors studying this method. It is shown that two sampling plans (individuals for genetic analysis taken before or after reproduction) whose differences have been stressed by previous authors can be treated in a uniform way. Computer simulations using a wide variety of initial conditions show that different formulas for computing F have much less effect on Ne than do sample size (S), number of generations between samples (t), or the number of loci studied (L). Simulation results also indicate that (1) bias of F is small unless alleles with very low frequency are used; (2) precision is typically increased by about the same amount with a doubling of S, t, or L; (3) confidence intervals for Ne computed using a chi 2 approximation are accurate and unbiased under most conditions; (4) the temporal method is best suited for use with organisms having high juvenile mortality and, perhaps, a limited effective population size.

784 citations


Journal ArticleDOI
01 Nov 1989-Genetics
TL;DR: A method for estimating the average level of gene flow among populations is introduced, which provides an estimate of Nm that is as nearly as accurate as estimates obtained using FST and other statistics when Nm is moderate.
Abstract: A method for estimating the average level of gene flow among populations is introduced. The method provides an estimate of Nm, where N is the size of each local population in an island model and m is the migration rate. This method depends on knowing the phylogeny of the nonrecombining segments of DNA that are sampled. Given the phylogeny, the geographic location from which each sample is drawn is treated as multistate character with one state for each geographic location. A parsimony criterion applied to the evolution of this character on the phylogeny provides the minimum number of migration events consistent with the phylogeny. Extensive simulations show that the distribution of this minimum number is a simple function of Nm. Assuming the phylogeny is accurately estimated, this method provides an estimate of Nm that is as nearly as accurate as estimates obtained using FST and other statistics when Nm is moderate. Two examples of the use of this method with mitochondrial DNA data are presented.

763 citations


Journal ArticleDOI
01 Mar 1989-Genetics
TL;DR: The exact equations are used to verify that organelle genes often show more subdivision than nuclear genes; however, it is shown that gene diversities are higher for nuclei than for organelles over a larger range of sex ratios in a subdivided population than in a panmictic population.
Abstract: We developed stochastic population genetic theory for mitochondrial and chloroplast genes, using an infinite alleles model appropriate for molecular genetic data. We considered the effects of mutation, random drift, and migration in a finite island model on selectively neutral alleles. Recurrence equations were obtained for the expectation of gene diversities within zygotes, within colonies, and between colonies. The variables are number and sizes of colonies, migration rates, sex ratios, degree of paternal transmission, number of germ line cell divisions, effective number of segregating organelle genomes, and mutation rate. Computer solutions of the recurrence equations were used to study the approach to equilibrium. Gene diversities equilibrate slowly, while GST, used to measure population subdivision, equilibrates rapidly. Approximate equilibrium equations for gene diversities and GST can be obtained by substituting Neo and me, simple functions of the numbers of breeding or migrating males and females and of the degree of paternal transmission, for the effective numbers of genes and migration rates in the corresponding equations for nuclear genes. The approximate equations are not valid when the diversity within individuals is large compared to that between individuals, as is often true for the D-loop of animal mtDNA. We used the exact equations to verify that organelle genes often show more subdivision than nuclear genes; however, we also identified the range of breeding and migrating sex ratios for which population subdivision is greater for nuclear genes. Finally, we show that gene diversities are higher for nuclei than for organelles over a larger range of sex ratios in a subdivided population than in a panmictic population.

668 citations


Journal ArticleDOI
01 Jan 1989-Genetics
TL;DR: An important implication of the model is that the variation maintained by genotype-environment interactions is difficult to study with the restricted range of environments represented in typical experiments, and efforts to estimate genetic parameters in a single environment may be of limited value.
Abstract: Genotype-environment interactions may be a potent force maintaining genetic variation in quantitative traits in natural populations. This is shown by a simple model of additive polygenic inheritance in which the additive contributions of alleles vary with the environment. Under simplifying symmetry assumptions, the model implies that the variance of the phenotypes produced across environments by a multilocus genotype decreases as the number of heterozygous loci increases. In the region of an optimal phenotype, the mapping from the quantitative trait into fitness is concave, and the mean fitness of a genotype will increase with the number of heterozygous loci. This leads to balancing selection, polymorphism, and potentially high levels of additive genetic variance, even though all allelic effects remain additive within each specific environment. An important implication of the model is that the variation maintained by genotype-environment interactions is difficult to study with the restricted range of environments represented in typical experiments. In particular, if fluctuations in allelic effects are pervasive, as suggested by the extensive literature on genotype-environment interactions, efforts to estimate genetic parameters in a single environment may be of limited value.

599 citations


Journal ArticleDOI
01 Jan 1989-Genetics
TL;DR: In mutagenesis screens for recessive female sterile mutations on the second chromosome of Drosophila melanogaster 529 chromosomes were isolated which allow the homozygous females to survive, but cause them to be sterile.
Abstract: In mutagenesis screens for recessive female sterile mutations on the second chromosome of Drosophila melanogaster 529 chromosomes were isolated which allow the homozygous females to survive, but cause them to be sterile. In 136 of these lines, mutant females produce morphologically normal eggs which cannot support normal embryonic development. These "maternal-effect" mutations fall into 67 complementation groups which define 23 multiply hit and 44 singly hit loci. In eggs from 14 complementation groups development is blocked before the formation of a syncytial blastoderm. In eggs from 12 complementation groups development is abnormal before cellularization, 17 complementation groups cause abnormal cellularization, 12 complementation groups cause changes in cellular morphology in early gastrulation stages, and 12 complementation groups seem to affect later embryonic development.

437 citations


Journal ArticleDOI
01 Aug 1989-Genetics
TL;DR: It was found that the consistency probability thus derived substantially increases as the sample size of genes increases,Unless the divergence time of populations is very long compared to population sizes, there are cases where large samples at a locus are very useful in inferring a population tree.
Abstract: A genealogical relationship among genes at a locus (gene tree) sampled from three related populations was examined with special reference to population relatedness (population tree). A phylogenetically informative event in a gene tree constructed from nucleotide differences consists of interspecific coalescences of genes in each of which two genes sampled from different populations are descended from a common ancestor. The consistency probability between gene and population trees in which they are topologically identical was formulated in terms of interspecific coalescences. It was found that the consistency probability thus derived substantially increases as the sample size of genes increases, unless the divergence time of populations is very long compared to population sizes. Hence, there are cases where large samples at a locus are very useful in inferring a population tree.

Journal ArticleDOI
01 Oct 1989-Genetics
TL;DR: Three independent reversions of mutations affecting three different Caenorhabditis elegans genes have each yielded representatives of the same set of extragenic suppressors, suggesting that the smg suppressors affect a process other than translation, for example mRNA processing, transport, or stability.
Abstract: Independent reversions of mutations affecting three different Caenorhabditis elegans genes have each yielded representatives of the same set of extragenic suppressors. Mutations at any one of six loci act as allele-specific recessive suppressors of certain allels of unc-54 (a myosin heavy chain gene), lin-29 (a heterochronic gene), and tra-2 (a sex determination gene). The same mutations also suppress certain alleles of another sex determination gene, tra-1, and of a morphogenetic gene, dpy-5. In addition to their suppression phenotype, the suppressor mutations cause abnormal morphogenesis of the male bursa and the hermaphrodite vulva. We name these genes smg-1 through smg-6 (suppressor with morphogenetic effect on genitalia), in order to distinguish them from mab (male abnormal) genes that can mutate to produce abnormal genitalia but which do not act as suppressors (smg-1 and smg-2 are new names for two previously described genes, mab-1 and mab-11). The patterns of suppression, and the interactions between the different smg genes, are described and discussed. In general, suppression is recessive and incomplete, and at least some of the suppressed mutations are hypomorphic in nature. A suppressible allele of unc-54 contains a deletion in the 3' noncoding region of the gene; the protein coding region of the gene is apparently unaffected. This suggests that the smg suppressors affect a process other than translation, for example mRNA processing, transport, or stability.

Journal ArticleDOI
01 Sep 1989-Genetics
TL;DR: This paper identifies 18 new mutations, which are alleles of eight genes, that interact with either lin-8(n111) or lin-9(n112) to generate a Muv phenotype, demonstrating that redundancy can occur at the level of gene pathways as well as at thelevel of gene families.
Abstract: We previously identified Caenorhabditis elegans mutants in which certain of the six vulval precursor cells adopt fates normally expressed by other vulval precursor cells. These mutants define genes that appear to function in the response to an intercellular signal that induces vulval development. The multivulva (Muv) phenotype of one such mutant, CB1322, results from an interaction between two unlinked mutations, lin-8(n111) II and lin-9(n112) III. In this paper, we identify 18 new mutations, which are alleles of eight genes, that interact with either lin-8(n111) or lin-9(n112) to generate a Muv phenotype. None of these 20 mutations alone causes any vulval cell lineage defects. The "silent Muv" mutations fall into two classes; hermaphrodites carrying a mutation of each class are Muv, while hermaphrodites carrying two mutations of the same class have a wild-type vulval phenotype. Our results indicate that the Muv phenotype of these mutants results from defects in two functionally-redundant pathways, thereby demonstrating that redundancy can occur at the level of gene pathways as well as at the level of gene families.

Journal ArticleDOI
01 Apr 1989-Genetics
TL;DR: Two unexpected properties of the SAC1 gene indicated that its function is essential only at temperatures below about 17 degrees and all sac1 alleles are inviable when combined with act1-2, interpreted in the context of the evolution of the actin cytoskeleton of yeast.
Abstract: Suppressors of a temperature-sensitive mutation (act1-1) in the single actin gene of Saccharomyces cerevisiae were selected that had simultaneously acquired a cold-sensitive growth phenotype. Five genes, called SAC (suppressor of actin) were defined by complementation tests; both suppression and cold-sensitive phenotypes were recessive. Three of the genes (SAC1, SAC2 and SAC3) were subjected to extensive genetic and phenotypic analysis, including molecular cloning. Suppression was found to be allele-specific with respect to actin alleles. The sac mutants, even in ACT1+ genetic backgrounds, displayed phenotypes similar to those of actin mutants, notably aberrant organization of intracellular actin and deposition of chitin at the cell surface. These results are interpreted as being consistent with the idea that the SAC genes encode proteins that interact with actin, presumably as components or controllers of the assembly or stability of the yeast actin cytoskeleton. Two unexpected properties of the SAC1 gene were noted. Disruptions of the gene indicated that its function is essential only at temperatures below about 17 degrees and all sac1 alleles are inviable when combined with act1-2. These properties are interpreted in the context of the evolution of the actin cytoskeleton of yeast.

Journal ArticleDOI
01 Dec 1989-Genetics
TL;DR: It is proposed that the SRB2 gene encodes a factor that is involved in RNA synthesis and may interact with the CTR domain of the large subunit of RNA polymerase II, which contains a repeated heptapeptide sequence at its carboxy terminus.
Abstract: The largest subunit of RNA polymerase II contains a repeated heptapeptide sequence at its carboxy terminus. Yeast mutants with certain partial deletions of the carboxy-terminal repeat (CTR) domain are temperature-sensitive, cold-sensitive and are inositol auxotrophs. Intragenic and extragenic suppressors of the cold-sensitive phenotype of CTR domain deletion mutants were isolated and studied to investigate the function of this domain. Two types of intragenic suppressing mutations suppress the temperature-sensitivity, cold-sensitivity and inositol auxotrophy of CTR domain deletion mutants. Most intragenic mutations enlarge the repeat domain by duplicating various portions of the repeat coding sequence. Other intragenic suppressing mutations are point mutations in a conserved segment of the large subunit. An extragenic suppressing mutation (SRB2-1) was isolated that strongly suppresses the conditional and auxotrophic phenotypes of CTR domain mutations. The SRB2 gene was isolated and mapped, and an SRB2 partial deletion mutation (srb2 delta 10) was constructed. The srb2 delta 10 mutants are temperature-sensitive, cold-sensitive and are inositol auxotrophs. These phenotypes are characteristic of mutations in genes encoding components of the transcription apparatus. We propose that the SRB2 gene encodes a factor that is involved in RNA synthesis and may interact with the CTR domain of the large subunit of RNA polymerase II.

Journal ArticleDOI
01 Mar 1989-Genetics
TL;DR: It is proposed that HOP1 acts in meiosis primarily to promote chromosomal pairing, perhaps by encoding a component of the synaptonemal complex.
Abstract: The recessive mutation, hop1-1, was isolated by use of a screen designed to detect mutations defective in homologous chromosomal pairing during meiosis in Saccharomyces cerevisiae. Mutants in HOP1 displayed decreased levels of meiotic crossing over and intragenic recombination between markers on homologous chromosomes. In contrast, assays of the hop1-1 mutation in a spo13-1 haploid disomic for chromosome III demonstrated that intrachromosomal recombination between directly duplicated sequences was unaffected. The spores produced by SPO13 diploids homozygous for hop1 were largely inviable, as expected for a defect in interhomolog recombination that results in high levels of nondisjunction. HOP1 was cloned by complementation of the spore lethality phenotype and the cloned gene was used to map HOP1 to the LYS11-HIS6 interval on the left arm of chromosome IX. Electron microscopy revealed that diploids homozygous for hop1 fail to form synaptonemal complex, which normally provides the structural basis for homolog pairing. We propose that HOP1 acts in meiosis primarily to promote chromosomal pairing, perhaps by encoding a component of the synaptonemal complex.

Journal ArticleDOI
01 Dec 1989-Genetics
TL;DR: The rad1 and rad52 double mutant shows a decrease in plasmid loss events greater than the sum of the decreases in the rates of this event displayed by either single mutant in both constitutive and repressed DNA, indicating a synergistic interaction between these two genes.
Abstract: We have previously shown direct-repeat recombination events leading to loss of a plasmid integrated at the GAL10 locus in Saccharomyces cerevisiae are stimulated by transcription of the region. We have examined the role of two recombination- and repair-defective mutations, rad1 and rad52, on direct repeat recombination in transcriptionally active and inactive sequences. We show that the RAD52 gene is required for transcription-stimulated recombination events leading to loss of the integrated plasmid. Similarly, Gal+ events between the duplicated repeats that retain the integrated plasmid DNA (Gal+ Ura+ replacement events) are reduced 20-fold in the rad52 mutant in sequences that are constitutively expressed. In contrast, in sequences that are not expressed, the rad52 mutation reduces plasmid loss events by only twofold and Gal+ Ura+ replacements by fourfold. We also observe an increase in disome-associated plasmid loss events in the rad52 mutant, indicative of chromosome gain. This event is not affected by expression of the region. Plasmid loss events in rad1 mutant strains are reduced only twofold in transcriptionally active sequences and are not affected in sequences that are repressed. However, the rad1 and rad52 double mutant shows a decrease in plasmid loss events greater than the sum of the decreases in the rates of this event displayed by either single mutant in both constitutive and repressed DNA, indicating a synergistic interaction between these two genes. The synergism is limited to recombination since the rad1 rad52 double mutant is no more sensitive when compared with either single mutant in its ability to survive radiation damage. Finally, the recombination pathway that remains in the double mutant is positively affected by transcription of the region.

Journal ArticleDOI
01 Jul 1989-Genetics
TL;DR: A general cloning strategy that can be used to clone both dominant and recessive alleles and alter the permeability of the outer membrane resulting in increased sensitivity to detergents, antibiotics and dyes is described.
Abstract: Using a genetic selection for mutations which allow large maltodextrins to cross the outer membrane of Escherichia coli in the absence of the LamB maltoporin, we have obtained and characterized two mutations that define a new locus of E. coli. We have designated this locus imp for increased membrane permeability. Mapping studies show that the imp gene resides at approximately 1.2 min on the E. coli chromosome. The mutations alter the permeability of the outer membrane resulting in increased sensitivity to detergents, antibiotics and dyes. The mutations are nonreverting and codominant. Genetic analysis of the mutations suggest that the imp gene is an essential gene. We describe a general cloning strategy that can be used to clone both dominant and recessive alleles. Using this technique, we have cloned the wild-type and mutant imp alleles onto a low copy number plasmid.

Journal ArticleDOI
01 Nov 1989-Genetics
TL;DR: Restriction fragment length polymorphisms were used to distinguish genotypes of two species of Populus, P. fremontii ('Fremont') and P. angustifolia ('narrowleaf'), allowing identification of parental genotypes within individual trees of a hybrid swarm which exists in an overlap zone between the two species.
Abstract: Restriction fragment length polymorphisms were used to distinguish genotypes of two species of Populus, P. fremontii ('Fremont') and P. angustifolia ('narrowleaf'). Both inter- and intraspecific polymorphisms were detected in these cottonwood trees. The interspecific variation was much greater than the intraspecific variation. This permitted identification of parental genotypes within individual trees of a hybrid swarm which exists in an overlap zone between the two species. Within this hybrid swarm, individual trees are either F1 hybrids or backcrosses with a pure 'narrowleaf' parent; no progeny were found that could be attributed to crossing between F1 hybrid trees, or to backcrossing between F1 hybrid trees and 'Fremont'.

Journal ArticleDOI
01 Dec 1989-Genetics
TL;DR: The persistence of this large amount of size polymorphism through two speciation events combined with the abundant size variation within individuals suggests that these molecules may not be subject to strong selection for small overall size and efficiency of replication.
Abstract: Mitochondrial DNA of higher animals has been described as an example of extreme efficiency in genome structure and function. Where exceptionally large size molecules have been found (>20 kb), most have occurred as rare variants within a species, suggesting that these variants arise infrequently and do not persist for long periods in evolutionary time. In contrast, all individuals of at least three species of bark weevil (Curculionidae: Pissodes) possess a mitochondrial genome of unusually large size (30-36 kb). The molecule owes its large size to a dramatically enlarged A+T-rich region (9-13 kb). Gene content and order outside of this region appear to be identical to that found in Drosophila. A series of 0.8-2.0-kb repeated sequences occur adjacent to the large A+T rich region and have perhaps played a role in the generation of the large size as well as an unprecedented frequency of size variant heteroplasmy. Every weevil sampled in all three species (n = 219) exhibits anywhere from two to five distinct size classes of mtDNA. The persistence of this large amount of size polymorphism through two speciation events combined with the abundant size variation within individuals suggests that these molecules may not be subject to strong selection for small overall size and efficiency of replication. This pattern of variation contrasts strongly with the conservation of gene content and arrangement in the coding region of the molecule.

Journal ArticleDOI
01 Jul 1989-Genetics
TL;DR: Surprisingly, the appearance of the two reciprocal products of crossing over did not occur with the same kinetics, and it is suggested that these differences may reflect two kinetically separable processes, one involving only one cut end and the other resulting from the concerted participation of both ends of the DSB.
Abstract: We have investigated HO endonuclease-induced double-strand break (DSB) recombination and repair in a LACZ duplication plasmid in yeast. A 117-bp MATa fragment, embedded in one copy of LACZ, served as a site for initiation of a DSB when HO endonuclease was expressed. The DSB could be repaired using wild-type sequences located on a second, promoterless, copy of LACZ on the same plasmid. In contrast to normal mating-type switching, crossing-over associated with gene conversion occurred at least 50% of the time. The proportion of conversion events accompanied by exchange was greater when the two copies of LACZ were in direct orientation (80%), than when inverted (50%). In addition, the fraction of plasmids lost was significantly greater in the inverted orientation. The kinetics of appearance of intermediates and final products were also monitored. The repair of the DSB is slow, requiring at least an hour from the detection of the HO-cut fragments to completion of repair. Surprisingly, the appearance of the two reciprocal products of crossing over did not occur with the same kinetics. For example, when the two LACZ sequences were in the direct orientation, the HO-induced formation of a large circular deletion product was not accompanied by the appearance of a small circular reciprocal product. We suggest that these differences may reflect two kinetically separable processes, one involving only one cut end and the other resulting from the concerted participation of both ends of the DSB.

Journal ArticleDOI
01 Jul 1989-Genetics
TL;DR: Consistent with the theoretically predicted negative relationship between crossing over and the magnitude of linkage disequilibrium, an increase in the relative number of nonrandom associations was observed in the y-ac-sc region.
Abstract: Restriction map variation in 64 X chromosome lines extracted from three different populations of Drosophila melanogaster was investigated with seven six-nucleotide-recognizing restriction enzymes for a 106-kb region encompassing the yellow gene and the achaete-scute complex that is located in the region of reduced crossing over close to the telomere. Nine restriction site polymorphisms (out of 176 sites scored) and 19 length polymorphisms (15 insertions and 4 deletions) were detected. The estimated level of heterozygosity per nucleotide, H = 0.0003, is much lower than that reported for autosomal and sex-linked loci located in regions with normal levels of crossing over. The overall frequency of polymorphic restriction sites is reduced. Six out of nine restriction site polymorphisms are unique and the other three have frequencies less than 0.17. Some large insertions have reached relatively high frequencies, 0.08 to 0.17. Consistent with the theoretically predicted negative relationship between crossing over and the magnitude of linkage disequilibrium, an increase in the relative number of nonrandom associations was observed in the y-ac-sc region.

Journal ArticleDOI
01 Feb 1989-Genetics
TL;DR: These approaches provide an 86% level of saturation for X-linked late zygotic lethals (larval and pupal) with specific maternal effect embryonic lethal phenotypes.
Abstract: In order to identify all X-linked zygotic lethal loci that exhibit a specific maternal effect on embryonic development, germline clonal analyses of X-linked zygotic lethal mutations have been performed. Two strategies were employed. In Screen A germline clonal analysis of 441 mutations at 211 previously mapped X-linked loci within defined regions was performed. In Screen B germline clonal analysis of 581 larval and pupal mutations distributed throughout the entire length of the X chromosome was performed. These approaches provide an 86% level of saturation for X-linked late zygotic lethals (larval and pupal) with specific maternal effect embryonic lethal phenotypes. The maternal effect phenotypes of these mutations are described.

Journal ArticleDOI
01 Aug 1989-Genetics
TL;DR: Results were consistent with a prediction that increased resistance to many environmental stresses may be genetically correlated because of a reduction in metabolic energy expenditure and extended the study of correlated responses to other stresses.
Abstract: Previously we found that Drosophila melanogaster lines selected for increased desiccation resistance have lowered metabolic rate and behavioral activity levels, and show correlated responses for resistance to starvation and a toxic ethanol level. These results were consistent with a prediction that increased resistance to many environmental stresses may be genetically correlated because of a reduction in metabolic energy expenditure. Here we present experiments on the genetic basis of the selection response and extend the study of correlated responses to other stresses. The response to selection was not sex-specific and involved X-linked and autosomal genes acting additively. Activity differences contributed little to differences in desiccation resistance between selected and control lines. Selected lines had lower metabolic rates than controls in darkness when activity was inhibited. Adults from selected lines showed increased resistance to a heat shock, 60Co-gamma-radiation, and acute ethanol and acetic acid stress. The desiccation, ethanol and starvation resistance of isofemale lines set up from the F2s of a cross between one of the selected and one of the control lines were correlated. Selected and control lines did not differ in ether-extractable lipid content or in resistance to acetone, ether or a cold shock.

Journal ArticleDOI
01 Jun 1989-Genetics
TL;DR: The bz locus data fit the earlier model of I. M. GREENBLATT and R. A. BRINK in which transposition takes place from a replicated donor site to either an unreplicated or replicated receptor site.
Abstract: The pattern of transposition of Ac from the mutable allele bz-m2(Ac) has been investigated. Stable (bz-s) and finely spotted (bz-m(F)) exceptions were selected from coarsely spotted bz-m2(Ac) ears. The presence or absence of a transposed Ac (trAc) in the genome was determined and, when present, the location of the trAc was mapped relative to the flanking markers sh and wx. The salient general features of Ac transposition to sites linked to bz are that the receptor sites tend to be clustered on either side of the bz donor site and that transposition is bidirectional and nonpolar. Thus, the symmetrical clustering in the distribution of receptor sites adjacent to bz differs from the asymmetrical clustering reported in 1984 for the P locus by I. M. GREENBLATT. Though Ac tends to transpose preferentially to closely linked sites, an appreciable fraction of Ac transpositions from bz-m2(Ac) is to unlinked sites: 41% among bz-s derivatives and 59% among bz-m(F) derivatives. Many transposition events among the bz-m(F) selections result in kernels carrying a genetically noncorresponding embryo. These can be interpreted as twin sectors arising at one of the megagametophytic mitoses. The bz locus data fit the earlier (1962) model of I. M. GREENBLATT and R. A. BRINK in which transposition takes place from a replicated donor site to either an unreplicated or replicated receptor site.

Journal ArticleDOI
01 Mar 1989-Genetics
TL;DR: In populations where hybridization between the two species has occurred, the frequencies of size classes and cytoplasmic genotypes in each species' distinct mtDNA lineage were shifted in a manner suggesting nuclear-cytoplasmsic interactions.
Abstract: Nucleotide sequence analysis of a region of cricket (Gryllus firmus) mtDNA showing discrete length variation revealed tandemly repeated sequences 220 base pairs (bp) in length. The repeats consist of 206 bp sequences bounded by the dyad symmetric sequence 5'GGGGGCATGCCCCC3'. The sequence data showed that mtDNA size variation in this species is due to variation in the number of copies of tandem repeats. Southern blot analysis was used to document the frequency of crickets heteroplasmic for two or more different-sized mtDNAs. In New England populations of G. firmus and a close relative Gryllus pennsylvanicus approximately 60% of the former and 45% of the latter were heteroplasmic. From densitometry of autoradiographs the frequencies of mtDNA size classes were determined for the population samples and are shown to very different in the two species. However, in populations where hybridization between the two species has occurred, the frequencies of size classes and cytoplasmic genotypes in each species' distinct mtDNA lineage were shifted in a manner suggesting nuclear-cytoplasmic interactions. The data were applied to reported diversity indices and hierarchical statistics. The hierarchical statistics indicated that the greatest proportion of variation for mtDNA size was due to variation among individuals in their cytoplasmic genotypes (heteroplasmic or homoplasmic state). The diversity indices were used to estimate a per-generation mutation rate for size variants of 10(-4). The data are discussed in light of the relationship between genetic drift and mutation in maintaining variation for mtDNA size.

Journal ArticleDOI
01 Sep 1989-Genetics
TL;DR: This work has successfully localized the lethal tagged foraging (for, 2-10) gene by deficiency mapping to 24A3-C5 on the polytene chromosome map.
Abstract: Localizing genes for quantitative traits by conventional recombination mapping is a formidable challenge because environmental variation, minor genes, and genetic markers have modifying effects on continuously varying phenotypes. We describe "lethal tagging," a method used in conjunction with deficiency mapping for localizing major genes associated with quantitative traits. Rover/sitter is a naturally occurring larval foraging polymorphism in Drosophila melanogaster which has a polygenic pattern of inheritance comprised of a single major gene (foraging) and minor modifier genes. We have successfully localized the lethal tagged foraging (for, 2-10) gene by deficiency mapping to 24A3-C5 on the polytene chromosome map.

Journal ArticleDOI
01 Feb 1989-Genetics
TL;DR: Spatial autocorrelation analyses of point samples within two populations of lodgepole pine indicate that single-locus mature tree and pollen genotypes are distributed in a nearly random fashion for most of the allozyme loci assayed, which suggests that genotypes at these loci may be under natural selection.
Abstract: Spatial autocorrelation analyses of point samples within two populations of lodgepole pine (Pinus contorta ssp. latifolia) indicate that single-locus mature tree and pollen genotypes are distributed in a nearly random fashion for most of the allozyme loci assayed. This lack of structure in the distributions of most genotypes is consistent with outcrossing rates that are very nearly 1.0 and with estimates indicating that both pollen and seed are dispersed over long distances in lodgepole pine. However, spatial autocorrelation of genotypes for a few loci suggests that genotypes at these loci may be under natural selection.

Journal ArticleDOI
01 Oct 1989-Genetics
TL;DR: Five mutations in two genetically distinct erythromycin resistance loci map in the 23S rDNA of C. reinhardtii are validated and thereby validate the zygote clone method of analysis used to generate this map.
Abstract: Mutants resistant to streptomycin, spectinomycin, neamine/kanamycin and erythromycin define eight genetic loci in a linear linkage group corresponding to about 21 kb of the circular chloroplast genome of Chlamydomonas reinhardtii. With one exception, all of these mutants represent single base-pair changes in conserved regions of the genes encoding the 16S and 23S chloroplast ribosomal RNAs. Streptomycin resistance can result from changes at the bases equivalent to Escherichia coli 13, 523, and 912-915 in the 16S gene, or from mutations in the rps12 gene encoding chloroplast ribosomal protein S12. In the 912-915 region of the 16S gene, three mutations were identified that resulted in different levels of streptomycin resistance in vitro. Although the three regions of the 16S rRNA mutable to streptomycin resistance are widely separated in the primary sequence, studies by other laboratories of RNA secondary structure and protein cross-linking suggest that all three regions are involved in a common ribosomal neighborhood that interacts with ribosomal proteins S4, S5 and S12. Three different changes within a conserved region of the 16S gene, equivalent to E. coli bases 1191-1193, confer varying levels of spectinomycin resistance, while resistance to neamine and kanamycin results from mutations in the 16S gene at bases equivalent to E. coli 1408 and 1409. Five mutations in two genetically distinct erythromycin resistance loci map in the 23S rDNA of C. reinhardtii, at positions equivalent to E. coli 2057-2058 and 2611, corresponding to the rib3 and rib2 loci of yeast mitochondria respectively. Although all five mutants are highly resistant to erythromycin, they differ in levels of cross-resistance to lincomycin and clindamycin. The order and spacing of all these mutations in the physical map are entirely consistent with our genetic map of the same loci and thereby validate the zygote clone method of analysis used to generate this map. These results are discussed in comparison with other published maps of chloroplast genes based on analysis by different methods using many of the same mutants.

Journal ArticleDOI
01 Dec 1989-Genetics
TL;DR: Correlations observed between the various developmental defects produced by top lesions suggest that the gene possesses several differentially, though not independently, mutable activities.
Abstract: The torpedo (top) locus of Drosophila encodes the fruitfly homolog of the vertebrate epidermal growth factor receptor gene and the neu proto-oncogene. We have isolated 13 top alleles in a screen for mutations failing to complement the female sterility of top, a recessive maternal effect allele that disrupts the establishment of the dorsoventral pattern of the egg shell and embryo. Several alleles recovered in this screen are zygotic lethal mutations; genetic analysis of these alleles has demonstrated that top is allelic to the embryonic lethal locus faint little ball. The 13 mutations recovered in our screens and 19 previously isolated top alleles have been genetically characterized through complementation tests with a series of hypomorphic and amorphic alleles. Nearly every top allele fails to complement the maternal effect sterility of top. Complementation tests show that the gene is required not only for oogenesis and embryogenesis, but also for pupal viability, for the growth of certain imaginal discs and for the patterning of specific ectodermal derivatives of the imaginal discs. Complementation analysis further demonstrates that the top lesions can be divided into general phenotypic categories: alleles affecting all gene activities in a coordinate manner, alleles preferentially affecting embryogenesis, alleles preferentially retaining oogenesis activity and alleles differentially affecting the development of specific imaginal disc derivatives. Correlations observed between the various developmental defects produced by top lesions suggest that the gene possesses several differentially, though not independently, mutable activities.