scispace - formally typeset
Search or ask a question

Showing papers in "Genetics in 1997"


Journal ArticleDOI
01 Oct 1997-Genetics
TL;DR: It is found that the polymorphic patterns in a DNA sample under logistic population growth and genetic hitchhiking are very similar and that one of the newly developed tests, Fs, is considerably more powerful than existing tests for rejecting the hypothesis of neutrality of mutations.
Abstract: The main purpose of this article is to present several new statistical tests of neutrality of mutations against a class of alternative models, under which DNA polymorphisms tend to exhibit excesses of rare alleles or young mutations. Another purpose is to study the powers of existing and newly developed tests and to examine the detailed pattern of polymorphisms under population growth, genetic hitchhiking and background selection. It is found that the polymorphic patterns in a DNA sample under logistic population growth and genetic hitchhiking are very similar and that one of the newly developed tests, Fs, is considerably more powerful than existing tests for rejecting the hypothesis of neutrality of mutations. Background selection gives rise to quite different polymorphic patterns than does logistic population growth or genetic hitchhiking, although all of them show excesses of rare alleles or young mutations. We show that Fu and Li's tests are among the most powerful tests against background selection. Implications of these results are discussed.

6,332 citations


Journal ArticleDOI
01 Apr 1997-Genetics
TL;DR: In this paper, the use of isolation by distance models as a basis for the estimation of demographic parameters from measures of population subdivision was re-examined, and the results for values of F-statistics in one-dimensional models and coalescence times in 2D models were provided.
Abstract: I reexamine the use of isolation by distance models as a basis for the estimation of demographic parameters from measures of population subdivision. To that aim, I first provide results for values of F-statistics in one-dimensional models and coalescence times in two-dimensional models, and make more precise earlier results for F-statistics in two-dimensional models and coalescence times in one-dimensional models. Based on these results, I propose a method of data analysis involving the regression of F(ST)/(1 - F(ST)) estimates for pairs of subpopulations on geographic distance for populations along linear habitats or logarithm of distance for populations in two-dimensional habitats. This regression provides in principle an estimate of the product of population density and second moment of parental axial distance. In two cases where comparison to direct estimates is possible, the method proposed here is more satisfactory than previous indirect methods.

3,331 citations


Journal ArticleDOI
01 Feb 1997-Genetics
TL;DR: Extensions are presented that allow for the effects of uncertainty in knowledge of population size and mutation rates, for variability in population sizes, for regions of different mutation rate, and for inference concerning the coalescence time of the entire population.
Abstract: The paper is concerned with methods for the estimation of the coalescence time (time since the most recent common ancestor) of a sample of intraspecies DNA sequences. The methods take advantage of prior knowledge of population demography, in addition to the molecular data. While some theoretical results are presented, a central focus is on computational methods. These methods are easy to implement, and, since explicit formulae tend to be either unavailable or unilluminating, they are also more useful and more informative in most applications. Extensions are presented that allow for the effects of uncertainty in our knowledge of population size and mutation rates, for variability in population sizes, for regions of different mutation rate, and for inference concerning the coalescence time of the entire population. The methods are illustrated using recent data from the human Y chromosome.

989 citations


Journal ArticleDOI
01 Jul 1997-Genetics
TL;DR: The introgression of zebu-specific alleles in African cattle afforded a high resolution perspective on the hybrid nature of African cattle populations and also suggested that certain West African populations of valuable disease-tolerant taurine cattle are under threat of genetic absorption by migrating zebe herds.
Abstract: Genetic variation at 20 microsatellite loci was surveyed to determine the evolutionary relationships and molecular biogeography of 20 different cattle populations from Africa, Europe and Asia. Phylogenetic reconstruction and multivariate analysis highlighted a marked distinction between humpless (taurine) and humped (zebu) cattle, providing strong support for a separate origin for domesticated zebu cattle. A molecular clock calculation using bison (Bison sp.) as an outgroup gave an estimated divergence time between the two subspecies of 610,000-850,000 years. Substantial differences in the distribution of alleles at 10 of these loci were observed between zebu and taurine cattle. These markers subsequently proved very useful for investigations of gene flow and admixture in African populations. When these data were considered in conjunction with previous mitochondrial and Y chromosomal studies, a distinctive male-mediated pattern of zebu genetic introgression was revealed. The introgression of zebu-specific alleles in African cattle afforded a high resolution perspective on the hybrid nature of African cattle populations and also suggested that certain West African populations of valuable disease-tolerant taurine cattle are under threat of genetic absorption by migrating zebu herds.

540 citations


Journal ArticleDOI
01 Mar 1997-Genetics
TL;DR: The occurrence of divergent paralogues and recombinants in Gossypium, Nicotiana, Tripsacum, Winteraceae, and Zea ribosomal internal transcribed spacer (ITS) sequences is examined to aid in reconstructing ancestral states and thus serve as good outgroups for phylogenetics.
Abstract: Although nuclear ribosomal DNA (rDNA) repeats evolve together through concerted evolution, some genomes contain a considerable diversity of paralogous rDNA. This diversity includes not only multiple functional loci but also putative pseudogenes and recombinants. We examined the occurrence of divergent paralogues and recombinants in Gossypium, Nicotiana, Tripsacum, Winteraceae, and Zea ribosomal internal transcribed spacer (ITS) sequences. Some of the divergent paralogues are probably rDNA pseudogenes, since they have low predicted secondary structure stability, high substitution rates, and many deamination-driven substitutions at methylation sites. Under standard PCR conditions, the low stability paralogues amplified well, while many high-stability paralogues amplified poorly. Under highly denaturing PCR conditions (i.e., with dimethylsulfoxide), both low- and high-stability paralogues amplified well. We also found recombination between divergent paralogues. For phylogenetics, divergent ribosomal paralogues can aid in reconstructing ancestral states and thus serve as good outgroups. Divergent paralogues can also provide companion rDNA phylogenies. However, phylogeneticists must discriminate among families of divergent paralogues and recombinants or suffer from muddled and inaccurate organismal phylogenies.

512 citations


Journal ArticleDOI
01 Aug 1997-Genetics
TL;DR: The mapped distribution of the haplotypes indicates the probable routes of postglacial recolonization followed by oak populations that had persisted in southern refugia, especially in the Iberian peninsula, Italy and the Balkans.
Abstract: Patterns of chloroplast DNA (cpDNA) variation were studied in eight white oak species by sampling 345 populations throughout Europe. The detection of polymorphisms by restriction analysis of PCR-amplified cpDNA fragments allowed the identification of 23 haplotypes that were phylogenetically ordered. A systematic hybridization and introgression between the eight species studied is evident. The levels of subdivision for unordered (GST) and ordered (NST) alleles are very high and close (0.83 and 0.85). A new statistical approach to the quantitative study of phylogeography is presented, which relies on the coefficients of differentiation GST and NST and the Mantel's test. Based on pairwise comparisons between populations, the significance of the difference between both coefficients is evaluated at a global and a local scale. The mapped distribution of the haplotypes indicates the probable routes of postglacial recolonization followed by oak populations that had persisted in southern refugia, especially in the Iberian peninsula, Italy and the Balkans. Most cpDNA polymorphisms appear to be anterior to the beginning of the last recolonization. A subset of the preexisting haplotypes have merely expanded north, while others were left behind in the south.

511 citations


Journal ArticleDOI
01 May 1997-Genetics
TL;DR: The results suggest the possibility of concerted mechanisms for silencing unwanted germiline expression of repetitive sequences in Caenorhabditis elegans and the additional requirement for let-858 in the larval germline.
Abstract: In screening for embryonic-lethal mutations in Caenorhabditis elegans, we defined an essential gene (let-858) that encodes a nuclear protein rich in acidic and basic residues. We have named this product nucampholin. Closely homologous sequences in yeast, plants, and mammals demonstrate strong evolutionary conservation in eukaryotes. Nucampholin resides in all nuclei of C. elegans and is essential in early development and in differentiating tissue. Antisense-mediated depletion of LET-858 activity in early embryos causes a lethal phenotype similar to characterized treatments blocking embryonic gene expression. Using transgene-rescue, we demonstrated the additional requirement for let-858 in the larval germline. The broad requirements allowed investigation of soma-germline differences in gene expression. When introduced into standard transgene arrays, let-858 (like many other C. elegans genes) functions well in soma but poorly in germline. We observed incremental silencing of simple let-858 arrays in the first few generations following transformation and hypothesized that silencing might reflect recognition of arrays as repetitive or heterochromatin-like. To give the transgene a more physiological context, we included an excess of random genomic fragments with the injected DNA. The resulting transgenes show robust expression in both germline and soma. Our results suggest the possibility of concerted mechanisms for silencing unwanted germiline expression of repetitive sequences.

491 citations


Journal ArticleDOI
01 May 1997-Genetics
TL;DR: The long-term effective size, Ne, is derived from the demography by combining information about the ultimate contribution of each deme to the future genetic make-up of the population and Wright's FST's, allowing for differential deme fitness, variable emigration and immigration rates, extinction, colonization, and correlations across generations in these processes.
Abstract: This paper derives the long-term effective size, Ne, for a general model of population subdivision, allowing for differential deme fitness, variable emigration and immigration rates, extinction, colonization, and correlations across generations in these processes. We show that various long-term measures of Ne are equivalent. The effective size of a metapopulation can be expressed in a variety of ways. At a demographic equilibrium, Ne can be derived from the demography by combining information about the ultimate contribution of each deme to the future genetic make-up of the population and Wright's FST's. The effective size is given by Ne = 1/(1 + var (upsilon) ((1 - FST)/Nin), where n is the number of demes, theta i is the eventual contribution of individuals in deme i to the whole population (scaled such that sigma theta i = n), and denotes an average weighted by theta i. This formula is applied to a catastrophic extinction model (where sites are either empty or at carrying capacity) and to a metapopulation model with explicit dynamics, where extinction is caused by demographic stochasticity and by chaos. Contrary to the expectation from the standard island model, the usual effect of population subdivision is to decrease the effective size relative to a panmictic population living on the same resource.

459 citations


Journal ArticleDOI
01 Oct 1997-Genetics
TL;DR: It is hypothesized that in addition to the [PSI+] prion-determining domain in the Sup35p N-terminus, there is another self-propagating conformational determinant in the C-proximal part of Sup 35p and that this second prion is responsible for the Pin+ phenotype.
Abstract: It has previously been shown that yeast prion [PSI + ] is cured by GuHCl, although reports on reversibility of curing were contradictory. Here we show that GuHCl treatment of both [PSI + ] and [psi – ] yeast strains results in two classes of [psi – ] derivatives: Pin + , in which [PSI + ] can be reinduced by Sup35p overproduction, and Pin – , in which overexpression of the complete SUP35 gene does not lead to the [PSI + ] appearance. However, in both Pin + and Pin – derivatives [PSI + ] is reinduced by overproduction of a short Sup35p N-terminal fragment, thus, in principle, [PSI + ] curing remains reversible in both cases. Neither suppression nor growth inhibition caused by SUP35 overexpression in Pin + [psi – ] derivatives are observed in Pin – [psi – ] derivatives. Genetic analyses show that the Pin + phenotype is determined by a non-Mendelian factor, which, unlike the [PSI + ] prion, is independent of the Sup35p N-terminal domain. A Pin – [psi – ] derivative was also generated by transient inactivation of the heat shock protein, Hsp104, while [PSI + ] curing by Hsp104 overproduction resulted exclusively in Pin + [psi – ] derivatives. We hypothesize that in addition to the [PSI + ] prion-determining domain in the Sup35p N-terminus, there is another self-propagating conformational determinant in the C-proximal part of Sup35p and that this second prion is responsible for the Pin + phenotype.

455 citations


Journal ArticleDOI
01 Nov 1997-Genetics
TL;DR: It is suggested that genomic changes at the early stages of allopolyploidization, resulting in further divergence of homoeologous chromosomes, may provide the physical basis for the diploid-like meiotic behavior of polyploid wheat.
Abstract: To study genome evolution in allopolyploid plants, we analyzed polyploid wheats and their diploid progenitors for the occurrence of 16 low-copy chromosome- or genome-specific sequences isolated from hexaploid wheat. Based on their occurrence in the diploid species, we classified the sequences into two groups: group I, found in only one of the three diploid progenitors of hexaploid wheat, and group II, found in all three diploid progenitors. The absence of group II sequences from one genome of tetraploid wheat and from two genomes of hexaploid wheat indicates their specific elimination from these genomes at the polyploid level. Analysis of a newly synthesized amphiploid, having a genomic constitution analogous to that of hexaploid wheat, revealed a pattern of sequence elimination similar to the one found in hexaploid wheat. Apparently, speciation through allopolyploidy is accompanied by a rapid, nonrandom elimination of specific, low-copy, probably noncoding DNA sequences at the early stages of allopolyploidization, resulting in further divergence of homoeologous chromosomes (partially homologous chromosomes of different genomes carrying the same order of gene loci). We suggest that such genomic changes may provide the physical basis for the diploid-like meiotic behavior of polyploid wheat.

439 citations


Journal ArticleDOI
01 Feb 1997-Genetics
TL;DR: It is shown that epistasis is an important genetic basis for complex traits such as yield components, especially traits of low heritability such as GN and GWP, and reconsideration of optimal mapping methodology and marker-assisted breeding strategies for improvement of complex traits.
Abstract: The genetic basis for three grain yield components of rice, 1000 kernel weight (KW), grain number per panicle (GN), and grain weight per panicle (GWP), was investigated using restriction fragment length polymorphism markers and F4 progency testing from a cross between rice subspecies japonica (cultivar Lemont from USA) and indica (cv. Tequing from China). Following identification of 19 QTL affecting these traits, we investigated the role of epistasis in genetic control of these phenotypes. Among 63 markers distributed throughout the genome that appeared to be involved in 79 highly significant (P < 0.001) interactions, most (46 or 73%) did not appear to have "main" effects on the relevant traits, but influenced the trait(s) predominantly through interactions. These results indicate that epistasis is an important genetic basis for complex traits such as yield components, especially traits of low heritability such as GN and GWP. The identification of epistatic loci is an important step toward resolution of discrepancies between quantitative trait loci mapping and classical genetic dogma, contributes to better understanding of the persistence of quantitative genetic variation in populations, and impels reconsideration of optimal mapping methodology and marker-assisted breeding strategies for improvement of complex traits.

Journal ArticleDOI
01 Jul 1997-Genetics
TL;DR: Rates of instability increased more than two orders of magnitude as tracts increased in size from 15 to 99 bp in both wild-type and msh2 strains of Saccharomyces cerevisiae.
Abstract: One of the most common microsatellites in eukaryotes consists of tandem arrays [usually 15-50 base pairs (bp) in length] of the dinucleotide GT. We examined the rates of instability for poly GT tracts of 15, 33, 51, 99 and 105 bp in wild-type and mismatch repair-deficient strains of Saccharomyces cerevisiae. Rates of instability increased more than two orders of magnitude as tracts increased in size from 15 to 99 bp in both wild-type and msh2 strains. The types of alterations observed in long and short tracts in wild-type strains were different in two ways. First, tracts > or = 51 bp had significantly more large deletions than tracts < or = 33 bp. Second, for the 99- and 105-bp tracts, almost all events involving single repeats were additions; for the smaller tracts, both additions and deletions of single repeats were common.

Journal ArticleDOI
01 Mar 1997-Genetics
TL;DR: This paper describes an estimator of 4Nc, hereafter designated gamma (gamma), that was developed using a coalescent model for a sample of four DNA sequences with recombination, and the reliability of gamma was assessed using multiple coalescent simulations.
Abstract: Population genetic models often use a population recombination parameter 4Nc, where N is the effective population size and cis the recombination rate per generation In many ways 4Nc is comparable to 4Nu, the population mutation rate Both combine genome level and population level processes, and together they describe the rate of production of genetic variation in a population However, 4Nc is more difficult to estimate For a population sample of DNA sequences, historical recombination can only be detected if polymorphisms exist, and even then most recombination events are not detectable This paper describes an estimator of 4Nc, hereafter designated y (gamma), that was developed using a coalescent model for a sample of four DNA sequences with recombination The reliability of y was assessed using multiple coalescent simulations In general y has low to moderate bias, and the reliability of is comparable, though less, than that for a widely used estimator of 4Nu If there exists an independent estimate of the recombination rate (per generation, per base pair), y can be used to estimate the effective population size or the neutral mutation rate

Journal ArticleDOI
01 Mar 1997-Genetics
TL;DR: The expected numbers of different categories of polymorphic sites are derived for two related models of population history the isolation model, in which an ancestral population splits into two descendents, and the size-change model, where a single population undergoes an instantaneous change in size.
Abstract: The expected numbers of different categories of polymorphic sites are derived for two related models of population history: the isolation model, in which an ancestral population splits into two descendents, and the size-change model, in which a single population undergoes an instantaneous change in size. For the isolation model, the observed numbers of shared, fixed, and exclusive polymorphic sites are used to estimate the relative sizes of the three populations, ancestral plus two descendent, as well as the time of the split. For the size-change model, the numbers of sites segregating at particular frequencies in the sample are used to estimate the relative sizes of the ancestral and descendent populations plus the time the change took place. Parameters are estimated by choosing values that most closely equate expectations with observations. Computer simulations show that current and historical population parameters can be estimated accurately. The methods are applied to DNA data from two species of Drosophila and to some human mitochondrial DNA sequences.

Journal ArticleDOI
01 Dec 1997-Genetics
TL;DR: A large microsatellite data set from three species of bear (Ursidae) was used to empirically test the performance of six genetic distance measures in resolving relationships at a variety of scales ranging from adjacent areas in a continuous distribution to species that diverged several million years ago as discussed by the authors.
Abstract: A large microsatellite data set from three species of bear (Ursidae) was used to empirically test the performance of six genetic distance measures in resolving relationships at a variety of scales ranging from adjacent areas in a continuous distribution to species that diverged several million years ago. At the finest scale, while some distance measures performed extremely well, statistics developed specifically to accommodate the mutational processes of microsatellites performed relatively poorly, presumably because of the relatively higher variance of these statistics. At the other extreme, no statistic was able to resolve the close sister relationship of polar bears and brown bears from more distantly related pairs of species. This failure is most likely due to constraints on allele distributions at microsatellite loci. At intermediate scales, both within continuous distributions and in comparisons to insular populations of late Pleistocene origin, it was not possible to define the point where linearity was lost for each of the statistics, except that it is clearly lost after relatively short periods of independent evolution. All of the statistics were affected by the amount of genetic diversity within the populations being compared, significantly complicating the interpretation of genetic distance data.

Journal ArticleDOI
01 Jul 1997-Genetics
TL;DR: This work investigates the statistical properties of a measure of interlocus genetic associations under the assumption that mutations are selectively neutral and sites are completely linked, denoted ZnS, based on the squared correlation of allelic identity at pairs of polymorphic sites.
Abstract: The evolutionary processes governing variability within genomic regions of low recombination have been the focus of many studies. Here, I investigate the statistical properties of a measure of intrlocus genetic associations under the assumption that mutations are selectively neutral and sites are completely linked. This measure, denoted Z(nS), is based on the squared correlation of allelic identity at pairs of polymorphic sites. Upper bounds for Z(nS) are determined by simulations. Various deviations from the neutral model, including several different forms of natural selection, will inflate the value of Z(nS) relative to its neutral theory expectations. Larger than expected values of Z(nS) are observed in genetic samples from the yellow-ac-scute and Adh regions of Drosophila melanogaster.

Journal ArticleDOI
01 May 1997-Genetics
TL;DR: Most of the available natural isolates of the nematode Caenorhabditis elegans have been examined and compared with the standard laboratory wild type (Bristol N2), and properties and possible advantages of the plugging trait have been investigated.
Abstract: Most of the available natural isolates of the nematode Caenorhabditis elegans have been examined and compared with the standard laboratory wild type (Bristol N2). Molecular markers, in particular transposon restriction fragment length polymorphisms, were used to assign these isolates to 22 different races, for which brood size and spontaneous male frequency were determined. Several distinctive traits were observed in some of these races. One example is mab-23, in a race from Vancouver, which leads to severe distortion of male genitalia and prevents male mating. Another is gro-1, segregating in a Californian race, which is associated with slow growth, heat resistance and longevity. Many races differ from N2 in carrying a dominant allele at the plg-1 locus, causing copulatory plug formation by males. Properties and possible advantages of the plugging trait have been investigated. The dominant plg-1 allele does not lead to increased male mating efficiency, but males from a Stanford race (CB4855), in which the plugging trait was first observed, are much more virile than N2 males. Crosses between N2 and CB4855 indicate that the higher virility is due to multiple factors. Size differences between N2 and CB4855 are associated with factors mapping to LGV and LGX.

Journal ArticleDOI
01 Oct 1997-Genetics
TL;DR: Eighty-two genes with apparent perturbation of the cell surface were identified, with mutations in 65 of them displaying at least one further cell surface phenotype in addition to their modified sensitivity to calcofluor.
Abstract: The sequenced yeast genome offers a unique resource for the analysis of eukaryotic cell function and enables genome-wide screens for genes involved in cellular processes. We have identified genes involved in cell surface assembly by screening transposon-mutagenized cells for altered sensitivity to calcofluor white, followed by supplementary screens to further characterize mutant phenotypes. The mutated genes were directly retrieved from genomic DNA and then matched uniquely to a gene in the yeast genome database. Eighty-two genes with apparent perturbation of the cell surface were identified, with mutations in 65 of them displaying at least one further cell surface phenotype in addition to their modified sensitivity to calcofluor. Fifty of these genes were previously known, 17 encoded proteins whose function could be anticipated through sequence homology or previously recognized phenotypes and 15 genes had no previously known phenotype.

Journal ArticleDOI
01 May 1997-Genetics
TL;DR: Interestingly, each combination of double mutants between pad1-1, pad2-1 and pad3-1 exhibited additive shifts to moderate or full susceptibility to most of the isolates, indicating that PAD4 has a regulatory function.
Abstract: We are working to determine the role of the Arabidopsis phytoalexin, camalexin, in protecting the plant from pathogen attack by isolating phytoalexin-deficient (pad) mutants in the accession Columbia (Col-0) and examining their response to pathogens. Mutations in PAD1, PAD2, and PAD4 caused enhanced susceptibility to the bacterial pathogen Pseudomonas syringae pv. maculicola strain ES4326 (PsmES4326), while mutations in PAD3 or PAD5 did not. Camalexin was not detected in any of the double mutants pad1-1 pad2-1, pad1-1 pad3-1 or pad2-1 pad3-1. Growth of PsmES4326 in pad1-1 pad2-1 was greater than that in pad1-1 or pad2-1 plants, while growth in pad1-1 pad3-1 and pad2-1 pad3-1 plants was similar to that in pad1-1 and pad2-1 plants, respectively. The pad4-1 mutation caused reduced camalexin synthesis in response to PsmES4326 infection, but not in response to Cochliobolus carbonum infection, indicating that PAD4 has a regulatory function. PAD1, PAD2, PAD3 and PAD4 are all required for resistance to the eukaryotic biotroph Peronospora parasitica. The pad4-1 mutation caused the most dramatic change, exhibiting full susceptibility to four of six Col-incompatible parasite isolates. Interestingly, each combination of double mutants between pad1-1, pad2-1 and pad3-1 exhibited additive shifts to moderate or full susceptibility to most of the isolates.

Journal ArticleDOI
01 Nov 1997-Genetics
TL;DR: When several QTLs are monitored simultaneously, background selection among the limited number of individuals resulting from the foreground selection step accelerates the increase in genomic similarity with the recipient parent, with only limited costs.
Abstract: The use of molecular markers for the introgression of one or several superior QTL alleles into a recipient line is investigated using analytic and simulation results. The positions of the markers devoted to the control of the genotype at the QTLs in a "foreground selection" step are optimized given the confidence interval of the QTL position. Results demonstrate that using at least three markers per QTL allows a good control over several generations. Population sizes that should be recommended for various numbers of QTLs are calculated and are used to determine the limit in the number of QTLs that can be monitored simultaneously. If "background selection" devoted to accelerate the return to the recipient parent genotype outside the QTL regions is applied, the positions of the markers devoted to the control of the QTLs have to be reconsidered. When several QTLs are monitored simultaneously, background selection among the limited number of individuals resulting from the foreground selection step accelerates the increase in genomic similarity with the recipient parent, with only limited costs. Background selection is even more efficient in a pyramidal backcross program where QTLs are first monitored one by one.

Journal ArticleDOI
01 Dec 1997-Genetics
TL;DR: Replicate lineages of the bacteriophage phiX 174 adapted to growth at high temperature on either of two hosts exhibited high rates of identical, independent substitutions, which were higher during the initial period of adaptation than during a later period, except when the host was changed.
Abstract: Replicate lineages of the bacteriophage C#JX 174 adapted to growth at high temperature on either of two hosts exhibited high rates of identical, independent substitutions. Typically, a dozen or more substitutions accumulated in the 5.4kilobase genome during propagation. Across the entire data set of nine lineages, 119 independent substitutions occurred at 68 nucleotide sites. Over half of these substitutions, accounting for one third of the sites, were identical with substitutions in other lineages. Some convergent substitutions were specific to the host used for phage propagation, but others occurred across both hosts. Continued adaptation of an evolved phage at high temperature, but on the other host, led to additional changes that included reversions of previous substitutions. Phylogenetic reconstruction using the complete genome sequence not only failed to recover the correct evolutionary history because of these convergent changes, but the true history was rejected as being a significantly inferior fit to the data. Replicate lineages subjected to similar environmental challenges showed similar rates of substitution and similar rates of fitness improvement across corresponding times of adaptation. Substitution rates and fitness improvements were higher during the initial period of adaptation than during a later period, except when the host was changed.

Journal ArticleDOI
01 Dec 1997-Genetics
TL;DR: The findings suggest that RD30 participates in a novel error-free repair pathway dependent on RAD6 and RAD18, but independent of REV1, REV3,REV7 and RAD5.
Abstract: Damage-inducible mutagenesis in prokaryotes is largely dependent upon the activity of the UmuD'C-like proteins. Since many DNA repair processes are structurally and/or functionally conserved between prokaryotes and eukaryotes, we investigated the role of RAD30, a previously uncharacterized Saccharomyces cerevisiae DNA repair gene related to the Escherichia coli dinB, umuC and S. cerevisiae REV1 genes, in UV resistance and UV-induced mutagenesis. Similar to its prokaryotic homologues, RAD30 was found to be damage inducible. Like many S. cerevisiae genes involved in error-prone DNA repair, epistasis analysis clearly places RAD30 in the RAD6 group and rad30 mutants display moderate UV sensitivity reminiscent of rev mutants. However, unlike rev mutants, no defect in UV-induced reversion was seen in rad30 strains. While rad6 and rad18 are both epistatic to rad30, no epistasis was observed with rev1, rev3, rev7 or rad5, all of which are members of the RAD6 epistasis group. These findings suggest that RAD30 participates in a novel error-free repair pathway dependent on RAD6 and RAD18, but independent of REV1, REV3, REV7 and RAD5.

Journal ArticleDOI
01 Feb 1997-Genetics
TL;DR: It is found that when the allele frequencies in the population are already in equilibrium, then the genealogy does not differ much from the neutral case, and this is supported by rigorous results.
Abstract: We introduce the genealogy of a random sample of genes taken from a large haploid population that evolves according to random reproduction with selection and mutation. Without selection, the genealogy is described by Kingman's well-known coalescent process. In the selective case, the genealogy of the sample is embedded in a graph with a coalescing and branching structure. We describe this graph, called the ancestral selection graph, and point out differences and similarities with Kingman's coalescent. We present simulations for a two-allele model with symmetric mutation in which one of the alleles has a selective advantage over the other. We find that when the allele frequencies in the population are already in equilibrium, then the genealogy does not differ much from the neutral case. This is supported by rigorous results. Furthermore, we describe the ancestral selection graph for other selective models with finitely many selection classes, such as the K-allele models, infinitely-many-alleles models, DNA sequence models, and infinitely-many-sites models, and briefly discuss the diploid case.

Journal ArticleDOI
01 Jun 1997-Genetics
TL;DR: The results are shown to be approximate solutions to the diffusion equation describing changes in the probability of fixation over time and can be used to estimate the fixation flux, defined as the rate at which beneficial alleles fix within a population.
Abstract: The rate of adaptive evolution of a population ultimately depends on the rate of incorporation of beneficial mutations. Even beneficial mutations may, however, be lost from a population since mutant individuals may, by chance, fail to reproduce. In this paper, we calculate the probability of fixation of beneficial mutations that occur in populations of changing size. We examine a number of demographic models, including a population whose size changes once, a population experiencing exponential growth or decline, one that is experiencing logistic growth or decline, and a population that fluctuates in size. The results are based on a branching process model but are shown to be approximate solutions to the diffusion equation describing changes in the probability of fixation over time. Using the diffusion equation, the probability of fixation of deleterious alleles can also be determined for populations that are changing in size. The results developed in this paper can be used to estimate the fixation flux, defined as the rate at which beneficial alleles fix within a population. The fixation flux measures the rate of adaptive evolution of a population and, as we shall see, depends strongly on changes that occur in population size.

Journal ArticleDOI
01 Oct 1997-Genetics
TL;DR: Evidence for physical associations between Spt20/Ada5 and three other Spt proteins, suggesting that they exist in a complex named SAGA, which has multiple activities and plays critical roles in transcription by RNA polymerase II.
Abstract: The Saccharomyces cerevisiae transcription factor Spt20/Ada5 was originally identified by mutations that suppress Ty insertion alleles and by mutations that suppress the toxicity caused by Gal4-VP16 overexpression. Here we present evidence for physical associations between Spt20/Ada5 and three other Spt proteins, suggesting that they exist in a complex. A related study demonstrates that this complex also contains the histone acetyltransferase, Gcn5, and Ada2. This complex has been named SAGA (Spt/Ada/Gcn5 acetyltransferase). To identify functions that genetically interact with SAGA, we have screened for mutations that cause lethality in an spt20 delta/ada5 delta mutant. Our screen identified mutations in SNF2, SIN4, and GAL11. These mutations affect two known transcription complexes: Snf/Swi, which functions in nucleosome remodeling, and Srb/mediator, which is required for regulated transcription by RNA polymerase II. Systematic analysis has demonstrated that spt20 delta/ada5 delta and spt7 delta mutations cause lethality with every snf/swi and srb/mediator mutation tested. Furthermore, a gcn5 delta mutation causes severe sickness with snf/swi mutations, but not with srb/mediator mutations. These findings suggest that SAGA has multiple activities and plays critical roles in transcription by RNA polymerase II.

Journal ArticleDOI
01 Mar 1997-Genetics
TL;DR: Variation on the nonrecombining portion of the human Y chromosome is examined to investigate human evolution during the last 200,000 years, compatible with a variety of hypotheses, including multiple human migrations and range expansions.
Abstract: We examined variation on the nonrecombining portion of the human Y chromosome to investigate human evolution during the last 200,000 years. The Y-specific polymorphic sites included the Y Alu insertional polymorphism or "YAP" element (DYS287), the poly(A) tail associated with the YAP element, three point mutations in close association with the YAP insertion site, an A-G polymorphic transition (DYS271), and a tetranucleotide microsatellite (DYS19). Global variation at the five bi-allelic sites (DYS271, DYS287, and the three point mutations) gave rise to five "YAP haplotypes" in 60 populations from Africa, Europe, Asia, Australasia, and the New World (n = 1500). Combining the multi-allelic variation at the microsatellite loci (poly(A) tail and DYS19) with the YAP haplotypes resulted in a total of 27 "combination haplotypes". All five of the YAP haplotypes and 21 of the 27 combination haplotypes were found in African populations, which had greater haplotype diversity than did populations from other geographical locations. Only subsets of the five YAP haplotypes were found outside of Africa. Patterns of observed variation were compatible with a variety of hypotheses, including multiple human migrations and range expansions.

Journal ArticleDOI
01 Oct 1997-Genetics
TL;DR: It is concluded that selection for recombination will be substantial only if there is tight linkage within the genome or if many loci are subject to directional selection as during periods of rapid evolutionary change.
Abstract: One of the oldest hypotheses for the advantage of recombination is that recombination allows beneficial mutations that arise in different individuals to be placed together on the same chromosome. Unless recombination occurs, one of the beneficial alleles is doomed to extinction, slowing the rate at which adaptive mutations are incorporated within a population. We model the effects of a modifier of recombination on the fixation probability of beneficial mutations when beneficial alleles are segregating at other loci. We find that modifier alleles that increase recombination do increase the fixation probability of beneficial mutants and subsequently hitchhike along as the mutants rise in frequency. The strength of selection favoring a modifier that increases recombination is proportional to λ 2 S δ r / r when linkage is tight and λ 2 S 3 δ r / N when linkage is loose, where λ is the beneficial mutation rate per genome per generation throughout a population of size N, S is the average mutant effect, r is the average recombination rate, and δ r is the amount that recombination is modified. We conclude that selection for recombination will be substantial only if there is tight linkage within the genome or if many loci are subject to directional selection as during periods of rapid evolutionary change.

Journal ArticleDOI
01 May 1997-Genetics
TL;DR: Genetic and molecular tests confirmed that sexually heritable transformation was associated with integration at the homologous site in the recipient micronuclear chromosome.
Abstract: Mating Tetrahymena thermophila were bombarded with ribosomal DNA-coated particles at various times in development. Both macronuclear and micronuclear transformants were recovered. Optimal developmental stages for transformation occurred during meiosis for the micronucleus and during anlagen formation for the macronucleus. Evidence is given for transient retention of the introduced plasmid. Genetic and molecular tests confirmed that sexually heritable transformation was associated with integration at the homologous site in the recipient micronuclear chromosome.

Journal ArticleDOI
01 Jul 1997-Genetics
TL;DR: It is indicated that RGA lies on a separate branch of the GA signal transduction pathway from SPY, which leads us to propose a modified model of theGA response pathway.
Abstract: We have identified a new locus involved in gibberellin (GA) signal transduction by screening for suppressors of the Arabidopsis thaliana GA biosynthetic mutant ga1-3. The locus is named RGA for repressor of ga1-3. Based on the recessive phenotype of the digenic rga/ga1-3 mutant, the wild-type gene product of RGA is probably a negative regulator of GA responses. Our screen for suppressors of ga1-3 identified 17 mutant alleles of RGA as well as 10 new mutant alleles at the previously identified SPY locus. The digenic (double homozygous) rga/ga1-3 mutants are able to partially repress several defects of ga1-3 including stem growth, leaf abaxial trichome initiation, flowering time, and apical dominance. The phenotype of the trigenic mutant (triple homozygous) rga/spy/ga1-3 shows that rga and spy have additive effects regulating flowering time, abaxial leaf trichome initiation and apical dominance. This trigenic mutant is similar to wild type with respect to each of these developmental events. Because rga/spy/ga1-3 is almost insensitive to GA for hypocotyl growth and its bolting stem is taller than the wild-type plant, the combined effects of the rga and spy mutations appear to allow GA-independent stem growth. Our studies indicate that RGA lies on a separate branch of the GA signal transduction pathway from SPY, which leads us to propose a modified model of the GA response pathway.

Journal ArticleDOI
01 Jul 1997-Genetics
TL;DR: The results suggest that two major QTLs identified in B. rapa correspond to two genes (FLC and FRI) that regulate flowering time in the latest flowering ecotypes of Arabidopsis.
Abstract: The major difference between annual and biennial cultivars of oilseed Brassica napus and B. rapa is conferred by genes controlling vernalization-responsive flowering time. These genes were compared between the species by aligning the map positions of flowering time quantitative trait loci (QTLs) detected in a segregating population of each species. The results suggest that two major QTLs identified in B. rapa correspond to two major QTLs identified in B. napus. Since B. rapa is one of the hypothesized diploid parents of the amphidiploid B. napus, the vernalization requirement of B. napus probably originated from B. rapa. Brassica genes also were compared to flowering time genes in Arabidopsis thaliana by mapping RFLP loci with the same probes in both B. napus and Arabidopsis. The region containing one pair of Brassica QTLs was collinear with the top of chromosome 5 in A. thaliana where flowering time genes FLC, FY and CO are located. The region containing the second pair of QTLs showed fractured collinearity with several regions of the Arabidopsis genome, including the top of chromosome 4 where FRI is located. Thus, these Brassica genes may correspond to two genes (FLC and FRI) that regulate flowering time in the latest flowering ecotypes of Arabidopsis.