scispace - formally typeset
Search or ask a question

Showing papers in "Genetics in 2002"


Journal ArticleDOI
01 Dec 2002-Genetics
TL;DR: A key advantage of the method is that the nuisance parameters are automatically integrated out in the simulation step, so that the large numbers of nuisance parameters that arise in population genetics problems can be handled without difficulty.
Abstract: We propose a new method for approximate Bayesian statistical inference on the basis of summary statistics. The method is suited to complex problems that arise in population genetics, extending ideas developed in this setting by earlier authors. Properties of the posterior distribution of a parameter, such as its mean or density curve, are approximated without explicit likelihood calculations. This is achieved by fitting a local-linear regression of simulated parameter values on simulated summary statistics, and then substituting the observed summary statistics into the regression equation. The method combines many of the advantages of Bayesian statistical inference with the computational efficiency of methods based on summary statistics. A key advantage of the method is that the nuisance parameters are automatically integrated out in the simulation step, so that the large numbers of nuisance parameters that arise in population genetics problems can be handled without difficulty. Simulation results indicate computational and statistical efficiency that compares favorably with those of alternative methods previously proposed in the literature. We also compare the relative efficiency of inferences obtained using methods based on summary statistics with those obtained directly from the data using MCMC.

2,734 citations


Journal ArticleDOI
01 Mar 2002-Genetics
TL;DR: A statistical method for identifying species hybrids using data on multiple, unlinked markers using the framework of Bayesian model-based clustering to compute the posterior probability that each individual belongs to each of the distinct hybrid classes.
Abstract: We present a statistical method for identifying species hybrids using data on multiple, unlinked markers. The method does not require that allele frequencies be known in the parental species nor that separate, pure samples of the parental species be available. The method is suitable for both markers with fixed allelic differences between the species and markers without fixed differences. The probability model used is one in which parentals and various classes of hybrids (F 1 9s, F 2 9s, and various backcrosses) form a mixture from which the sample is drawn. Using the framework of Bayesian model-based clustering allows us to compute, by Markov chain Monte Carlo, the posterior probability that each individual belongs to each of the distinct hybrid classes. We demonstrate the method on allozyme data from two species of hybridizing trout, as well as on two simulated data sets.

1,353 citations


Journal ArticleDOI
01 Jul 2002-Genetics
TL;DR: A Bayesian statistical inference approach to the joint estimation of mutation rate and population size that incorporates the uncertainty in the genealogy of such temporally spaced sequences by using Markov chain Monte Carlo (MCMC) integration.
Abstract: Molecular sequences obtained at different sampling times from populations of rapidly evolving pathogens and from ancient subfossil and fossil sources are increasingly available with modern sequencing technology. Here, we present a Bayesian statistical inference approach to the joint estimation of mutation rate and population size that incorporates the uncertainty in the genealogy of such temporally spaced sequences by using Markov chain Monte Carlo (MCMC) integration. The Kingman coalescent model is used to describe the time structure of the ancestral tree. We recover information about the unknown true ancestral coalescent tree, population size, and the overall mutation rate from temporally spaced data, that is, from nucleotide sequences gathered at different times, from different individuals, in an evolving haploid population. We briefly discuss the methodological implications and show what can be inferred, in various practically relevant states of prior knowledge. We develop extensions for exponentially growing population size and joint estimation of substitution model parameters. We illustrate some of the important features of this approach on a genealogy of HIV-1 envelope (env) partial sequences.

1,000 citations


Journal ArticleDOI
01 Jul 2002-Genetics
TL;DR: Designing a pair of ZFNs that recognize a unique site in the yellow (y) gene of Drosophila led to somatic mutations specifically in the y gene, exactly the types of alterations expected from nonhomologous end joining (NHEJ) following double-strand cleavage of the target.
Abstract: Zinc-finger nucleases (ZFNs) are hybrids between a nonspecific DNA-cleavage domain and a DNA-binding domain composed of Cys(2)His(2) zinc fingers. Because zinc fingers can be manipulated to recognize a broad range of sequences, these enzymes have the potential to direct cleavage to arbitrarily chosen targets. We have tested this idea by designing a pair of ZFNs that recognize a unique site in the yellow (y) gene of Drosophila. When these nucleases were expressed in developing larvae, they led to somatic mutations specifically in the y gene. These somatic mosaics were observed in approximately one-half of the males expressing both nucleases. Germline y mutations were recovered from 5.7% of males, but from none of the females, tested. DNA sequences were determined and showed that all of the mutations were small deletions and/or insertions located precisely at the designed target. These are exactly the types of alterations expected from nonhomologous end joining (NHEJ) following double-strand cleavage of the target. This approach promises to permit generation of directed mutations in many types of cells and organisms.

839 citations


Journal ArticleDOI
01 Jul 2002-Genetics
TL;DR: It is shown that the tissues of aging worms have a characteristic appearance that is easy to recognize and quantify using Nomarski optics, and this suggests that heat-shock proteins, many of which act as chaperones, may function in normal animals to slow the rate of aging.
Abstract: The genetic analysis of life span has revealed many interesting genes and pathways; however, our understanding of aging has been limited by the lack of a way to assay the aging process itself. Here we show that the tissues of aging worms have a characteristic appearance that is easy to recognize and quantify using Nomarski optics. We have used this assay to determine whether life-span mutations affect the rate of aging, to identify animals that age more rapidly than normal, and to infer the cause of death in C. elegans. Mutations that reduce insulin/IGF-1 signaling double the life span of C. elegans, and we find that tissue decline is slowed in these mutants. Thus this endocrine system appears to influence the rate at which tissues age. This effect extends even to the germline, which is the only mitotically active tissue in the adult. We find that Nomarski microscopy also allows a ready distinction between short-lived mutants that age more rapidly than normal and those that are simply sick, and we have identified an RNAi clone that confers a dramatic rapid-aging phenotype. This clone encodes the C. elegans heat-shock factor (HSF), a transcription factor that regulates the response to heat and oxidative stress. This suggests that heat-shock proteins, many of which act as chaperones, may function in normal animals to slow the rate of aging. Finally, we have identified a cause of death of C. elegans: namely, proliferating bacteria. This suggests that increased susceptibility to bacterial infections contributes to mortality in these animals, just as it does in humans.

774 citations


Journal ArticleDOI
01 Mar 2002-Genetics
TL;DR: The extremely high level of recombination detected in both HIV1 and HIV2 sequences demonstrates that recombination cannot be ignored in the analysis of viral population genetic data and develops a powerful permutation-based method for detecting recombination that is both more powerful and robust to misspecification of the model of sequence evolution.
Abstract: Determining the amount of recombination in the genealogical history of a sample of genes is important to both evolutionary biology and medical population genetics. However, recurrent mutation can produce patterns of genetic diversity similar to those generated by recombination and can bias estimates of the population recombination rate. Hudson 2001 has suggested an approximate-likelihood method based on coalescent theory to estimate the population recombination rate, 4N(e)r, under an infinite-sites model of sequence evolution. Here we extend the method to the estimation of the recombination rate in genomes, such as those of many viruses and bacteria, where the rate of recurrent mutation is high. In addition, we develop a powerful permutation-based method for detecting recombination that is both more powerful than other permutation-based methods and robust to misspecification of the model of sequence evolution. We apply the method to sequence data from viruses, bacteria, and human mitochondrial DNA. The extremely high level of recombination detected in both HIV1 and HIV2 sequences demonstrates that recombination cannot be ignored in the analysis of viral population genetic data.

698 citations


Journal ArticleDOI
01 Feb 2002-Genetics
TL;DR: This work investigated the patterns of genetic variation along a recombining chromosome by constructing ancestral recombination graphs that are modified to incorporate the effect of genetic hitchhiking, and proposed a statistical method to test the significance of a local reduction of variation and a skew of the frequency spectrum caused by a hitchhiker event.
Abstract: The theory of genetic hitchhiking predicts that the level of genetic variation is greatly reduced at the site of strong directional selection and increases as the recombinational distance from the site of selection increases. This characteristic pattern can be used to detect recent directional selection on the basis of DNA polymorphism data. However, the large variance of nucleotide diversity in samples of moderate size imposes difficulties in detecting such patterns. We investigated the patterns of genetic variation along a recombining chromosome by constructing ancestral recombination graphs that are modified to incorporate the effect of genetic hitchhiking. A statistical method is proposed to test the significance of a local reduction of variation and a skew of the frequency spectrum caused by a hitchhiking event. This method also allows us to estimate the strength and the location of directional selection from DNA sequence data.

657 citations


Journal ArticleDOI
01 Mar 2002-Genetics
TL;DR: A new estimator for jointly estimating two- and four-gene coefficients of relatedness between individuals from an outbreeding population with data on codominant genetic markers is proposed and compared to previous estimators, the new one is generally advantageous, especially for highly polymorphic loci and/or small sample sizes.
Abstract: I propose a new estimator for jointly estimating two-gene and four-gene coefficients of relatedness between individuals from an outbreeding population with data on codominant genetic markers and compare it, by Monte Carlo simulations, to previous ones in precision and accuracy for different distributions of population allele frequencies, numbers of alleles per locus, actual relationships, sample sizes, and proportions of relatives included in samples. In contrast to several previous estimators, the new estimator is well behaved and applies to any number of alleles per locus and any allele frequency distribution. The estimates for two- and four-gene coefficients of relatedness from the new estimator are unbiased irrespective of the sample size and have sampling variances decreasing consistently with an increasing number of alleles per locus to the minimum asymptotic values determined by the variation in identity-by-descent among loci per se, regardless of the actual relationship. The new estimator is also robust for small sample sizes and for unknown relatives being included in samples for estimating allele frequencies. Compared to previous estimators, the new one is generally advantageous, especially for highly polymorphic loci and/or small sample sizes.

650 citations


Journal ArticleDOI
01 Apr 2002-Genetics
TL;DR: Findings show that wide hybridization and chromosome doubling affect gene expression via genetic and epigenetic alterations immediately upon allopolyploid formation and contribute to the genetic diploidization of newly formed allopoly Ploidy in wheat.
Abstract: We analyzed the events that affect gene structure and expression in the early stages of allopolyploidy in wheat. The transcriptome response was studied by analyzing 3072 transcripts in the first generation of a synthetic allotetraploid (genome S l S l A m A m ), which resembles tetraploid wheat (genome BBAA), and in its two diploid progenitors Aegilops sharonensis (S l S l ) and Triticum monococcum ssp. aegilopoides (A m A m ). The expression of 60 out of 3072 transcripts was reproducibly altered in the allotetraploid: 48 transcripts disappeared and 12 were activated. Transcript disappearance was caused by gene silencing or by gene loss. Gene silencing affected one or both homeologous loci and was associated in part with cytosine methylation. Gene loss or methylation had occurred already in the F 1 intergeneric hybrid or in the allotetraploid, depending on the locus. The silenced/lost genes included rRNA genes and genes involved in metabolism, disease resistance, and cell cycle regulation. The activated genes with a known function were all retroelements. These findings show that wide hybridization and chromosome doubling affect gene expression via genetic and epigenetic alterations immediately upon allopolyploid formation. These events contribute to the genetic diploidization of newly formed allopolyploids.

600 citations


Journal ArticleDOI
01 Mar 2002-Genetics
TL;DR: This work shows that the rate of fixation of advantageous mutations may have increased in the recent past, and suggests that positive directional selection may be widespread in both Drosophila and humans.
Abstract: In Drosophila and humans, there are accumulating examples of loci with a significant excess of high-frequency-derived alleles or high levels of linkage disequilibrium, relative to a neutral model of a random-mating population of constant size. These are features expected after a recent selective sweep. Their prevalence suggests that positive directional selection may be widespread in both species. However, as I show here, these features do not persist long after the sweep ends: The high-frequency alleles drift to fixation and no longer contribute to polymorphism, while linkage disequilibrium is broken down by recombination. As a result, loci chosen without independent evidence of recent selection are not expected to exhibit either of these features, even if they have been affected by numerous sweeps in their genealogical history. How then can we explain the patterns in the data? One possibility is population structure, with unequal sampling from different subpopulations. Alternatively, positive selection may not operate as is commonly modeled. In particular, the rate of fixation of advantageous mutations may have increased in the recent past.

511 citations


Journal ArticleDOI
01 Jun 2002-Genetics
TL;DR: For both MnSOD and Cu/ZnSOD lines, increased life span was not associated with decreased metabolic activity, as measured by O2 consumption, and was consistent with previous observations that catalase is present in excess in the adult fly with regard to life span.
Abstract: A transgenic system ("FLP-out") based on yeast FLP recombinase allowed induced overexpression of MnSOD enzyme in adult Drosophila melanogaster. With FLP-out a brief heat pulse (HP) of young, adult flies triggered the rearrangement and subsequent expression of a MnSOD transgene throughout the adult life span. Control (no HP) and overexpressing (HP) flies had identical genetic backgrounds. The amount of MnSOD enzyme overexpression achieved varied among six independent transgenic lines, with increases up to 75%. Life span was increased in proportion to the increase in enzyme. Mean life span was increased by an average of 16%, with some lines showing 30-33% increases. Maximum life span was increased by an average of 15%, with one line showing as much as 37% increase. Simultaneous overexpression of catalase with MnSOD had no added benefit, consistent with previous observations that catalase is present in excess in the adult fly with regard to life span. Cu/ZnSOD overexpression also increases mean and maximum life span. For both MnSOD and Cu/ZnSOD lines, increased life span was not associated with decreased metabolic activity, as measured by O2 consumption.

Journal ArticleDOI
01 Jan 2002-Genetics
TL;DR: A maximum-likelihood approach that minimizes errors by estimating genotype reliability and strategically directing replication at loci most likely to harbor errors is developed, and can incorporate additional error-generating processes as they become more clearly understood.
Abstract: A growing number of population genetic studies utilize nuclear DNA microsatellite data from museum specimens and noninvasive sources. Genotyping errors are elevated in these low quantity DNA sources, potentially compromising the power and accuracy of the data. The most conservative method for addressing this problem is effective, but requires extensive replication of individual genotypes. In search of a more efficient method, we developed a maximum-likelihood approach that minimizes errors by estimating genotype reliability and strategically directing replication at loci most likely to harbor errors. The model assumes that false and contaminant alleles can be removed from the dataset and that the allelic dropout rate is even across loci. Simulations demonstrate that the proposed method marks a vast improvement in efficiency while maintaining accuracy. When allelic dropout rates are low (0-30%), the reduction in the number of PCR replicates is typically 40-50%. The model is robust to moderate violations of the even dropout rate assumption. For datasets that contain false and contaminant alleles, a replication strategy is proposed. Our current model addresses only allelic dropout, the most prevalent source of genotyping error. However, the developed likelihood framework can incorporate additional error-generating processes as they become more clearly understood.

Journal ArticleDOI
01 Aug 2002-Genetics
TL;DR: A new statistical infrastructure for mapping quantitative trait loci (QTL) underlying the character process, and a maximum-likelihood approach based on a logistic-mixture model, implemented with the EM algorithm, is developed to provide the estimates of QTL positions, QTL effects, and other model parameters responsible for growth trajectories.
Abstract: Unlike a character measured at a finite set of landmark points, function-valued traits are those that change as a function of some independent and continuous variable. These traits, also called infinite-dimensional characters, can be described as the character process and include a number of biologically, economically, or biomedically important features, such as growth trajectories, allometric scalings, and norms of reaction. Here we present a new statistical infrastructure for mapping quantitative trait loci (QTL) underlying the character process. This strategy, termed functional mapping, integrates mathematical relationships of different traits or variables within the genetic mapping framework. Logistic mapping proposed in this article can be viewed as an example of functional mapping. Logistic mapping is based on a universal biological law that for each and every living organism growth over time follows an exponential growth curve (e.g., logistic or S-shaped). A maximum-likelihood approach based on a logistic-mixture model, implemented with the EM algorithm, is developed to provide the estimates of QTL positions, QTL effects, and other model parameters responsible for growth trajectories. Logistic mapping displays a tremendous potential to increase the power of QTL detection, the precision of parameter estimation, and the resolution of QTL localization due to the small number of parameters to be estimated, the pleiotropic effect of a QTL on growth, and/or residual correlations of growth at different ages. More importantly, logistic mapping allows for testing numerous biologically important hypotheses concerning the genetic basis of quantitative variation, thus gaining an insight into the critical role of development in shaping plant and animal evolution and domestication. The power of logistic mapping is demonstrated by an example of a forest tree, in which one QTL affecting stem growth processes is detected on a linkage group using our method, whereas it cannot be detected using current methods. The advantages of functional mapping are also discussed.

Journal ArticleDOI
01 May 2002-Genetics
TL;DR: The method was used to fine map a QTL for twinning rate in cattle, previously mapped on chromosome 5 by linkage analysis, and was expected to be robust against multiple genes affecting the trait, multiple mutations at the QTL, and relatively low marker density.
Abstract: A novel and robust method for the fine-scale mapping of genes affecting complex traits, which combines linkage and linkage-disequilibrium information, is proposed. Linkage information refers to recombinations within the marker-genotyped generations and linkage disequilibrium to historical recombinations before genotyping started. The identity-by-descent (IBD) probabilities at the quantitative trait locus (QTL) between first generation haplotypes were obtained from the similarity of the marker alleles surrounding the QTL, whereas IBD probabilities at the QTL between later generation haplotypes were obtained by using the markers to trace the inheritance of the QTL. The variance explained by the QTL is estimated by residual maximum likelihood using the correlation structure defined by the IBD probabilities. Unlinked background genes were accounted for by fitting a polygenic variance component. The method was used to fine map a QTL for twinning rate in cattle, previously mapped on chromosome 5 by linkage analysis. The data consisted of large half-sib families, but the method could also handle more complex pedigrees. The likelihood of the putative QTL was very small along most of the chromosome, except for a sharp likelihood peak in the ninth marker bracket, which positioned the QTL within a region <1 cM in the middle part of bovine chromosome 5. The method was expected to be robust against multiple genes affecting the trait, multiple mutations at the QTL, and relatively low marker density.

Journal ArticleDOI
01 May 2002-Genetics
TL;DR: A working model predicts that modification of cell cycle control of CLP production is an important determinant of the phenotypic innovation, indicating a complex genotype-phenotype map.
Abstract: A central feature of all adaptive radiations is morphological divergence, but the phenotypic innovations that are responsible are rarely known. When selected in a spatially structured environment, populations of the bacterium Pseudomonas fluorescens rapidly diverge. Among the divergent morphs is a mutant type termed “wrinkly spreader” (WS) that colonizes a new niche through the formation of self-supporting biofilms. Loci contributing to the primary phenotypic innovation were sought by screening a WS transposon library for niche-defective (WS-) mutants. Detailed analysis of one group of mutants revealed an operon of 10 genes encoding enzymes necessary to produce a cellulose-like polymer (CLP). WS genotypes overproduce CLP and overproduction of the polymer is necessary for the distinctive morphology of WS colonies; it is also required for biofilm formation and to maximize fitness in spatially structured microcosms, but overproduction of CLP alone is not sufficient to cause WS. A working model predicts that modification of cell cycle control of CLP production is an important determinant of the phenotypic innovation. Analysis of >30 kb of DNA encoding traits required for expression of the WS phenotype, including a regulatory locus, has not revealed the mutational causes, indicating a complex genotype-phenotype map.

Journal ArticleDOI
01 Nov 2002-Genetics
TL;DR: Comparison of the phenotypes of plants that overexpress BEE1 with bee1 bee2 bee3 triple-knockout mutant plants suggests that BEE 1, BEE2, and BEE3 are functionally redundant positive regulators of BR signaling.
Abstract: Brassinosteroids (BRs) are a class of polyhydroxylated steroids that are important regulators of plant growth and development. We have identified three closely related basic helix-loop-helix (bHLH) transcription factors, BEE1, BEE2, and BEE3, as products of early response genes required for full BR response. Comparison of the phenotypes of plants that overexpress BEE1 with bee1 bee2 bee3 triple-knockout mutant plants suggests that BEE1, BEE2, and BEE3 are functionally redundant positive regulators of BR signaling. Expression of BEE1, BEE2, and BEE3 is also regulated by other hormones, notably abscisic acid (ABA), a known antagonist of BR signaling. Reduced ABA response in plants overexpressing BEE1 suggests that BEE proteins may function as signaling intermediates in multiple pathways.

Journal ArticleDOI
01 Dec 2002-Genetics
TL;DR: RNA in situ hybridization showed that tb1 was expressed in maize axillary meristems and in stamens of ear primordia, consistent with a function of suppressing growth of these tissues.
Abstract: The evolution of domesticated maize from its wild ancestor teosinte is a dramatic example of the effect of human selection on agricultural crops. Maize has one dominant axis of growth, whereas teosinte is highly branched. The axillary branches in maize are short and feminized whereas the axillary branches of teosinte are long and end in a male inflorescence under normal growth conditions. Previous QTL and molecular analysis suggested that the teosinte branched1 (tb1) gene of maize contributed to the architectural difference between maize and teosinte. tb1 mutants of maize resemble teosinte in their overall architecture. We analyzed the tb1 mutant phenotype in more detail and showed that the highly branched phenotype was due to the presence of secondary and tertiary axillary branching, as well as to an increase in the length of each node, rather than to an increase in the number of nodes. Double-mutant analysis with anther ear1 and tassel seed2 revealed that the sex of the axillary inflorescence was not correlated with its length. RNA in situ hybridization showed that tb1 was expressed in maize axillary meristems and in stamens of ear primordia, consistent with a function of suppressing growth of these tissues. Expression in teosinte inflorescence development suggests a role in pedicellate spikelet suppression. Our results provide support for a role for tb1 in growth suppression and reveal the specific tissues where suppression may occur.

Journal ArticleDOI
01 Jul 2002-Genetics
TL;DR: On the basis of the directionality of QTL, strong directional selection for increased achene size appears to have played a central role in sunflower domestication, and none of the other traits show similar evidence of selection.
Abstract: Quantitative trait loci (QTL) controlling phenotypic differences between cultivated sunflower and its wild progenitor were investigated in an F(3) mapping population. Composite interval mapping revealed the presence of 78 QTL affecting the 18 quantitative traits of interest, with 2-10 QTL per trait. Each QTL explained 3.0-68.0% of the phenotypic variance, although only 4 (corresponding to 3 of 18 traits) had effects >25%. Overall, 51 of the 78 QTL produced phenotypic effects in the expected direction, and for 13 of 18 traits the majority of QTL had the expected effect. Despite being distributed across 15 of the 17 linkage groups, there was a substantial amount of clustering among QTL controlling different traits. In several cases, regions influencing multiple traits harbored QTL with antagonistic effects, producing a cultivar-like phenotype for some traits and a wild-like phenotype for others. On the basis of the directionality of QTL, strong directional selection for increased achene size appears to have played a central role in sunflower domestication. None of the other traits show similar evidence of selection. The occurrence of numerous wild alleles with cultivar-like effects, combined with the lack of major QTL, suggests that sunflower was readily domesticated.

Journal ArticleDOI
01 May 2002-Genetics
TL;DR: Comparison of QTL for herbivory, glucosinolates, and myrosinase showed that specialist insects may overcome host plant chemical defenses, whereas generalists will be sensitive to these same defenses.
Abstract: Evolutionary interactions among insect herbivores and plant chemical defenses have generated systems where plant compounds have opposing fitness consequences for host plants, depending on attack by various insect herbivores. This interplay complicates understanding of fitness costs and benefits of plant chemical defenses. We are studying the role of the glucosinolate-myrosinase chemical defense system in protecting Arabidopsis thaliana from specialist and generalist insect herbivory. We used two Arabidopsis recombinant inbred populations in which we had previously mapped QTL controlling variation in the glucosinolate-myrosinase system. In this study we mapped QTL controlling resistance to specialist (Plutella xylostella) and generalist (Trichoplusia ni) herbivores. We identified a number of QTL that are specific to one herbivore or the other, as well as a single QTL that controls resistance to both insects. Comparison of QTL for herbivory, glucosinolates, and myrosinase showed that T. ni herbivory is strongly deterred by higher glucosinolate levels, faster breakdown rates, and specific chemical structures. In contrast, P. xylostella herbivory is uncorrelated with variation in the glucosinolate-myrosinase system. This agrees with evolutionary theory stating that specialist insects may overcome host plant chemical defenses, whereas generalists will be sensitive to these same defenses.

Journal ArticleDOI
01 Aug 2002-Genetics
TL;DR: Comparison of the relative distributions of the types of rearrangements that distinguish pairs of solanaceous species indicates that the frequency of different chromosomal structural changes was not constant over evolutionary time, and suggests that genomes in Solanaceae are evolving at a moderate pace compared to other plant species.
Abstract: A molecular genetic linkage map based on tomato cDNA, genomic DNA, and EST markers was constructed for eggplant, Solanum melongena. The map consists of 12 linkage groups, spans 1480 cM, and contains 233 markers. Comparison of the eggplant and tomato maps revealed conservation of large tracts of colinear markers, a common feature of genome evolution in the Solanaceae and other plant families. Overall, eggplant and tomato were differentiated by 28 rearrangements, which could be explained by 23 paracentric inversions and five translocations during evolution from the species' last common ancestor. No pericentric inversions were detected. Thus, it appears that paracentric inversion has been the primary mechanism for chromosome evolution in the Solanaceae. Comparison of relative distributions of the types of rearrangements that distinguish pairs of solanaceous species also indicates that the frequency of different chromosomal structural changes was not constant over evolutionary time. On the basis of the number of chromosomal disruptions and an approximate divergence time for Solanum, approximately 0.19 rearrangements per chromosome per million years occurred during the evolution of eggplant and tomato from their last ancestor. This result suggests that genomes in Solanaceae, or at least in Solanum, are evolving at a moderate pace compared to other plant species.

Journal ArticleDOI
01 Dec 2002-Genetics
TL;DR: In this paper, a representative pathogen, M. tuberculosis sensu stricto, was genotyped on the basis of 230 synonymous (silent) single nucleotide polymorphisms (sSNPs) identified by comparison of four genome sequences.
Abstract: Several human pathogens (e.g., Bacillus anthracis, Yersinia pestis, Bordetella pertussis, Plasmodium falciparum, and Mycobacterium tuberculosis) have very restricted unselected allelic variation in structural genes, which hinders study of the genetic relationships among strains and strain-trait correlations. To address this problem in a representative pathogen, 432 M. tuberculosis complex strains from global sources were genotyped on the basis of 230 synonymous (silent) single nucleotide polymorphisms (sSNPs) identified by comparison of four genome sequences. Eight major clusters of related genotypes were identified in M. tuberculosis sensu stricto, including a single cluster representing organisms responsible for several large outbreaks in the United States and Asia. All M. tuberculosis sensu stricto isolates of previously unknown phylogenetic position could be rapidly and unambiguously assigned to one of the eight major clusters, thus providing a facile strategy for identifying organisms that are clonally related by descent. Common clones of M. tuberculosis sensu stricto and M. bovis are distinct, deeply branching genotypic complexes whose extant members did not emerge directly from one another in the recent past. sSNP genotyping rapidly delineates relationships among closely related strains of pathogenic microbes and allows construction of genetic frameworks for examining the distribution of biomedically relevant traits such as virulence, transmissibility, and host range.

Journal ArticleDOI
01 Nov 2002-Genetics
TL;DR: Four Brassica rapa homologs (BrFLC) of the MADS-box flowering-time regulator FLC appear to have a similar function and interact in an additive manner to modulate flowering time, and are more closely related to FLC than to AGL31.
Abstract: Functional genetic redundancy is widespread in plants and could have an important impact on phenotypic diversity if the multiple gene copies act in an additive or dosage-dependent manner. We have cloned four Brassica rapa homologs (BrFLC) of the MADS-box flowering-time regulator FLC, located at the top of chromosome 5 of Arabidopsis thaliana. Relative rate tests revealed no evidence for differential rates of evolution and the ratios of nonsynonymous-to-synonymous substitutions suggest BrFLC loci are not under strong purifying selection. BrFLC1, BrFLC2, and BrFLC3 map to genomic regions that are collinear with the top of At5, consistent with a polyploid origin. BrFLC5 maps near a junction of two collinear regions to Arabidopsis, one of which includes an FLC-like gene (AGL31). However, all BrFLC sequences are more closely related to FLC than to AGL31. BrFLC1, BrFLC2, and BrFLC5 cosegregate with flowering-time loci evaluated in populations derived by backcrossing late-flowering alleles from a biennial parent into an annual parent. Two loci segregating in a single backcross population affected flowering in a completely additive manner. Thus, replicated BrFLC genes appear to have a similar function and interact in an additive manner to modulate flowering time.

Journal ArticleDOI
01 Dec 2002-Genetics
TL;DR: It is shown that fairly small increases in effective population size can generate artifactual evidence of positive selection if there is no selection upon synonymous codon use.
Abstract: Artifactual evidence of adaptive amino acid substitution can be generated within a McDonald-Kreitman test if some amino acid mutations are slightly deleterious and there has been an increase in effective population size. Here I investigate the conditions under which this occurs. I show that fairly small increases in effective population size can generate artifactual evidence of positive selection if there is no selection upon synonymous codon use. This problem is exacerbated by the removal of low-frequency polymorphisms. However, selection on synonymous codon use restricts the conditions under which artifactual evidence of adaptive evolution is produced.

Journal ArticleDOI
J P Hua1, Yongzhong Xing1, Caiguo Xu1, X L Sun1, Sibin Yu1, Qifa Zhang1 
01 Dec 2002-Genetics
TL;DR: It was concluded that heterozygotes were not necessarily advantageous for trait performance even among genotypes derived from such a highly heterotic hybrid, as well as cumulative small advantages over two-locus combinations.
Abstract: We introduced an experimental design that produced an "immortalized F(2)" population allowing for complete dissection of genetic components underlying quantitative traits. Data for yield and three component traits of the immortalized F(2) were collected from replicated field trials over 2 years. Using 231 marker loci, we resolved the genetic effects into individual components and assessed relative performance of all the genotypes at both single- and two-locus levels. Single-locus analysis detected 40 QTL for the four traits. Dominance effects for about one-half of the QTL were negative, resulting in little "net" positive dominance effect. Correlation between genotype heterozygosity and trait performance was low. Large numbers of digenic interactions, including AA, AD, and DD, were detected for all the traits, with AA as the most prevalent interaction. Complementary two-locus homozygotes frequently performed the best among the nine genotypes of many two-locus combinations. While cumulative small advantages over two-locus combinations may partly explain the genetic basis of heterosis of the hybrid as double heterozygotes frequently demonstrated marginal advantages, double heterozygotes were never the best genotypes in any of the two-locus combinations. It was concluded that heterozygotes were not necessarily advantageous for trait performance even among genotypes derived from such a highly heterotic hybrid.

Journal ArticleDOI
01 Aug 2002-Genetics
TL;DR: The results suggest that domestication of the Solanaceae has been driven by mutations in a very limited number of target loci with major phenotypic effects, that selection pressures were exerted on the same loci despite the crops' independent domestications on different continents, and that the morphological diversity of these four crops can be explained by divergent mutations at these loci.
Abstract: Quantitative trait loci (QTL) for domestication-related traits were identified in an interspecific F(2) population of eggplant (Solanum linnaeanum x S. melongena). Although 62 quantitative trait loci (QTL) were identified in two locations, most of the dramatic phenotypic differences in fruit weight, shape, color, and plant prickliness that distinguish cultivated eggplant from its wild relative could be attributed to six loci with major effects. Comparison of the genomic locations of the eggplant fruit weight, fruit shape, and color QTL with the positions of similar loci in tomato, potato, and pepper revealed that 40% of the different loci have putative orthologous counterparts in at least one of these other crop species. Overall, the results suggest that domestication of the Solanaceae has been driven by mutations in a very limited number of target loci with major phenotypic effects, that selection pressures were exerted on the same loci despite the crops' independent domestications on different continents, and that the morphological diversity of these four crops can be explained by divergent mutations at these loci.

Journal ArticleDOI
01 Oct 2002-Genetics
TL;DR: The results demonstrate that mating-competent strains of C. albicans exist naturally in patient populations and suggest that mating may play a role in the genesis of diversity in this pernicious fungal pathogen.
Abstract: The relationship between the configuration of the mating type locus (MTL) and white-opaque switching in Candida albicans has been examined. Seven genetically unrelated clinical isolates selected for their capacity to undergo the white-opaque transition all proved to be homozygous at the MTL locus, either MTLa or MTLα. In an analysis of the allelism of 220 clinical isolates representing the five major clades of C. albicans, 3.2% were homozygous and 96.8% were heterozygous at the MTL locus. Of the seven identified MTL homozygotes, five underwent the white-opaque transition. Of 20 randomly selected MTL heterozygotes, 18 did not undergo the white-opaque transition. The two that did were found to become MTL homozygous at very high frequency before undergoing white-opaque switching. Our results demonstrate that only MTL homozygotes undergo the white-opaque transition, that MTL heterozygotes that become homozygous at high frequency exist, and that the generation of MTL homozygotes and the white-opaque transition occur in isolates in different genetic clades of C. albicans. Our results demonstrate that mating-competent strains of C. albicans exist naturally in patient populations and suggest that mating may play a role in the genesis of diversity in this pernicious fungal pathogen.

Journal ArticleDOI
01 Feb 2002-Genetics
TL;DR: A new multilocus test statistic, ln RV, is introduced, which is based on the ratio of observed variances in repeat number at a set of micros Satellite loci in two groups of populations, and captures demographic history of the populations as well as variation in microsatellite mutation among loci.
Abstract: With the availability of completely sequenced genomes, multilocus scans of natural variability have become a feasible approach for the identification of genomic regions subjected to natural and artificial selection. Here, I introduce a new multilocus test statistic, ln RV, which is based on the ratio of observed variances in repeat number at a set of microsatellite loci in two groups of populations. The distribution of ln RV values captures demographic history of the populations as well as variation in microsatellite mutation among loci. Given that microsatellite loci associated with a recent selective sweep differ from the remainder of the genome, they are expected to fall outside of the distribution of neutral ln RV values. The ln RV test statistic is applied to a data set of 94 loci typed in eight non-African and two African human populations.

Journal ArticleDOI
01 Dec 2002-Genetics
TL;DR: An important role that FOXP2 may have played in the origin of human speech is suggested and a strategy for identifying candidate genes underlying the emergences of human-specific features is demonstrated.
Abstract: Genes responsible for human-specific phenotypes may have been under altered selective pressures in human evolution and thus exhibit changes in substitution rate and pattern at the protein sequence level. Using comparative analysis of human, chimpanzee, and mouse protein sequences, we identified two genes (PRM2 and FOXP2) with significantly enhanced evolutionary rates in the hominid lineage. PRM2 is a histone-like protein essential to spermatogenesis and was previously reported to be a likely target of sexual selection in humans and chimpanzees. FOXP2 is a transcription factor involved in speech and language development. Human FOXP2 experienced a >60-fold increase in substitution rate and incorporated two fixed amino acid changes in a broadly defined transcription suppression domain. A survey of a diverse group of placental mammals reveals the uniqueness of the human FOXP2 sequence and a population genetic analysis indicates possible adaptive selection behind the accelerated evolution. Taken together, our results suggest an important role that FOXP2 may have played in the origin of human speech and demonstrate a strategy for identifying candidate genes underlying the emergences of human-specific features.

Journal ArticleDOI
01 Mar 2002-Genetics
TL;DR: The genetic structure of B. burgdorferi has been intimately shaped by the natural history of its main vector, the northern lineage of I. scapularis ticks, which are likely causes of the observed "founder effects" for the two organisms in the Northeast.
Abstract: Over 80% of reported cases of Lyme disease in the United States occur in coastal regions of northeastern and mid-Atlantic states. The genetic structure of the Lyme disease spirochete (Borrelia burgdorferi) and its main tick vector (Ixodes scapularis) was studied concurrently and comparatively by sampling natural populations of I. scapularis ticks along the East Coast from 1996 to 1998. Borrelia is genetically highly diverse at the outer surface protein ospC. Since Borrelia is highly clonal, the ospC alleles can be used to define clones. A newly designed reverse line blotting (RLB) assay shows that up to 10 Borrelia clones can infect a single tick. The clone frequencies in Borrelia populations are the same across the Northeast. On the other hand, I. scapularis populations show strong regional divergence (among northeastern, mid-Atlantic, and southern states) as well as local differentiation. The high genetic diversity within Borrelia populations and the disparity in the genetic structure between Borrelia and its tick vector are likely consequences of strong balancing selection on local Borrelia clones. Demographically, both Borrelia and I. scapularis populations in the Northeast show the characteristics of a species that has recently expanded from a population bottleneck. Major geological and ecological events, such as the last glacial maximum (18,000 years ago) and the modern-day expansion of tick habitats, are likely causes of the observed "founder effects" for the two organisms in the Northeast. We therefore conclude that the genetic structure of B. burgdorferi has been intimately shaped by the natural history of its main vector, the northern lineage of I. scapularis ticks.

Journal ArticleDOI
01 Nov 2002-Genetics
TL;DR: The results indicate that variance in reproductive success and variance in productivity among spatially discrete demes must be large for red drum, and indicates that vertebrate populations with enormous adult census numbers may still be at risk relative to decline and extinction from genetic factors.
Abstract: Using eight microsatellite loci and a variety of analytical methods, we estimated genetic effective size (N(e)) of an abundant and long-lived marine fish species, the red drum (Sciaenops ocellatus), in the northern Gulf of Mexico (Gulf). The ratio N(e)/N, where short-term variance N(e) was estimated via the temporal method from shifts in allele-frequency data over four cohorts and where N reflected a current estimate of adult census size in the northern Gulf, was approximately 0.001. In an idealized population, this ratio should approximate unity. The extraordinarily low value of N(e)/N appears to arise from high variance in individual reproductive success and perhaps more importantly from variance in productivity of critical spawning and nursery habitats located in spatially discrete bays and estuaries throughout the northern Gulf. An estimate of N(e) based on a coalescent approach, which measures long-term, inbreeding effective size, was four orders of magnitude lower than the estimate of current census size, suggesting that factors presently driving N(e)/N to low values among red drum in the northern Gulf may have operated similarly in the past. Models that predict N(e)/N exclusively from demographic and life-history features will seriously overestimate N(e) if variance in reproductive success and variance in productivity among spatially discrete demes is underestimated. Our results indicate that these variances, especially variance in productivity among demes, must be large for red drum. Moreover, our study indicates that vertebrate populations with enormous adult census numbers may still be at risk relative to decline and extinction from genetic factors.