scispace - formally typeset
Search or ask a question

Showing papers in "Genetics in 2020"


Journal ArticleDOI
01 May 2020-Genetics
TL;DR: This contribution is intended as a fresh view and will discuss current and future challenges of plasticity research, and the need to identify associated molecular mechanisms, resulting in a four-step model that will reveal plasticity as a major factor of evolution.
Abstract: Phenotypic plasticity is defined as the property of organisms to produce distinct phenotypes in response to environmental variation. While for more than a century, biologists have proposed this organismal feature to play an important role in evolution and the origin of novelty, the idea has remained contentious. Plasticity is found in all domains of life, but only recently has there been an increase in empirical studies. This contribution is intended as a fresh view and will discuss current and future challenges of plasticity research, and the need to identify associated molecular mechanisms. After a brief summary of conceptual, theoretical, and historical aspects, some of which were responsible for confusion and contention, I will formulate three major research directions and predictions for the role of plasticity as a facilitator of novelty. These predictions result in a four-step model that, when properly filled with molecular mechanisms, will reveal plasticity as a major factor of evolution. Such mechanistic insight must be complemented with comparative investigations to show that plasticity has indeed created novelty and innovation. Together, such studies will help develop a true developmental evolutionary biology.

106 citations


Journal ArticleDOI
09 Mar 2020-Genetics
TL;DR: This work investigates how population size changes and the strength of purifying selection affect patterns of variation at “neutral” sites near functional genomic components, and proposes a novel statistical framework for jointly inferring the contribution of the relevant selective and demographic parameters.
Abstract: The question of the relative evolutionary roles of adaptive and nonadaptive processes has been a central debate in population genetics for nearly a century. While advances have been made in the theoretical development of the underlying models, and statistical methods for estimating their parameters from large-scale genomic data, a framework for an appropriate null model remains elusive. A model incorporating evolutionary processes known to be in constant operation, genetic drift (as modulated by the demographic history of the population) and purifying selection, is lacking. Without such a null model, the role of adaptive processes in shaping within- and between-population variation may not be accurately assessed. Here, we investigate how population size changes and the strength of purifying selection affect patterns of variation at “neutral” sites near functional genomic components. We propose a novel statistical framework for jointly inferring the contribution of the relevant selective and demographic parameters. By means of extensive performance analyses, we quantify the utility of the approach, identify the most important statistics for parameter estimation, and compare the results with existing methods. Finally, we reanalyze genome-wide population-level data from a Zambian population of Drosophila melanogaster, and find that it has experienced a much slower rate of population growth than was inferred when the effects of purifying selection were neglected. Our approach represents an appropriate null model, against which the effects of positive selection can be assessed.

98 citations


Journal ArticleDOI
01 Feb 2020-Genetics
TL;DR: WormCat, a web-based tool that uses a near-complete annotation of the C. elegans genome to identify coexpressed gene sets and scaled heat map for enrichment visualization, is developed and tested, showing that it reproduces major categories identified by GO.
Abstract: The emergence of large gene expression datasets has revealed the need for improved tools to identify enriched gene categories and visualize enrichment patterns. While gene ontogeny (GO) provides a valuable tool for gene set enrichment analysis, it has several limitations. First, it is difficult to graph multiple GO analyses for comparison. Second, genes from some model systems are not well represented. For example, ∼30% of Caenorhabditis elegans genes are missing from the analysis in commonly used databases. To allow categorization and visualization of enriched C. elegans gene sets in different types of genome-scale data, we developed WormCat, a web-based tool that uses a near-complete annotation of the C. elegans genome to identify coexpressed gene sets and scaled heat map for enrichment visualization. We tested the performance of WormCat using a variety of published transcriptomic datasets, and show that it reproduces major categories identified by GO. Importantly, we also found previously unidentified categories that are informative for interpreting phenotypes or predicting biological function. For example, we analyzed published RNA-seq data from C. elegans treated with combinations of lifespan-extending drugs, where one combination paradoxically shortened lifespan. Using WormCat, we identified sterol metabolism as a category that was not enriched in the single or double combinations, but emerged in a triple combination along with the lifespan shortening. Thus, WormCat identified a gene set with potential. phenotypic relevance not found with previous GO analysis. In conclusion, WormCat provides a powerful tool for the analysis and visualization of gene set enrichment in different types of C. elegans datasets.

88 citations


Journal ArticleDOI
01 Jan 2020-Genetics
TL;DR: What has been learned about the evolution and genetics of life-history variation in D. melanogaster is reviewed by drawing on numerous sources spanning population and quantitative genetics, genomics, experimental evolution, evolutionary ecology, and physiology.
Abstract: Life-history traits or "fitness components"-such as age and size at maturity, fecundity and fertility, age-specific rates of survival, and life span-are the major phenotypic determinants of Darwinian fitness. Analyzing the evolution and genetics of these phenotypic targets of selection is central to our understanding of adaptation. Due to its simple and rapid life cycle, cosmopolitan distribution, ease of maintenance in the laboratory, well-understood evolutionary genetics, and its versatile genetic toolbox, the "vinegar fly" Drosophila melanogaster is one of the most powerful, experimentally tractable model systems for studying "life-history evolution." Here, I review what has been learned about the evolution and genetics of life-history variation in D. melanogaster by drawing on numerous sources spanning population and quantitative genetics, genomics, experimental evolution, evolutionary ecology, and physiology. This body of work has contributed greatly to our knowledge of several fundamental problems in evolutionary biology, including the amount and maintenance of genetic variation, the evolution of body size, clines and climate adaptation, the evolution of senescence, phenotypic plasticity, the nature of life-history trade-offs, and so forth. While major progress has been made, important facets of these and other questions remain open, and the D. melanogaster system will undoubtedly continue to deliver key insights into central issues of life-history evolution and the genetics of adaptation.

86 citations


Journal ArticleDOI
01 Nov 2020-Genetics
TL;DR: It is shown that melting double stranded DNA donor molecules prior to injection increases the frequency of precise homology-directed repair (HDR) by several fold for longer edits, making C. elegans by far the easiest metazoan to genome edit.
Abstract: CRISPR genome editing has revolutionized genetics in many organisms. In the nematode Caenorhabditis elegans, one injection into each of the two gonad arms of an adult hermaphrodite exposes hundreds of meiotic germ cells to editing mixtures, permitting the recovery of multiple indels or small precision edits from each successfully injected animal. Unfortunately, particularly for long insertions, editing efficiencies can vary widely, necessitating multiple injections, and often requiring coselection strategies. Here, we show that melting double-stranded DNA (dsDNA) donor molecules prior to injection increases the frequency of precise homology-directed repair (HDR) by several fold for longer edits. We describe troubleshooting strategies that enable consistently high editing efficiencies resulting, for example, in up to 100 independent GFP knock-ins from a single injected animal. These efficiencies make C. elegans by far the easiest metazoan to genome edit, removing barriers to the use and adoption of this facile system as a model for understanding animal biology.

81 citations


Journal ArticleDOI
01 Oct 2020-Genetics
TL;DR: Recent findings in Drosophila melanogaster are discussed showing that cell-autonomous environment and growth-sensing mechanisms, involving TOR and other growth-regulatory pathways, that converge on insulin and steroid relay centers are responsible for adjusting systemic growth, and development, in response to external and internal conditions.
Abstract: The control of body and organ growth is essential for the development of adults with proper size and proportions, which is important for survival and reproduction. In animals, adult body size is determined by the rate and duration of juvenile growth, which are influenced by the environment. In nutrient-scarce environments in which more time is needed for growth, the juvenile growth period can be extended by delaying maturation, whereas juvenile development is rapidly completed in nutrient-rich conditions. This flexibility requires the integration of environmental cues with developmental signals that govern internal checkpoints to ensure that maturation does not begin until sufficient tissue growth has occurred to reach a proper adult size. The Target of Rapamycin (TOR) pathway is the primary cell-autonomous nutrient sensor, while circulating hormones such as steroids and insulin-like growth factors are the main systemic regulators of growth and maturation in animals. We discuss recent findings in Drosophila melanogaster showing that cell-autonomous environment and growth-sensing mechanisms, involving TOR and other growth-regulatory pathways, that converge on insulin and steroid relay centers are responsible for adjusting systemic growth, and development, in response to external and internal conditions. In addition to this, proper organ growth is also monitored and coordinated with whole-body growth and the timing of maturation through modulation of steroid signaling. This coordination involves interorgan communication mediated by Drosophila insulin-like peptide 8 in response to tissue growth status. Together, these multiple nutritional and developmental cues feed into neuroendocrine hubs controlling insulin and steroid signaling, serving as checkpoints at which developmental progression toward maturation can be delayed. This review focuses on these mechanisms by which external and internal conditions can modulate developmental growth and ensure proper adult body size, and highlights the conserved architecture of this system, which has made Drosophila a prime model for understanding the coordination of growth and maturation in animals.

80 citations


Journal ArticleDOI
01 May 2020-Genetics
TL;DR: It is found that most common summary statistics have distributions that differ substantially from those seen in well-mixed populations, especially when Wright’s neighborhood size is < 100 and sampling is spatially clustered, which causes demographic inference from the site frequency spectrum to infer more turbulent demographic histories.
Abstract: Real geography is continuous, but standard models in population genetics are based on discrete, well-mixed populations. As a result, many methods of analyzing genetic data assume that samples are a random draw from a well-mixed population, but are applied to clustered samples from populations that are structured clinally over space. Here, we use simulations of populations living in continuous geography to study the impacts of dispersal and sampling strategy on population genetic summary statistics, demographic inference, and genome-wide association studies (GWAS). We find that most common summary statistics have distributions that differ substantially from those seen in well-mixed populations, especially when Wright's neighborhood size is < 100 and sampling is spatially clustered. "Stepping-stone" models reproduce some of these effects, but discretizing the landscape introduces artifacts that in some cases are exacerbated at higher resolutions. The combination of low dispersal and clustered sampling causes demographic inference from the site frequency spectrum to infer more turbulent demographic histories, but averaged results across multiple simulations revealed surprisingly little systematic bias. We also show that the combination of spatially autocorrelated environments and limited dispersal causes GWAS to identify spurious signals of genetic association with purely environmentally determined phenotypes, and that this bias is only partially corrected by regressing out principal components of ancestry. Last, we discuss the relevance of our simulation results for inference from genetic variation in real organisms.

65 citations


Journal ArticleDOI
01 Dec 2020-Genetics
TL;DR: A comprehensive overview of starvation responses throughout the C. elegans life cycle is provided, providing an ideal model for studying maternal provisioning, transgenerational epigenetic inheritance, and developmental origins of adult health and disease in humans.
Abstract: Caenorhabditis elegans survives on ephemeral food sources in the wild, and the species has a variety of adaptive responses to starvation. These features of its life history make the worm a powerful model for studying developmental, behavioral, and metabolic starvation responses. Starvation resistance is fundamental to life in the wild, and it is relevant to aging and common diseases such as cancer and diabetes. Worms respond to acute starvation at different times in the life cycle by arresting development and altering gene expression and metabolism. They also anticipate starvation during early larval development, engaging an alternative developmental program resulting in dauer diapause. By arresting development, these responses postpone growth and reproduction until feeding resumes. A common set of signaling pathways mediates systemic regulation of development in each context but with important distinctions. Several aspects of behavior, including feeding, foraging, taxis, egg laying, sleep, and associative learning, are also affected by starvation. A variety of conserved signaling, gene regulatory, and metabolic mechanisms support adaptation to starvation. Early life starvation can have persistent effects on adults and their descendants. With its short generation time, C. elegans is an ideal model for studying maternal provisioning, transgenerational epigenetic inheritance, and developmental origins of adult health and disease in humans. This review provides a comprehensive overview of starvation responses throughout the C. elegans life cycle.

55 citations


Journal ArticleDOI
01 Dec 2020-Genetics
TL;DR: It is concluded that MiniMUGA is a valuable platform for genetic QC, and an important new tool to increase the rigor and reproducibility of mouse research.
Abstract: The laboratory mouse is the most widely used animal model for biomedical research, due in part to its well-annotated genome, wealth of genetic resources, and the ability to precisely manipulate its genome. Despite the importance of genetics for mouse research, genetic quality control (QC) is not standardized, in part due to the lack of cost-effective, informative, and robust platforms. Genotyping arrays are standard tools for mouse research and remain an attractive alternative even in the era of high-throughput whole-genome sequencing. Here, we describe the content and performance of a new iteration of the Mouse Universal Genotyping Array (MUGA), MiniMUGA, an array-based genetic QC platform with over 11,000 probes. In addition to robust discrimination between most classical and wild-derived laboratory strains, MiniMUGA was designed to contain features not available in other platforms: (1) chromosomal sex determination, (2) discrimination between substrains from multiple commercial vendors, (3) diagnostic SNPs for popular laboratory strains, (4) detection of constructs used in genetically engineered mice, and (5) an easy-to-interpret report summarizing these results. In-depth annotation of all probes should facilitate custom analyses by individual researchers. To determine the performance of MiniMUGA, we genotyped 6899 samples from a wide variety of genetic backgrounds. The performance of MiniMUGA compares favorably with three previous iterations of the MUGA family of arrays, both in discrimination capabilities and robustness. We have generated publicly available consensus genotypes for 241 inbred strains including classical, wild-derived, and recombinant inbred lines. Here, we also report the detection of a substantial number of XO and XXY individuals across a variety of sample types, new markers that expand the utility of reduced complexity crosses to genetic backgrounds other than C57BL/6, and the robust detection of 17 genetic constructs. We provide preliminary evidence that the array can be used to identify both partial sex chromosome duplication and mosaicism, and that diagnostic SNPs can be used to determine how long inbred mice have been bred independently from the relevant main stock. We conclude that MiniMUGA is a valuable platform for genetic QC, and an important new tool to increase the rigor and reproducibility of mouse research.

44 citations


Journal ArticleDOI
01 Oct 2020-Genetics
TL;DR: The results delineate the similarities and differences in secondary metabolism-associated cards of virulence between a major fungal pathogen and its nonpathogenic closest relatives, shedding light onto the genetic and phenotypic changes associated with the evolution of fungal Pathogenicity.
Abstract: Aspergillus fumigatus is a major human pathogen. In contrast, Aspergillus fischeri and the recently described Aspergillus oerlinghausenensis, the two species most closely related to A. fumigatus, are not known to be pathogenic. Some of the genetic determinants of virulence (or "cards of virulence") that A. fumigatus possesses are secondary metabolites that impair the host immune system, protect from host immune cell attacks, or acquire key nutrients. To examine whether secondary metabolism-associated cards of virulence vary between these species, we conducted extensive genomic and secondary metabolite profiling analyses of multiple A. fumigatus, one A. oerlinghausenensis, and multiple A. fischeri strains. We identified two cards of virulence (gliotoxin and fumitremorgin) shared by all three species and three cards of virulence (trypacidin, pseurotin, and fumagillin) that are variable. For example, we found that all species and strains examined biosynthesized gliotoxin, which is known to contribute to virulence, consistent with the conservation of the gliotoxin biosynthetic gene cluster (BGC) across genomes. For other secondary metabolites, such as fumitremorgin, a modulator of host biology, we found that all species produced the metabolite but that there was strain heterogeneity in its production within species. Finally, species differed in their biosynthesis of fumagillin and pseurotin, both contributors to host tissue damage during invasive aspergillosis. A. fumigatus biosynthesized fumagillin and pseurotin, while A. oerlinghausenensis biosynthesized fumagillin and A. fischeri biosynthesized neither. These biochemical differences were reflected in sequence divergence of the intertwined fumagillin/pseurotin BGCs across genomes. These results delineate the similarities and differences in secondary metabolism-associated cards of virulence between a major fungal pathogen and its nonpathogenic closest relatives, shedding light onto the genetic and phenotypic changes associated with the evolution of fungal pathogenicity.

40 citations


Journal ArticleDOI
01 Feb 2020-Genetics
TL;DR: This is the first study to detect and quantify strong selection specifically at the level of CUB, and finds that CUB-associated polymorphism accounts for the majority of strong selection on synonymous sites, with secondary contributions of splicing and transcription factor binding.
Abstract: Codon usage bias (CUB), where certain codons are used more frequently than expected by chance, is a ubiquitous phenomenon and occurs across the tree of life. The dominant paradigm is that the proportion of preferred codons is set by weak selection. While experimental changes in codon usage have at times shown large phenotypic effects in contrast to this paradigm, genome-wide population genetic estimates have supported the weak selection model. Here we use deep genomic population sequencing of two Drosophila melanogaster populations to measure selection on synonymous sites in a way that allowed us to estimate the prevalence of both weak and strong purifying selection. We find that selection in favor of preferred codons ranges from weak (|Nes| ∼ 1) to strong (|Nes| > 10), with strong selection acting on 10-20% of synonymous sites in preferred codons. While previous studies indicated that selection at synonymous sites could be strong, this is the first study to detect and quantify strong selection specifically at the level of CUB. Further, we find that CUB-associated polymorphism accounts for the majority of strong selection on synonymous sites, with secondary contributions of splicing (selection on alternatively spliced genes, splice junctions, and spliceosome-bound sites) and transcription factor binding. Our findings support a new model of CUB and indicate that the functional importance of CUB, as well as synonymous sites in general, have been underestimated.

Journal ArticleDOI
01 Aug 2020-Genetics
TL;DR: Optimal selection decisions are made using a new version of the look-ahead selection algorithm, which was recently proposed for single-trait genomic selection, and achieved superior performance with respect to other state-of-the-art selection methods.
Abstract: Plant breeders make selection decisions based on multiple traits, such as yield, plant height, flowering time, and disease resistance. A commonly used approach in multi-trait genomic selection is index selection, which assigns weights to different traits relative to their economic importance. However, classical index selection only optimizes genetic gain in the next generation, requires some experimentation to find weights that lead to desired outcomes, and has difficulty optimizing nonlinear breeding objectives. Multi-objective optimization has also been used to identify the Pareto frontier of selection decisions, which represents different trade-offs across multiple traits. We propose a new approach, which maximizes certain traits while keeping others within desirable ranges. Optimal selection decisions are made using a new version of the look-ahead selection (LAS) algorithm, which was recently proposed for single-trait genomic selection, and achieved superior performance with respect to other state-of-the-art selection methods. To demonstrate the effectiveness of the new method, a case study is developed using a realistic data set where our method is compared with conventional index selection. Results suggest that the multi-trait LAS is more effective at balancing multiple traits compared with index selection.

Journal ArticleDOI
01 Jan 2020-Genetics
TL;DR: The results indicate that nearly all foreign genes were quickly eliminated after hybridization and that selection against the minor species genome might be similar across experimental replicates.
Abstract: The consequences of hybridization are varied, ranging from the origin of new lineages, introgression of some genes between species, to the extinction of one of the hybridizing species. We generated replicate admixed populations between two pairs of sister species of Drosophila: D. simulans and D. mauritiana; and D. yakuba and D. santomea. Each pair consisted of a continental species and an island endemic. The admixed populations were maintained by random mating in discrete generations for over 20 generations. We assessed morphological, behavioral, and fitness-related traits from each replicate population periodically, and sequenced genomic DNA from the populations at generation 20. For both pairs of species, species-specific traits and their genomes regressed to those of the continental species. A few alleles from the island species persisted, but they tended to be proportionally rare among all sites in the genome and were rarely fixed within the populations. This paucity of alleles from the island species was particularly pronounced on the X-chromosome. These results indicate that nearly all foreign genes were quickly eliminated after hybridization and that selection against the minor species genome might be similar across experimental replicates.

Journal ArticleDOI
01 Aug 2020-Genetics
TL;DR: A new approach for introducing large DNA constructs into the C. elegans genome at specific sites using a combination of Flp and Cre recombinases is described, which greatly reduces the effort required to create single-copy insertions at defined sites in the genome.
Abstract: The application of CRISPR technology has greatly facilitated the creation of transgenic Caenorhabditis elegans lines. However, methods to insert multi-kilobase DNA constructs remain laborious even with these advances. Here, I describe a new approach for introducing large DNA constructs into the C. elegans genome at specific sites using a combination of Flp and Cre recombinases. The system utilizes specialized integrated landing sites that express GFP ubiquitously flanked by single loxP, FRT, and FRT3 sites. DNA sequences of interest are inserted into an integration vector that contains a sqt-1 self-excising cassette and FRT and FRT3 sites. Plasmid DNA is injected into the germline of landing site animals. Transgenic animals are identified as Rol progeny, and the sqt-1 marker is subsequently excised with heat shock Cre expression. Integration events were obtained at a rate of approximately one integration per three injected F0 animals—a rate substantially higher than any current approach. To demonstrate the robustness of the approach, I compared the efficiency of the Gal4/UAS, QF (and QF2)/QUAS, tetR(and rtetR)/tetO, and LexA/lexO bipartite expression systems by assessing expression levels in combinations of driver and reporter GFP constructs and a direct promoter GFP fusion each integrated at multiple sites in the genome. My data demonstrate that all four bipartite systems are functional in C. elegans. Although the new integration system has several limitations, it greatly reduces the effort required to create single-copy insertions at defined sites in the C. elegans genome.

Journal ArticleDOI
01 Feb 2020-Genetics
TL;DR: The major developmental events that build these organs during embryogenesis, remodel them during metamorphosis, and repair them following injury are described to highlight the use of the Malpighian tubules and hindgut as accessible models of human disease biology.
Abstract: The insect excretory system contains two organ systems acting in concert: the Malpighian tubules and the hindgut perform essential roles in excretion and ionic and osmotic homeostasis. For over 350 years, these two organs have fascinated biologists as a model of organ structure and function. As part of a recent surge in interest, research on the Malpighian tubules and hindgut of Drosophila have uncovered important paradigms of organ physiology and development. Further, many human disease processes can be modeled in these organs. Here, focusing on discoveries in the past 10 years, we provide an overview of the anatomy and physiology of the Drosophila excretory system. We describe the major developmental events that build these organs during embryogenesis, remodel them during metamorphosis, and repair them following injury. Finally, we highlight the use of the Malpighian tubules and hindgut as accessible models of human disease biology. The Malpighian tubule is a particularly excellent model to study rapid fluid transport, neuroendocrine control of renal function, and modeling of numerous human renal conditions such as kidney stones, while the hindgut provides an outstanding model for processes such as the role of cell chirality in development, nonstem cell-based injury repair, cancer-promoting processes, and communication between the intestine and nervous system.

Journal ArticleDOI
01 Jul 2020-Genetics
TL;DR: A general framework that efficiently computes single-site population genetic statistics using the succinct tree sequence encoding of genealogies and genome sequence is defined, and many currently defined statistics of genome sequence are implemented, as well as the corresponding branch statistics of tree shape.
Abstract: As a genetic mutation is passed down across generations, it distinguishes those genomes that have inherited it from those that have not, providing a glimpse of the genealogical tree relating the genomes to each other at that site. Statistical summaries of genetic variation therefore also describe the underlying genealogies. We use this correspondence to define a general framework that efficiently computes single-site population genetic statistics using the succinct tree sequence encoding of genealogies and genome sequence. The general approach accumulates sample weights within the genealogical tree at each position on the genome, which are then combined using a summary function; different statistics result from different choices of weight and function. Results can be reported in three ways: by site, which corresponds to statistics calculated as usual from genome sequence; by branch, which gives the expected value of the dual site statistic under the infinite sites model of mutation, and by node, which summarizes the contribution of each ancestor to these statistics. We use the framework to implement many currently defined statistics of genome sequence (making the statistics' relationship to the underlying genealogical trees concrete and explicit), as well as the corresponding branch statistics of tree shape. We evaluate computational performance using simulated data, and show that calculating statistics from tree sequences using this general framework is several orders of magnitude more efficient than optimized matrix-based methods in terms of both run time and memory requirements. We also explore how well the duality between site and branch statistics holds in practice on trees inferred from the 1000 Genomes Project data set, and discuss ways in which deviations may encode interesting biological signals.

Journal ArticleDOI
01 Oct 2020-Genetics
TL;DR: It is shown that appropriately designed scans for hitchhiking need not consider BGS’s impact on false-positive rates, and that the spatial patterns of variation produced by BGS rarely mimic those of hitchhiker events.
Abstract: It is increasingly evident that natural selection plays a prominent role in shaping patterns of diversity across the genome. The most commonly studied modes of natural selection are positive selection and negative selection, which refer to directional selection for and against derived mutations, respectively. Positive selection can result in hitchhiking events, in which a beneficial allele rapidly replaces all others in the population, creating a valley of diversity around the selected site along with characteristic skews in allele frequencies and linkage disequilibrium among linked neutral polymorphisms. Similarly, negative selection reduces variation not only at selected sites but also at linked sites, a phenomenon called background selection (BGS). Thus, discriminating between these two forces may be difficult, and one might expect efforts to detect hitchhiking to produce an excess of false positives in regions affected by BGS. Here, we examine the similarity between BGS and hitchhiking models via simulation. First, we show that BGS may somewhat resemble hitchhiking in simplistic scenarios in which a region constrained by negative selection is flanked by large stretches of unconstrained sites, echoing previous results. However, this scenario does not mirror the actual spatial arrangement of selected sites across the genome. By performing forward simulations under more realistic scenarios of BGS, modeling the locations of protein-coding and conserved noncoding DNA in real genomes, we show that the spatial patterns of variation produced by BGS rarely mimic those of hitchhiking events. Indeed, BGS is not substantially more likely than neutrality to produce false signatures of hitchhiking. This holds for simulations modeled after both humans and Drosophila, and for several different demographic histories. These results demonstrate that appropriately designed scans for hitchhiking need not consider BGS's impact on false-positive rates. However, we do find evidence that BGS increases the false-negative rate for hitchhiking, an observation that demands further investigation.

Journal ArticleDOI
01 Jun 2020-Genetics
TL;DR: It is shown that mouse oocytes lacking both p53 and the oocyte-exclusive isoform of p63, TAp63, protects nearly all Spo11−/− and Trip13Gt/Gt oocytes from elimination, and evidence that checkpoint kinase I (CHK1; CHEK1), which is known to signal to TRP53, also becomes activated by persistent DSBs in oocytes, and to an increased degree when CHK2 is absent.
Abstract: Eukaryotic organisms have evolved mechanisms to prevent the accumulation of cells bearing genetic aberrations. This is especially crucial for the germline, because fecundity and fitness of progeny would be adversely affected by an excessively high mutational incidence. The process of meiosis poses unique problems for mutation avoidance because of the requirement for SPO11-induced programmed double-strand breaks (DSBs) in recombination-driven pairing and segregation of homologous chromosomes. Mouse meiocytes bearing unrepaired meiotic DSBs or unsynapsed chromosomes are eliminated before completing meiotic prophase I. In previous work, we showed that checkpoint kinase 2 (CHK2; CHEK2), a canonical DNA damage response protein, is crucial for eliminating not only oocytes defective in meiotic DSB repair (e.g., Trip13Gt mutants), but also Spo11−/− oocytes that are defective in homologous chromosome synapsis and accumulate a threshold level of spontaneous DSBs. However, rescue of such oocytes by Chk2 deficiency was incomplete, raising the possibility that a parallel checkpoint pathway(s) exists. Here, we show that mouse oocytes lacking both p53 (TRP53) and the oocyte-exclusive isoform of p63, TAp63, protects nearly all Spo11−/− and Trip13Gt/Gt oocytes from elimination. We present evidence that checkpoint kinase I (CHK1; CHEK1), which is known to signal to TRP53, also becomes activated by persistent DSBs in oocytes, and to an increased degree when CHK2 is absent. The combined data indicate that nearly all oocytes reaching a threshold level of unrepaired DSBs are eliminated by a semiredundant pathway of CHK1/CHK2 signaling to TRP53/TAp63.

Journal ArticleDOI
01 Jan 2020-Genetics
TL;DR: A SNP-based marker in the Y-linked allele of GIPC PDZ domain containing family member 1 (gipc1), which was linked to melanism in all tested G. holbrooki populations, represents an example for a color locus that is located in close proximity to a putative sex determiner, and most likely substantially contributed to the evolution of the Y.
Abstract: Fish are known for the outstanding variety of their sex determination mechanisms and sex chromosome systems. The western (Gambusia affinis) and eastern mosquitofish (G. holbrooki) are sister species for which different sex determination mechanisms have been described: ZZ/ZW for G. affinis and XX/XY for G. holbrooki. Here, we carried out restriction-site associated DNA (RAD-) and pool sequencing (Pool-seq) to characterize the sex chromosomes of both species. We found that the ZW chromosomes of G. affinis females and the XY chromosomes of G. holbrooki males correspond to different linkage groups, and thus evolved independently from separate autosomes. In interspecific hybrids, the Y chromosome is dominant over the W chromosome, and X is dominant over Z. In G. holbrooki, we identified a candidate region for the Y-linked melanic pigmentation locus, a rare male phenotype that constitutes a potentially sexually antagonistic trait and is associated with other such characteristics, e.g., large body size and aggressive behavior. We developed a SNP-based marker in the Y-linked allele of GIPC PDZ domain containing family member 1 (gipc1), which was linked to melanism in all tested G. holbrooki populations. This locus represents an example for a color locus that is located in close proximity to a putative sex determiner, and most likely substantially contributed to the evolution of the Y.

Journal ArticleDOI
01 Jul 2020-Genetics
TL;DR: The use of a random-effect model approach to map multiple QTL based on score statistics in a sweetpotato biparental population (‘Beauregard’ × ‘Tanzania’) with 315 full-sibs is reported, which will facilitate the use of genomic tools insweetpotato breeding as well as in other autopolyploids.
Abstract: In developing countries, the sweetpotato, Ipomoea batatas (L.) Lam. ( 2 n = 6 x = 90 ) , is an important autopolyploid species, both socially and economically. However, quantitative trait loci (QTL) mapping has remained limited due to its genetic complexity. Current fixed-effect models can fit only a single QTL and are generally hard to interpret. Here, we report the use of a random-effect model approach to map multiple QTL based on score statistics in a sweetpotato biparental population (‘Beauregard’ × ‘Tanzania’) with 315 full-sibs. Phenotypic data were collected for eight yield component traits in six environments in Peru, and jointly adjusted means were obtained using mixed-effect models. An integrated linkage map consisting of 30,684 markers distributed along 15 linkage groups (LGs) was used to obtain the genotype conditional probabilities of putative QTL at every centiMorgan position. Multiple interval mapping was performed using our R package QTLpoly and detected a total of 13 QTL, ranging from none to four QTL per trait, which explained up to 55% of the total variance. Some regions, such as those on LGs 3 and 15, were consistently detected among root number and yield traits, and provided a basis for candidate gene search. In addition, some QTL were found to affect commercial and noncommercial root traits distinctly. Further best linear unbiased predictions were decomposed into additive allele effects and were used to compute multiple QTL-based breeding values for selection. Together with quantitative genotyping and its appropriate usage in linkage analyses, this QTL mapping methodology will facilitate the use of genomic tools in sweetpotato breeding as well as in other autopolyploids.

Journal ArticleDOI
24 Aug 2020-Genetics
TL;DR: It is estimated that the power of drift varies by a factor of at least 500 between large-Ne and small-Ne species of animals, i.e., an order of magnitude more than the among-species variation in genetic diversity.
Abstract: Genetic drift is an important evolutionary force of strength inversely proportional to Ne , the effective population size. The impact of drift on genome diversity and evolution is known to vary among species, but quantifying this effect is a difficult task. Here we assess the magnitude of variation in drift power among species of animals via its effect on the mutation load - which implies also inferring the distribution of fitness effects of deleterious mutations. To this aim, we analyze the nonsynonymous (amino-acid changing) and synonymous (amino-acid conservative) allele frequency spectra in a large sample of metazoan species, with a focus on the primates vs. fruit flies contrast. We show that a Gamma model of the distribution of fitness effects is not suitable due to strong differences in estimated shape parameters among taxa, while adding a class of lethal mutations essentially solves the problem. Using the Gamma + lethal model and assuming that the mean deleterious effects of nonsynonymous mutations is shared among species, we estimate that the power of drift varies by a factor of at least 500 between large-Ne and small-Ne species of animals, i.e., an order of magnitude more than the among-species variation in genetic diversity. Our results are relevant to Lewontin's paradox while further questioning the meaning of the Ne parameter in population genomics.

Journal ArticleDOI
01 Apr 2020-Genetics
TL;DR: The results reveal the genetic dependencies of imipridone action in human cells and identify the imIPridone scaffold as a new entry point for antibiotic development.
Abstract: Systematic genetic interaction profiles can reveal the mechanisms-of-action of bioactive compounds. The imipridone ONC201, which is currently in cancer clinical trials, has been ascribed a variety of different targets. To investigate the genetic dependencies of imipridone action, we screened a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) knockout library in the presence of either ONC201 or its more potent analog ONC212. Loss of the mitochondrial matrix protease CLPP or the mitochondrial intermediate peptidase MIPEP conferred strong resistance to both compounds. Biochemical and surrogate genetic assays showed that impridones directly activate CLPP and that MIPEP is necessary for proteolytic maturation of CLPP into a catalytically competent form. Quantitative proteomic analysis of cells treated with ONC212 revealed degradation of many mitochondrial as well as nonmitochondrial proteins. Prompted by the conservation of ClpP from bacteria to humans, we found that the imipridones also activate ClpP from Escherichia coli, Bacillus subtilis, and Staphylococcus aureus in biochemical and genetic assays. ONC212 and acyldepsipeptide-4 (ADEP4), a known activator of bacterial ClpP, caused similar proteome-wide degradation profiles in S. aureus ONC212 suppressed the proliferation of a number of Gram-positive (S. aureus, B. subtilis, and Enterococcus faecium) and Gram-negative species (E. coli and Neisseria gonorrhoeae). Moreover, ONC212 enhanced the ability of rifampin to eradicate antibiotic-tolerant S. aureus persister cells. These results reveal the genetic dependencies of imipridone action in human cells and identify the imipridone scaffold as a new entry point for antibiotic development.

Journal ArticleDOI
01 Jan 2020-Genetics
TL;DR: The evolution of reproductive behavior in Drosophila is considered at two distinct, yet complementary, scales, with a focus on the selection of oviposition sites and how these might correlate with environmental cues.
Abstract: Behaviors associated with reproduction are major contributors to the evolutionary success of organisms and are subject to many evolutionary forces, including natural and sexual selection, and sexual conflict. Successful reproduction involves a range of behaviors, from finding an appropriate mate, courting, and copulation, to the successful production and (in oviparous animals) deposition of eggs following mating. As a consequence, behaviors and genes associated with reproduction are often under strong selection and evolve rapidly. Courtship rituals in flies follow a multimodal pattern, mediated through visual, chemical, tactile, and auditory signals. Premating behaviors allow males and females to assess the species identity, reproductive state, and condition of their partners. Conflicts between the “interests” of individual males, and/or between the reproductive strategies of males and females, often drive the evolution of reproductive behaviors. For example, seminal proteins transmitted by males often show evidence of rapid evolution, mediated by positive selection. Postmating behaviors, including the selection of oviposition sites, are highly variable and Drosophila species span the spectrum from generalists to obligate specialists. Chemical recognition features prominently in adaptation to host plants for feeding and oviposition. Selection acting on variation in pre-, peri-, and postmating behaviors can lead to reproductive isolation and incipient speciation. Response to selection at the genetic level can include the expansion of gene families, such as those for detecting pheromonal cues for mating, or changes in the expression of genes leading to visual cues such as wing spots that are assessed during mating. Here, we consider the evolution of reproductive behavior in Drosophila at two distinct, yet complementary, scales. Some studies take a microevolutionary approach, identifying genes and networks involved in reproduction, and then dissecting the genetics underlying complex behaviors in D. melanogaster. Other studies take a macroevolutionary approach, comparing reproductive behaviors across the genus Drosophila and how these might correlate with environmental cues. A full synthesis of this field will require unification across these levels.

Journal ArticleDOI
01 May 2020-Genetics
TL;DR: This study investigates the relevance of dominance and functional classes of variants in genomic models for agronomic traits in diverse populations of hybrid maize and suggests that dominance and gene annotations improve genomic prediction across diverse populations in hybrid maize.
Abstract: Single-cross hybrids have been critical to the improvement of maize (Zea mays L.), but the characterization of their genetic architectures remains challenging. Previous studies of hybrid maize have shown the contribution of within-locus complementation effects (dominance) and their differential importance across functional classes of loci. However, they have generally considered panels of limited genetic diversity, and have shown little benefit from genomic prediction based on dominance or functional enrichments. This study investigates the relevance of dominance and functional classes of variants in genomic models for agronomic traits in diverse populations of hybrid maize. We based our analyses on a diverse panel of inbred lines crossed with two testers representative of the major heterotic groups in the U.S. (1106 hybrids), as well as a collection of 24 biparental populations crossed with a single tester (1640 hybrids). We investigated three agronomic traits: days to silking (DTS), plant height (PH), and grain yield (GY). Our results point to the presence of dominance for all traits, but also among-locus complementation (epistasis) for DTS and genotype-by-environment interactions for GY. Consistently, dominance improved genomic prediction for PH only. In addition, we assessed enrichment of genetic effects in classes defined by genic regions (gene annotation), structural features (recombination rate and chromatin openness), and evolutionary features (minor allele frequency and evolutionary constraint). We found support for enrichment in genic regions and subsequent improvement of genomic prediction for all traits. Our results suggest that dominance and gene annotations improve genomic prediction across diverse populations in hybrid maize.

Journal ArticleDOI
01 Mar 2020-Genetics
TL;DR: Overall, studies of Drosophila gastrulation have provided insight into how global tissue mechanics and movements are intertwined as multiple tissues simultaneously change shape, contributing to the view that cells respond to forces that propagate over great distances.
Abstract: A critical juncture in early development is the partitioning of cells that will adopt different fates into three germ layers: the ectoderm, the mesoderm, and the endoderm. This step is achieved through the internalization of specified cells from the outermost surface layer, through a process called gastrulation. In Drosophila, gastrulation is achieved through cell shape changes (i.e., apical constriction) that change tissue curvature and lead to the folding of a surface epithelium. Folding of embryonic tissue results in mesoderm and endoderm invagination, not as individual cells, but as collective tissue units. The tractability of Drosophila as a model system is best exemplified by how much we know about Drosophila gastrulation, from the signals that pattern the embryo to the molecular components that generate force, and how these components are organized to promote cell and tissue shape changes. For mesoderm invagination, graded signaling by the morphogen, Spatzle, sets up a gradient in transcriptional activity that leads to the expression of a secreted ligand (Folded gastrulation) and a transmembrane protein (T48). Together with the GPCR Mist, which is expressed in the mesoderm, and the GPCR Smog, which is expressed uniformly, these signals activate heterotrimeric G-protein and small Rho-family G-protein signaling to promote apical contractility and changes in cell and tissue shape. A notable feature of this signaling pathway is its intricate organization in both space and time. At the cellular level, signaling components and the cytoskeleton exhibit striking polarity, not only along the apical-basal cell axis, but also within the apical domain. Furthermore, gene expression controls a highly choreographed chain of events, the dynamics of which are critical for primordium invagination; it does not simply throw the cytoskeletal "on" switch. Finally, studies of Drosophila gastrulation have provided insight into how global tissue mechanics and movements are intertwined as multiple tissues simultaneously change shape. Overall, these studies have contributed to the view that cells respond to forces that propagate over great distances, demonstrating that cellular decisions, and, ultimately, tissue shape changes, proceed by integrating cues across an entire embryo.

Journal ArticleDOI
01 Jan 2020-Genetics
TL;DR: Homology-independent insertion in Drosophila is a fast and simple alternative to HDR that will enable researchers to dissect gene function and be able to isolate T2A-Gal4 insertions in four genes that serve as in vivo expression reporters.
Abstract: Targeted genomic knock-ins are a valuable tool to probe gene function. However, knock-in methods involving homology-directed repair (HDR) can be laborious. Here, we adapt the mammalian CRISPaint [clustered regularly interspaced short palindromic repeat (CRISPR)-assisted insertion tagging] homology-independent knock-in method for Drosophila melanogaster, which uses CRISPR/Cas9 and nonhomologous end joining to insert “universal” donor plasmids into the genome. Using this method in cultured S2R+ cells, we efficiently tagged four endogenous proteins with the bright fluorescent protein mNeonGreen, thereby demonstrating that an existing collection of CRISPaint universal donor plasmids is compatible with insect cells. In addition, we inserted the transgenesis marker 3xP3-red fluorescent protein into seven genes in the fly germ line, producing heritable loss-of-function alleles that were isolated by simple fluorescence screening. Unlike in cultured cells, insertions/deletions always occurred at the genomic insertion site, which prevents predictably matching the insert coding frame to the target gene. Despite this effect, we were able to isolate T2A-Gal4 insertions in four genes that serve as in vivo expression reporters. Therefore, homology-independent insertion in Drosophila is a fast and simple alternative to HDR that will enable researchers to dissect gene function.

Journal ArticleDOI
01 Feb 2020-Genetics
TL;DR: It is shown in Caenorhabditis elegans that supplementation with the antioxidant Coenzyme Q10 (CoQ10) rescues the reprotoxicity induced by the widely used plasticizer and endocrine disruptor bisphenol A (BPA), in part by neutralizing DNA damage resulting from oxidative stress.
Abstract: Endocrine-disrupting chemicals are ubiquitously present in our environment, but the mechanisms by which they adversely affect human reproductive health and strategies to circumvent their effects remain largely unknown. Here, we show in Caenorhabditis elegans that supplementation with the antioxidant Coenzyme Q10 (CoQ10) rescues the reprotoxicity induced by the widely used plasticizer and endocrine disruptor bisphenol A (BPA), in part by neutralizing DNA damage resulting from oxidative stress. CoQ10 significantly reduces BPA-induced elevated levels of germ cell apoptosis, phosphorylated checkpoint kinase 1 (CHK-1), double-strand breaks (DSBs), and chromosome defects in diakinesis oocytes. BPA-induced oxidative stress, mitochondrial dysfunction, and increased gene expression of antioxidant enzymes in the germline are counteracted by CoQ10. Finally, CoQ10 treatment also reduced the levels of aneuploid embryos and BPA-induced defects observed in early embryonic divisions. We propose that CoQ10 may counteract BPA-induced reprotoxicity through the scavenging of reactive oxygen species and free radicals, and that this natural antioxidant could constitute a low-risk and low-cost strategy to attenuate the impact on fertility by BPA.

Journal ArticleDOI
01 Aug 2020-Genetics
TL;DR: It is demonstrated that the emergence of asexuality can remedy hybrid sterility in a sex-specific manner and contributes to the speciation process.
Abstract: Hybrid sterility is a hallmark of speciation, but the underlying molecular mechanisms remain poorly understood. Here, we report that speciation may regularly proceed through a stage at which gene flow is completely interrupted, but hybrid sterility occurs only in male hybrids whereas female hybrids reproduce asexually. We analyzed gametogenic pathways in hybrids between the fish species Cobitis elongatoides and C. taenia, and revealed that male hybrids were sterile owing to extensive asynapsis and crossover reduction among heterospecific chromosomal pairs in their gametes, which was subsequently followed by apoptosis. We found that polyploidization allowed pairing between homologous chromosomes and therefore partially rescued the bivalent formation and crossover rates in triploid hybrid males. However, it was not sufficient to overcome sterility. In contrast, both diploid and triploid hybrid females exhibited premeiotic genome endoreplication, thereby ensuring proper bivalent formation between identical chromosomal copies. This endoreplication ultimately restored female fertility but it simultaneously resulted in the obligate production of clonal gametes, preventing any interspecific gene flow. In conclusion, we demonstrate that the emergence of asexuality can remedy hybrid sterility in a sex-specific manner and contributes to the speciation process.

Journal ArticleDOI
01 Oct 2020-Genetics
TL;DR: A reference-guided effort to scaffold contigs into chromosome-length pseudomolecules, add in any missing sequence that was unique to the IWGSC CS v1.0 assembly, and annotate the resulting pseudomolescules with genes is described.
Abstract: Bread wheat (Triticum aestivum) is a major food crop and an important plant system for agricultural genetics research. However, due to the complexity and size of its allohexaploid genome, genomic resources are limited compared to other major crops. The IWGSC recently published a reference genome and associated annotation (IWGSC CS v1.0, Chinese Spring) that has been widely adopted and utilized by the wheat community. Although this reference assembly represents all three wheat subgenomes at chromosome-scale, it was derived from short reads, and thus is missing a substantial portion of the expected 16 Gbp of genomic sequence. We earlier published an independent wheat assembly (Triticum_aestivum_3.1, Chinese Spring) that came much closer in length to the expected genome size, although it was only a contig-level assembly lacking gene annotations. Here, we describe a reference-guided effort to scaffold those contigs into chromosome-length pseudomolecules, add in any missing sequence that was unique to the IWGSC CS v1.0 assembly, and annotate the resulting pseudomolecules with genes. Our updated assembly, Triticum_aestivum_4.0, contains 15.07 Gbp of nongap sequence anchored to chromosomes, which is 1.2 Gbps more than the previous reference assembly. It includes 108,639 genes unambiguously localized to chromosomes, including over 2000 genes that were previously unplaced. We also discovered >5700 additional gene copies, facilitating the accurate annotation of functional gene duplications including at the Ppd-B1 photoperiod response locus.

Journal ArticleDOI
01 Jul 2020-Genetics
TL;DR: It is suggested that recessive deleterious mutations cannot account for the signals of AI in most, but not all, of the top candidates for AI in humans, suggesting they may be genuine signals of adaptation.
Abstract: Admixture with archaic hominins has altered the landscape of genomic variation in modern human populations. Several gene regions have been identified previously as candidates of adaptive introgression (AI) that facilitated human adaptation to specific environments. However, simulation-based studies have suggested that population genetic processes other than adaptive mutations, such as heterosis from recessive deleterious variants private to populations before admixture, can also lead to patterns in genomic data that resemble AI. The extent to which the presence of deleterious variants affect the false-positive rate and the power of current methods to detect AI has not been fully assessed. Here, we used extensive simulations under parameters relevant for human evolution to show that recessive deleterious mutations can increase the false positive rates of tests for AI compared to models without deleterious variants, especially when the recombination rates are low. We next examined candidates of AI in modern humans identified from previous studies, and show that 24 out of 26 candidate regions remain significant, even when deleterious variants are included in the null model. However, two AI candidate genes, HYAL2 and HLA, are particularly susceptible to high false positive signals of AI due to recessive deleterious mutations. These genes are located in regions of the human genome with high exon density together with low recombination rate, factors that we show increase the rate of false-positives due to recessive deleterious mutations. Although the combination of such parameters is rare in the human genome, caution is warranted in such regions, as well as in other species with more compact genomes and/or lower recombination rates. In sum, our results suggest that recessive deleterious mutations cannot account for the signals of AI in most, but not all, of the top candidates for AI in humans, suggesting they may be genuine signals of adaptation.