scispace - formally typeset
Search or ask a question

Showing papers in "GeoArabia in 2002"



Journal ArticleDOI
TL;DR: In this paper, the authors present a new perspective on the structural evolution and geologic history of the Arabian Shield using aeromagnetic, geologic, structural, geochemical, and geochronologic data.
Abstract: Recent fieldwork and the synthesis and reappraisal of aeromagnetic, geologic, structural, geochemical, and geochronologic data have provided a new perspective on the structural evolution and geologic history of the Arabian Shield. Although Paleoproterozoic rocks are present in the eastern part of the Shield, its geologic evolution was mainly concentrated in the period from 900 to 550 Ma during which the formation, amalgamation, and final Pan-African cratonization of several tectonostratigraphic terranes took place. The terranes are separated by major NW-trending faults and by N-, NW- and NE-oriented suture zones lined by serpentinized ultramafic rocks (ophiolites). Terrane analysis using the lithostratigraphy and geochronology of suture zones, fault zones, overlapping basins, and stitching plutons, has helped to constrain the geologic history of the Arabian Shield. Ophiolites and volcanic-arcs have been dated at between 900 and 680 Ma, with the southern terrane of Asir being older than the Midyan terrane in the north and the Ar Rayn terrane in the east. Final cratonization of the terranes between 680 and 610 Ma induced a network of anastomosing, strike-slip faults consisting of the N-trending Nabitah belt, the major NW-striking left-lateral transpressive faults (early Najd faults), lined by gneiss domes and associated with sedimentary basins, and N- to NE-trending right-lateral transpressive faults. Following the Pan-African cratonization, widespread alkaline granitization was contemporaneous with the deposition of the Jibalah volcanic and sedimentary rocks in transtensional pull-apart basins. Crustal thinning was governed by the Najd fault system of left-lateral transform faults that controlled the formation of the Jibalah basins and was synchronous with the emplacement of major E- to NW-trending dike swarms throughout the Arabian Shield. The extensional episode ended with a marine transgression in which carbonates were deposited in the Jibalah basins. Continuation of the thinning process may explain the subsequent deposition of the marine formations of the lower Paleozoic cover. Our interpretation of the distribution and chronology of orogenic zones does not correspond entirely to those proposed in earlier studies. In particular, the N-trending Nabitah and NW-trending Najd fault zones are shown to be part of the same history of oblique transpressional accretion rather than being two distinct events related to accretion and dispersion of the terranes.

137 citations


Journal ArticleDOI
TL;DR: In this paper, the authors proposed a new sequence stratigraphic model that links Kuwait, Iran, Saudi Arabia, Qatar, and the United Arab Emirates, to Oman and Yemen.
Abstract: Maximum Flooding Surfaces (MFS) in the Early to mid-Cretaceous mixed carbonate-clastic shelfal systems of the Arabian Plate have been incorporated into a new sequence stratigraphic model that links Kuwait, Iran, Saudi Arabia, Qatar, and the United Arab Emirates, to Oman and Yemen. It is based on regional sequence stratigraphic concepts supported by biostratigraphic, sedimentological and mineralogical data. The model has amended the positions of some existing MFS. The diachronous interplay between large-scale, proximal clastic systems and outboard (down-systems-tract) carbonate platforms was emphasized by concentrating on the depositional history of prodelta areas during delta advance and retreat. The prodelta area of relatively deep water separating the depositional systems has been termed the ‘Migratory Carbonate Suppressed Belt’ (MCSB). The model proposes that platform limestones expanded back over preceding prodelta areas during transgressions. The most extensive transgressions ultimately led to the demise of MCSBs. The maximum landward retreat of the shoreline coincided with the cessation of clastic input in the most up-systems-tract localities. Thus, the model has predicted that in many places MFS are located in the basal parts of clean carbonates even though these are not the deepest-water sediments. Examples are the Zubair-Shu’aiba (K70 MFS) and the upper Burgan-Maddud (K100) sections of the northern Gulf. Where carbonate platforms did not expand completely across the MCSBs, perhaps because of fault-control, the MCSBs survived and MFS are present within deeper-water, prodelta shales deposited below the most efficient window for carbonate production. Examples are the K40 to K60 MFS in intraformational shales of the Zubair, Biyadh, and Qishn formations of Kuwait, Saudi Arabia, and Yemen, and K100 in the Burgan-Wasia formations of Kuwait and Saudi Arabia. Even in these cases, the MFS are present within limestones deposited further down-systems-tract, notably in Iran (K60—Khalij Member, Gadvan Formation; K100—Dair Limestone Member, Burgan-Kazhdumi formations). Deeper-water dense limestones and shales with accompanying MFS were deposited along the northeastern passive margin of the Arabian Plate, or within intrashelf basins with some limited connection to the open ocean. From a regional perspective it can be seen that eustatic or tectonically forced MFS do not necessarily occur within the deepest-water facies. A regional understanding is needed for a more precise sequence stratigraphic interpretation of the Early to mid-Cretaceous succession of the Arabian Plate. The identification of the stratigraphic architecture is of major economic importance at the reservoir scale, for instance in recognizing vertical permeability and transmissibility barriers, as well as at the regional-play fairway scale in the distribution of seals and their potential influence on migration pathways. Our interpretations are also relevant to the prediction of source-rock distributions and, in the longer term, may help identify stratigraphic trap potential related to the interplay between clastic and carbonate depositional systems. Although the model proposed relates to the Arabian Plate, general conclusions may be applicable to other regions where mixed carbonate-clastic systems are well developed, for example in many basins of Tertiary age in South East Asia.

106 citations


Journal ArticleDOI
TL;DR: In this article, a simplified calculation of orbital forcing back through the Cretaceous to the Late to Middle Jurassic from 65 to 190 Ma was performed, and the results were consistent with a persistent continental ice volume throughout the Late and Middle Jurassic stage boundaries, within the limits of recognized stratigraphic time scales.
Abstract: We have undertaken a simplified calculation of orbital forcing back through the Cretaceous to the Late to Middle Jurassic from 65 to 190 Ma. So long as the Earth has a continental ice volume, orbital forcing will impose a 400-ky periodicity upon glacioeustasy and thereby on fourth-order sequence stratigraphy cycles. Similarly, third-order cycles were defined by orbital forcing of 2.4 ± 0.4 my (predominately 2.0- and 2.8-my cycles). These concepts greatly simplified the task of unraveling sequence stratigraphy. Our sea-level calculations are comparable with stratigraphic observations and the results are consistent with a persistent continental ice volume throughout the Late to Middle Jurassic and Cretaceous. In general, they compare well with the Arabian Plate Maximum Flooding Surfaces and the Cretaceous and Jurassic stage boundaries, within the limits of the recognized stratigraphic time scales. We used simple Parametric Forward Models (PFMs) for modeling changes in sea level, subsidence, and sedimentation and noted that PFMs can be applied to other tasks. The results will provide for rapid, cost-effective forward modeling on tasks such as reservoir characterization and flow simulation.

93 citations


Journal ArticleDOI
TL;DR: In this article, the authors made a 255 km-long, southwesterly oriented crustal transect of the Oman Mountains from the Coastal Zone to the interior Foreland via the 3,000m-high Jebel Akhdar.
Abstract: The unique tectonic setting of the Oman Mountains and the Semail Ophiolite, together with ongoing hydrocarbon exploration, have focused geological research on the sedimentary and ophiolite stratigraphy of Oman. However, there have been few investigations of the crustal-scale structure of the eastern Arabian continental margin. In order to rectify this omission, we made a 255-km-long, southwesterly oriented crustal transect of the Oman Mountains from the Coastal Zone to the interior Foreland via the 3,000-m-high Jebel Akhdar. The model for the upper 8 km of the crust was constrained using 152 km of 2-D seismic reflection profiles, 15 exploratory wells, and 1:100,000to 1:250,000-scale geological maps. Receiver-function analysis of teleseismic earthquake waveform data from three temporary digital seismic stations gave the first reliable estimates of depth-to-Moho. Bouguer gravity modeling provided further evidence of depths to the Moho and metamorphic basement.

80 citations


Journal ArticleDOI
TL;DR: Marawah is one of a chain of barrier islands off the coast of Abu Dhabi that separates the Khor Al Bazm lagoon from the open waters of the Arabian Gulf as mentioned in this paper.
Abstract: Marawah is one of a chain of barrier islands off the coast of Abu Dhabi that separates the Khor Al Bazm lagoon from the open waters of the Arabian Gulf. The island consists of several rocky cores of Pleistocene limestone linked by areas of unconsolidated Holocene carbonates. It has the most complete Quaternary outcrop sequence in the region and the lowest exposed unit, a coralline limestone, had not been recorded previously. The Pleistocene deposits accumulated partly in a shallow-marine environment and partly under eolian conditions. The Marawah sections have revealed new data about the history of the southern Gulf in the late Pleistocene, a time interval of which little was known. The survey has shown that there were periods when sea level was close to present-day levels and other times when it was approximately 4 to 5 m higher than today. A phase of deflation and the development of a field of eolian sand dunes separated these two sea-level highstands. The unconsolidated sediments have accumulated around the Pleistocene rock cores since about 4,500 years BP to give the island its present form. Accumulation occurred because of wave action driven by the northwesterly ‘Shamal’ winds during periods of slightly falling or almost stationary sea level.

28 citations



Journal ArticleDOI
TL;DR: Inverse modeling of the Uthmaniyah 3D seismic data has identified the tight-porosity outliers as areas of anomalously high acoustic impedance as discussed by the authors, which has improved the reservoir characterization and reduced the drilling risk.
Abstract: The Khuff-C reservoir in the Ghawar field is a stratified sequence of cyclic carbonate-evaporite deposits within the Permian Khuff Formation. The reservoir is heterogeneous, complex, and influenced by syndepositional diagenesis. Wells drilled into the Khuff-C in the ‘Uthmaniyah sector of Ghawar are usually prolific producers of non-associated gas but some have intersected poor-quality reservoir intervals with little or no gas production. The Khuff-C reservoir rocks were deposited in a peritidal setting where slight changes in sea level created locally exposed highs. The exposure in an arid climate resulted in outliers of porosity occlusion formed by evaporite cements within the Khuff-C reservoir. The outliers are variably sized and randomly distributed and the challenge is to predict their occurrence in order to avoid them in development drilling. Inverse modeling of the ‘Uthmaniyah 3-D seismic data has identified the tight-porosity outliers as areas of anomalously high acoustic impedance. Integration of 3-D seismic analyses with petrophysical and other well data has improved the reservoir characterization and reduced the drilling risk.

20 citations


Journal ArticleDOI
TL;DR: In this paper, a reference section near Al Kharj, southeast of Riyadh in central Saudi Arabia, was logged and a hierarchical organization of the depositional sequences established, which allowed a correlation framework to be proposed between the Aruma and the Qahlah and Simsima formations of the United Arab Emirates and the Oman Mountains, and with the Sharwayn Formation of the Hadramawt and Dhofar.
Abstract: The Aruma Formation is a predominantly carbonate lithostratigraphic unit of Late Cretaceous age that crops out in Saudi Arabia. It consists of three members: from base to top they are Khanasir Limestone Member, Hajajah Limestone Member, and Lina Shale Member. In order to establish a stratigraphic revision of the Formation, a reference section near Al Kharj, southeast of Riyadh in central Saudi Arabia, was logged and a hierarchical organization of the depositional sequences established. The Aruma corresponds to four third-order cycles bounded by erosional unconformities. Integrated biostratigraphical data mainly based on ammonites, nannoflora, rudists, and larger foraminifera point to a Maastrichtian age for the Khanasir and Hajajah members, and a Paleocene age for the Lina Member. Regional stratigraphic correlations were established within the outcropping Aruma Formation in Saudi Arabia. Biostratigraphy and sequence stratigraphy allowed a correlation framework to be proposed between the Aruma and the Qahlah and Simsima formations of the United Arab Emirates and the Oman Mountains, and with the Sharwayn Formation of the Hadramawt and Dhofar. The high-resolution stratigraphic scheme established for the Aruma Formation in Saudi Arabia is expected to be useful for subsurface correlations and in petroleum exploration.

17 citations


Journal ArticleDOI
TL;DR: The Dam Formation is well exposed in the Jebel Al-Nakhash area of southern Qatar and three sections were measured in a detailed investigation of the Formation's stratigraphy, micropaleontology, and paleoecology.
Abstract: The Miocene carbonate Dam Formation is well exposed in the Jebel Al-Nakhash area of southern Qatar. Three sections were measured in a detailed investigation of the Formation’s stratigraphy, micropaleontology, and paleoecology. This biostratigraphic and paleoecologic study was supported by the analysis of microlithofacies and foraminiferal assemblages. Microfossils are predominantly benthic foraminifera represented by 38 species, many of which are milioline and one is a larger form. A Borelis melo melo Local Range Zone of Early Miocene (Burdigalian) age was recognized. The nature and distribution of the benthic foraminiferal assemblage, in association with lithofacies evidence, indicated a general shoaling-upward trend. The Dam Formation was stratigraphically subdivided into two new formal members. The basal Al-Kharrara Member is made up of limestone, marl, and claystone, and the overlying Al-Nakhash Member is a cyclic assemblage of carbonate, evaporite, and algal stromatolite facies. The lithofacies are grouped into four major types of which limestone, subdivided into six subfacies, is dominant. The Al-Kharrara was interpreted as having been deposited in warm (25°–30°C), clear, shallow waters of the inner neritic zone (0–35 m) that had an elevated salinity (35‰–50‰) and a vegetated substrate. The Al-Nakhash probably formed in an oscillating, very shallow-marine environment (0–10 m deep, including tidal flats), under warm climatic conditions that eventually led to the accumulation of evaporites and algal stromatolites.

15 citations