scispace - formally typeset

JournalISSN: 1525-2027

Geochemistry Geophysics Geosystems 

About: Geochemistry Geophysics Geosystems is an academic journal. The journal publishes majorly in the area(s): Mantle (geology) & Subduction. It has an ISSN identifier of 1525-2027. Over the lifetime, 4929 publication(s) have been published receiving 203770 citation(s).
More filters

Journal ArticleDOI
Peter Bird1Institutions (1)
Abstract: [1] A global set of present plate boundaries on the Earth is presented in digital form. Most come from sources in the literature. A few boundaries are newly interpreted from topography, volcanism, and/or seismicity, taking into account relative plate velocities from magnetic anomalies, moment tensor solutions, and/or geodesy. In addition to the 14 large plates whose motion was described by the NUVEL-1A poles (Africa, Antarctica, Arabia, Australia, Caribbean, Cocos, Eurasia, India, Juan de Fuca, Nazca, North America, Pacific, Philippine Sea, South America), model PB2002 includes 38 small plates (Okhotsk, Amur, Yangtze, Okinawa, Sunda, Burma, Molucca Sea, Banda Sea, Timor, Birds Head, Maoke, Caroline, Mariana, North Bismarck, Manus, South Bismarck, Solomon Sea, Woodlark, New Hebrides, Conway Reef, Balmoral Reef, Futuna, Niuafo'ou, Tonga, Kermadec, Rivera, Galapagos, Easter, Juan Fernandez, Panama, North Andes, Altiplano, Shetland, Scotia, Sandwich, Aegean Sea, Anatolia, Somalia), for a total of 52 plates. No attempt is made to divide the Alps-Persia-Tibet mountain belt, the Philippine Islands, the Peruvian Andes, the Sierras Pampeanas, or the California-Nevada zone of dextral transtension into plates; instead, they are designated as “orogens” in which this plate model is not expected to be accurate. The cumulative-number/area distribution for this model follows a power law for plates with areas between 0.002 and 1 steradian. Departure from this scaling at the small-plate end suggests that future work is very likely to define more very small plates within the orogens. The model is presented in four digital files: a set of plate boundary segments; a set of plate outlines; a set of outlines of the orogens; and a table of characteristics of each digitization step along plate boundaries, including estimated relative velocity vector and classification into one of 7 types (continental convergence zone, continental transform fault, continental rift, oceanic spreading ridge, oceanic transform fault, oceanic convergent boundary, subduction zone). Total length, mean velocity, and total rate of area production/destruction are computed for each class; the global rate of area production and destruction is 0.108 m2/s, which is higher than in previous models because of the incorporation of back-arc spreading.

1,522 citations

Journal ArticleDOI
Abstract: We present four companion digital models of the age, age uncertainty, spreading rates, and spreading asymmetries of the world's ocean basins as geographic and Mercator grids with 2 arc min resolution. The grids include data from all the major ocean basins as well as detailed reconstructions of back-arc basins. The age, spreading rate, and asymmetry at each grid node are determined by linear interpolation between adjacent seafloor isochrons in the direction of spreading. Ages for ocean floor between the oldest identified magnetic anomalies and continental crust are interpolated by geological estimates of the ages of passive continental margin segments. The age uncertainties for grid cells coinciding with marine magnetic anomaly identifications, observed or rotated to their conjugate ridge flanks, are based on the difference between gridded age and observed age. The uncertainties are also a function of the distance of a given grid cell to the nearest age observation and the proximity to fracture zones or other age discontinuities. Asymmetries in crustal accretion appear to be frequently related to asthenospheric flow from mantle plumes to spreading ridges, resulting in ridge jumps toward hot spots. We also use the new age grid to compute global residual basement depth grids from the difference between observed oceanic basement depth and predicted depth using three alternative age-depth relationships. The new set of grids helps to investigate prominent negative depth anomalies, which may be alternatively related to subducted slab material descending in the mantle or to asthenospheric flow. A combination of our digital grids and the associated relative and absolute plate motion model with seismic tomography and mantle convection model outputs represents a valuable set of tools to investigate geodynamic problems.

1,489 citations

Journal ArticleDOI
Scott M. McLennan1Institutions (1)
Abstract: [1] Estimates of the average composition of various Precambrian shields and a variety of estimates of the average composition of upper continental crust show considerable disagreement for a number of trace elements, including Ti, Nb, Ta, Cs, Cr, Ni, V, and Co. For these elements and others that are carried predominantly in terrigenous sediment, rather than in solution (and ultimately into chemical sediment), during the erosion of continents the La/element ratio is relatively uniform in clastic sediments. Since the average rare earth element (REE) pattern of terrigenous sediment is widely accepted to reflect the upper continental crust, such correlations provide robust estimates of upper crustal abundances for these trace elements directly from the sedimentary data. Suggested revisions to the upper crustal abundances of Taylor and McLennan [1985] are as follows (all in parts per million): Sc = 13.6, Ti = 4100, V = 107, Cr = 83, Co = 17, Ni = 44, Nb = 12, Cs = 4.6, Ta = 1.0, and Pb = 17. The upper crustal abundances of Rb, Zr, Ba, Hf, and Th were also directly reevaluated and K, U, and Rb indirectly evaluated (by assuming Th/U, K/U, and K/Rb ratios), and no revisions are warranted for these elements. In the models of crustal composition proposed by Taylor and McLennan [1985] the lower continental crust (75% of the entire crust) is determined by subtraction of the upper crust (25%) from a model composition for the bulk crust, and accordingly, these changes also necessitate revisions to lower crustal abundances for these elements.

1,308 citations

Journal ArticleDOI
Abstract: [1] We present an estimate for the composition of the depleted mantle (DM), the source for mid-ocean ridge basalts (MORBs). A combination of approaches is required to estimate the major and trace element abundances in DM. Absolute concentrations of few elements can be estimated directly, and the bulk of the estimates is derived using elemental ratios. The isotopic composition of MORB allows calculation of parent-daughter ratios. These estimates form the “backbone” of the abundances of the trace elements that make up the Coryell-Masuda diagram (spider diagram). The remaining elements of the Coryell-Masuda diagram are estimated through the composition of MORB. A third group of estimates is derived from the elemental and isotopic composition of peridotites. The major element composition is obtained by subtraction of a low-degree melt from a bulk silicate Earth (BSE) composition. The continental crust (CC) is thought to be complementary to the DM, and ratios that are chondritic in the CC are expected to also be chondritic in the DM. Thus some of the remaining elements are estimated using the composition of CC and chondrites. Volatile element and noble gas concentrations are estimated using constraints from the composition of MORBs and ocean island basalts (OIBs). Mass balance with BSE, CC, and DM indicates that CC and this estimate of the DM are not complementary reservoirs.

1,219 citations

Journal ArticleDOI
Abstract: [1] Seafloor bathymetric data acquired with modern swath echo sounders provide coverage for only a small fraction of the global seabed yet are of high value for studies of the dynamic processes of seafloor volcanism, tectonics, mass wasting, and sediment transport that create and shape the undersea landscape. A new method for compilation of global seafloor bathymetry that preserves the native resolution of swath sonars is presented. The Global Multi-Resolution Topography synthesis consists of a hierarchy of tiles with digital elevations and shaded relief imagery spanning nine magnification doublings from pole to pole ( The compilation is updated and accessible as surveys are contributed, edited, and added to the tiles. Access to the bathymetry tiles is via Web services and with WMS-enabled client applications such as GeoMapApp®, Virtual Ocean, NASA World Wind®, and Google Earth®.

1,187 citations

Network Information
Related Journals (5)
Earth and Planetary Science Letters

18.3K papers, 1.2M citations

97% related

12.6K papers, 793.8K citations

93% related
Chemical Geology

10.6K papers, 571.6K citations

90% related

14.1K papers, 617.1K citations

89% related
Geophysical Journal International

16.3K papers, 654.2K citations

89% related
No. of papers from the Journal in previous years