scispace - formally typeset
Search or ask a question

Showing papers in "Geochemistry Geophysics Geosystems in 2017"


Journal ArticleDOI
TL;DR: In this article, the authors presented isotope dilution U-Pb isotope measurements on a sample of calcite (WC-1) that has been and will continue to be used as a reference material for in-situ LA-ICP-MS dating, and which is suitable to be distributed to the geochronological community.
Abstract: U-Pb dating of calcite is an emerging but rapidly growing field of application in geochronology with great potential to inform problems in landscape, basin and mountain belt evolution, through age determination of diagenetic cements, vein mineralisation and geological formations difficult to date otherwise. In this brief, we present isotope dilution U-Pb isotope measurements on a sample of calcite (WC-1) that has been and will continue to be used as a reference material for in-situ U-Pb Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) dating, and which is suitable to be distributed to the geochronological community. We present in-situ measurements using LA-ICP-MS to demonstrate the suitability of WC-1 for use as a U-Pb dating reference material, in spite of it not being isotopically homogeneous. The WC-1 calcite sample is 254.4 ± 6.4 Ma old, and comprised of 85 to 98% radiogenic lead. It presents a suitable reference material that can facilitate dating of calcite ranging in age from Precambrian to late Neogene age.

203 citations


Journal ArticleDOI
TL;DR: The Planetary Major Equipment Program (NNX15AH72G) as discussed by the authors is a program of the U.S. National Aeronautics and Space Administration (NOAASA).
Abstract: United States. National Aeronautics and Space Administration. Planetary Major Equipment Program (NNX15AH72G)

149 citations


Journal ArticleDOI
TL;DR: In this article, the authors extracted all volcanic arc analyses calculated to be in equilibrium with mantle olivine from the global georoc database and extracted 938 primitive melt compositions from 30 arcs.
Abstract: We extracted all volcanic arc rock analyses calculated to be in equilibrium with mantle olivine from the global georoc database. This results in 938 primitive melt compositions from 30 arcs. Based on geochemical criteria six principal types of primitive arc melts can be distinguished: calc-alkaline basalts and andesites, tholeiitic basalts, highly depleted tholeiitic andesites, shoshonites and low-Si basalts. Their major element systematics indicates that last mantle equilibration occurred mostly at 1.0-2.5 GPa, 1220-1350°C for tholeiitic and calc-alkaline basalts, at 0.5-1.2 GPa and ∼1200°C for depleted tholeiitic andesites, and at 0.7-1.2 GPa, 1050-1150°C for calc-alkaline andesites. Quantitative treatment of major and trace elements suggests that the different melt types can be explained by a combination of variable mantle wedge preconditioning (degree of depletion prior to slab component addition, metasomatism in the lithosphere), variation in the amount and nature of the slab component added, and - for primitive calc-alkaline andesites - reactive fractionation in the lithospheric top of the mantle wedge. The different slab components are best characterized by high Na2O, TiO2, Zr and Th for slab melts; high K2O/Na2O and more pronounced Nb, Sr, and Pb anomalies for fluids; and high K2O at high K2O/Na2O for supercritical liquids. A slab component that is dominantly a slab melt is common in continental but rare in intra-oceanic arcs, consistent with comparatively cooler slabs in intra-oceanic subduction zones. A majority of the arcs has more than one melt type, testifying for heterogeneity in the mantle wedge and added slab component.

139 citations


Journal ArticleDOI
TL;DR: In this paper, a statistical approach is applied to a geochemical database of about 22,000 samples from the mafic magma record, assuming melting by adiabatic decompression and a Ti-dependent (Fe2O3/TiO2) or constant redox condition (Fe 2+/∑Fe 0.9 or 0.8) in the magmatic source.
Abstract: Chemical composition of mafic magmas is a critical indicator of physicochemical conditions, such as pressure, temperature, and fluid availability, accompanying melt production in the mantle and its evolution in the continental or oceanic lithosphere. Recovering this information has fundamental implications in constraining the thermal state of the mantle and the physics of mantle convection throughout the Earth's history. Here a statistical approach is applied to a geochemical database of about 22,000 samples from the mafic magma record. Potential temperatures (Tps) of the mantle derived from this database, assuming melting by adiabatic decompression and a Ti-dependent (Fe2O3/TiO2 = 0.5) or constant redox condition (Fe2+/∑Fe = 0.9 or 0.8) in the magmatic source, are thought to be representative of different thermal “horizons” (or thermal heterogeneities) in the ambient mantle, ranging in depth from a shallow sublithospheric mantle (Tp minima) to a lower thermal boundary layer (Tp maxima). The difference of temperature (ΔTp) observed between Tp maxima and minima did not change significantly with time (∼170°C). Conversely, a progressive but limited cooling of ∼150°C is proposed since ∼2.5 Gyr for the Earth's ambient mantle, which falls in the lower limit proposed by Herzberg et al. [2010] (∼150–250°C hotter than today). Cooling of the ambient mantle after 2.5 Ga is preceded by a high-temperature plateau evolution and a transition from dominant plumes to a plate tectonics geodynamic regime, suggesting that subductions stabilized temperatures in the Archaean mantle that was in warming mode at that time.

102 citations


Journal ArticleDOI
TL;DR: This article developed a mixing model that determines mixing proportions for source samples through inverse Monte Carlo modeling, wherein mixed samples are compared to randomly generated combinations of source distributions, and a range of best mixing proportions are retained.
Abstract: Despite recent advances in quantitative methods of detrital provenance analysis, there is currently no widely accepted method of unmixing detrital geochronology data. We developed a mixing model that determines mixing proportions for source samples through inverse Monte Carlo modeling, wherein mixed samples are compared to randomly generated combinations of source distributions, and a range of best mixing proportions are retained. Results may then be used to constrain a forward optimization routine to find a single best-fit mixture. Quantitative comparison is based on the Kolmogorov-Smirnov (KS) test D statistic and Kuiper test V statistic for cumulative distribution functions, and the Cross-correlation coefficient for finite mixture distributions (probability density plots or kernel density estimates). We demonstrate the capacity of this model through a series of tests on synthetic data sets and a published empirical data set from North America mixed in known proportions; this proof-of-concept testing shows the model is capable of accurately unmixing highly complex distributions. We apply the model to two published empirical data sets mixed in unknown proportions from Colombia and central China. Neither data set yields perfect model fits, which provides a cautionary note of potentially inadequate characterization of source and/or mixed samples, and highlights the importance of such characterization for accurate interpretation of sediment provenance. Data set size appears to be a major control on mixture model results; small (n < 100) detrital data sets may lead to misinterpretation of sediment provenance. The model is available as a MATLAB-based stand-alone executable (.exe file) graphical user interface.

98 citations


Journal ArticleDOI
TL;DR: In this article, microbathymetry data, in situ observations, and sampling along the 13°20′N and 13° 20′N oceanic core complexes (OCCs) reveal mechanisms of detachment fault denudation at the seafloor, links between tectonic extension and mass wasting, and expose the nature of corrugations, ubiquitous at OCCs.
Abstract: Microbathymetry data, in situ observations, and sampling along the 13°20′N and 13°20′N oceanic core complexes (OCCs) reveal mechanisms of detachment fault denudation at the seafloor, links between tectonic extension and mass wasting, and expose the nature of corrugations, ubiquitous at OCCs. In the initial stages of detachment faulting and high-angle fault, scarps show extensive mass wasting that reduces their slope. Flexural rotation further lowers scarp slope, hinders mass wasting, resulting in morphologically complex chaotic terrain between the breakaway and the denuded corrugated surface. Extension and drag along the fault plane uplifts a wedge of hangingwall material (apron). The detachment surface emerges along a continuous moat that sheds rocks and covers it with unconsolidated rubble, while local slumping emplaces rubble ridges overlying corrugations. The detachment fault zone is a set of anostomosed slip planes, elongated in the along-extension direction. Slip planes bind fault rock bodies defining the corrugations observed in microbathymetry and sonar. Fault planes with extension-parallel stria are exposed along corrugation flanks, where the rubble cover is shed. Detachment fault rocks are primarily basalt fault breccia at 13°20′N OCC, and gabbro and peridotite at 13°30′N, demonstrating that brittle strain localization in shallow lithosphere form corrugations, regardless of lithologies in the detachment zone. Finally, faulting and volcanism dismember the 13°30′N OCC, with widespread present and past hydrothermal activity (Semenov fields), while the Irinovskoe hydrothermal field at the 13°20′N core complex suggests a magmatic source within the footwall. These results confirm the ubiquitous relationship between hydrothermal activity and oceanic detachment formation and evolution.

90 citations


Journal ArticleDOI
TL;DR: In this article, the authors report sedimentary mercury (Hg) concentration data from four sites, three from the southern margin of the Western Interior Seaway and one from Demerara Rise, in the equatorial proto-North Atlantic Ocean, and find that, in both areas, increases in mercury concentrations and Hg/TOC ratios coincide with the mid-Cenomanian Event (MCE), identified by a small, 1 ‰ positive carbon-isotope excursion, is often referred to as a prelude to OAE 2.
Abstract: Oceanic Anoxic Event 2 (OAE 2), during the Cenomanian–Turonian transition (∼94 Ma), was the largest perturbation of the global carbon cycle in the mid-Cretaceous and can be recognized by a positive carbon-isotope excursion in sedimentary strata. Although OAE 2 has been linked to large-scale volcanism, several large igneous provinces (LIPs) were active at this time (e.g. Caribbean, High Arctic, Madagascan, Ontong-Java) and little clear evidence links OAE 2 to a specific LIP. The Mid-Cenomanian Event (MCE, ∼96 Ma), identified by a small, 1 ‰ positive carbon-isotope excursion, is often referred to as a prelude to OAE 2. However, no underlying cause has yet been demonstrated and its relationship to OAE 2 is poorly constrained. Here, we report sedimentary mercury (Hg) concentration data from four sites, three from the southern margin of the Western Interior Seaway and one from Demerara Rise, in the equatorial proto-North Atlantic Ocean. We find that, in both areas, increases in mercury concentrations and Hg/TOC ratios coincide with the MCE and the OAE 2. However, the increases found in these sites are of a lower magnitude than those found in records of many other Mesozoic events, possibly characteristic of a marine rather than atmospheric dispersal of mercury for both events. Combined, the new mercury data presented here are consistent with an initial magmatic pulse at the time of the MCE, with a second, greater pulse at the onset of OAE 2, possibly related to the emplacement of LIPs in the Pacific Ocean and/or the High Arctic.

83 citations


Journal ArticleDOI
TL;DR: In this article, a geomorphic database of 1,844 longitudinal river profiles is used to calculate the 18======variation of Neogene regional uplift through time and space by minimizing the misbehavior between observed and calculated river profiles.
Abstract: It is generally agreed that mantle dynamics have played a significant role in generating and maintaining the elevated topography of Anatolia during Neogene times. However, there is much debate about the relative importance of subduction zone and asthenospheric processes. Key issues concern onset and cause of regional uplift, thickness of the lithospheric plate, and the presence or absence of temperature and / or compositional anomalies within the convecting mantle. Here, we tackle these interlinked issues by analyzing and modeling two disparate suites of observations. First, a drainage inventory of 1,844 longitudinal river profiles is assembled. This geomorphic database is inverted to calculate the 18 variation of Neogene regional uplift through time and space by minimizing the misfit between observed and calculated river profiles subject to independent calibration. Our results suggest that regional uplift commenced in the east and propagated westward. Secondly, we have assembled a database of geochemical analyses of basaltic rocks. Two di ff erent approaches have been used to quantitatively model this database with a view to determining the depth and degree of asthenospheric melting across Anatolia. Our results suggest that melting occurs at depths as shallow as 60 km in the presence of mantle potential temperatures as high as 1390◦ C. There is evidence that potential temperatures are higher in the east, consistent with the pattern of sub-plate shear wave velocity anomalies. Our combined results are consistent with isostatic and admittance analyses and suggest that elevated asthenospheric temperatures beneath thinned Anatolian lithosphere have played a first order role in generating and maintaining regional dynamic topography and basaltic magmatism.

73 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated pristine and mylonitized pseudotachylytes in anorthosites from Nusfjord (Lofoten, Norway) and found that pristine-and mylonitic pseudotachylytes are coeval and resulted from the cyclical interplay between brittle and viscous deformation.
Abstract: The rheology and the conditions for viscous flow of the dry granulite facies lower crust are still poorly understood. Viscous shearing in the dry and strong lower crust commonly localizes in pseudotachylyte veins, but the deformation mechanisms responsible for the weakening and viscous shear localization in pseudotachylytes are yet to be explored. We investigated examples of pristine and mylonitized pseudotachylytes in anorthosites from Nusfjord (Lofoten, Norway). Mutual overprinting relationships indicate that pristine- and mylonitized pseudotachylytes are coeval and resulted from the cyclical interplay between brittle and viscous deformation. The stable mineral assemblage in the mylonitized pseudotachylytes consists of plagioclase, amphibole, clinopyroxene, quartz, biotite, ± garnet ± K-feldspar. Amphibole-plagioclase geothermobarometry and thermodynamic modelling indicate that pristine- and mylonitized pseudotachylytes formed at 650-750°C and 0.7-0.8 GPa. Thermodynamic modelling indicates that a limited amount of H2O infiltration (0.20-0.40 wt%) was necessary to stabilize the mineral assemblage in the mylonite. Diffusion creep is identified as the main deformation mechanisms in the mylonitized pseudotachylytes based on the lack of crystallographic preferred orientation in plagioclase, the high degree of phase mixing, and the synkinematic nucleation of amphiboles in dilatant sites. Extrapolation of flow laws to natural conditions indicates that mylonitized pseudotachylytes are up to 3 orders of magnitude weaker than anorthosites deforming by dislocation creep, thus highlighting the fundamental role of lower crustal earthquakes as agents of weakening in strong granulites.

72 citations


Journal ArticleDOI
TL;DR: In this paper, the authors use results from 40Ar/39Ar geochronology, basalt geochemistry, and a passive-source broadband seismic experiment obtained in a collaborative international effort (Continental Dynamics-Central Anatolia Tectonics) to investigate the upper mantle structure and evolution of melting conditions over an ∼2400 km2 area south and west of Hasan volcano.
Abstract: Widespread mafic volcanism, elevated crustal temperatures, and plateau-type topography in Central Anatolia, Turkey, could collectively be the result of lithospheric delamination, mantle upwelling, and tectonic escape. We use results from 40Ar/39Ar geochronology, basalt geochemistry, and a passive-source broadband seismic experiment obtained in a collaborative international effort (Continental Dynamics-Central Anatolia Tectonics) to investigate the upper mantle structure and evolution of melting conditions over an ∼2400 km2 area south and west of Hasan volcano. New 40Ar/39Ar dates for the basalts mostly cluster between 0.2 and 0.6 Ma, but some scoria cones are as old as 2.5 Ma. Basalts are dominantly Mg-rich (Mg# = 62–71), moderately alkaline (normative Ne < 5 wt %), and, based on major and trace element signatures, derived from a peridotitic source. Covariations between radiogenic isotope and trace element signatures reveal contributions from a subduction-related component and intraplate-like mantle asthenosphere, as well as from ambient upper mantle. Central Anatolian basalts reflect maximum mantle potential temperatures of <1350°C and an average pressure of melt equilibration of 1.4 GPa, which are cooler and shallower than for basalts from Eastern and Western Anatolia. When considered in light of regionally slow upper mantle shear wave velocities, the mantle lithosphere may be thin and infiltrated by melts, or largely absent. An absence of secular changes in melting conditions suggests little to no lithospheric thinning over the past ∼1 Ma, despite evidence for lithospheric extension. Hasan basalts appear to be generated by decompression melting in response to the rollback of the Cyprean slab.

70 citations


Journal ArticleDOI
TL;DR: In this paper, the authors focus on the uncertainties that result from the analysis of only a few replicate measurements to understand the extent to which unconstrained errors affect calibration relationships and paleoclimate reconstructions.
Abstract: Carbonate clumped isotopes offer a potentially transformational tool to interpret Earth's history, but the proxy is still limited by poor interlaboratory reproducibility. Here, we focus on the uncertainties that result from the analysis of only a few replicate measurements to understand the extent to which unconstrained errors affect calibration relationships and paleoclimate reconstructions. We find that highly precise data can be routinely obtained with multiple replicate analyses, but this is not always done in many laboratories. For instance, using published estimates of external reproducibilities we find that typical clumped isotope measurements (three replicate analyses) have margins of error at the 95% confidence level (CL) that are too large for many applications. These errors, however, can be systematically reduced with more replicate measurements. Second, using a Monte Carlo-type simulation we demonstrate that the degree of disagreement on published calibration slopes is about what we should expect considering the precision of Δ47 data, the number of samples and replicate analyses, and the temperature range covered in published calibrations. Finally, we show that the way errors are typically reported in clumped isotope data can be problematic and lead to the impression that data are more precise than warranted. We recommend that uncertainties in Δ47 data should no longer be reported as the standard error of a few replicate measurements. Instead, uncertainties should be reported as margins of error at a specified confidence level (e.g., 68% or 95% CL). These error bars are a more realistic indication of the reliability of a measurement.

Journal ArticleDOI
TL;DR: In this article, the authors use a numerical approach to study the migration of a magmatic volatile phase (MVP) in crystal-rich magma bodies (mush zones) at the pore-scale.
Abstract: Magma degassing fundamentally controls the Earth's volatile cycles. The large amount of gas expelled into the atmosphere during volcanic eruptions (i.e. volcanic outgassing) is the most obvious display of magmatic volatile release. However, owing to the large intrusive:extrusive ratio, and considering the paucity of volatiles left in intrusive rocks after final solidification, volcanic outgassing likely constitutes only a small fraction of the overall mass of magmatic volatiles released to the Earth's surface. Therefore, as most magmas stall on their way to the surface, outgassing of uneruptible, crystal-rich magma storage regions will play a dominant role in closing the balance of volatile element cycling between the mantle and the surface. We use a numerical approach to study the migration of a magmatic volatile phase (MVP) in crystal-rich magma bodies (“mush zones”) at the pore-scale. Our results suggest that buoyancy driven outgassing is efficient over crystal volume fractions between 0.4 and 0.7 (for mm-sized crystals). We parameterize our pore-scale results for MVP migration in a thermo-mechanical magma reservoir model to study outgassing under dynamical conditions where cooling controls the evolution of the proportion of crystal, gas and melt phases and to investigate the role of the reservoir size and the temperature-dependent visco-elastic response of the crust on outgassing efficiency. We find that buoyancy-driven outgassing allows for a maximum of 40-50% volatiles to leave the reservoir over the 0.4-0.7 crystal volume fractions, implying that a significant amount of outgassing must occur at high crystal content (>0.7) through veining and/or capillary fracturing.


Journal ArticleDOI
TL;DR: The deployment of the IberArray broadband seismic network is part of the CONSOLIDER-Ingenio 2010 TOPO-IBERIA (CSD2006-00041: Geosciences in Iberia: Integrated studies on Topography and 4-D Evolution) grant from the Spanish Ministry of Science and Innovation as discussed by the authors.
Abstract: This research was funded by the U.S. National Science Foundation EAR- 0808939. The deployment of the IberArray broadband seismic network is part of the CONSOLIDER-Ingenio 2010 TOPO-IBERIA (CSD2006-00041: Geosciences in Iberia: Integrated studies on Topography and 4-D Evolution) grant from the Spanish Ministry of Science and Innovation. Additional funding was provided by the Spanish ministry under grants CGL2010-17280, CGL2006-01171,CGL2009-09727, and CGL2007-63889,and by Generalitat de Catalunya under grant 2009 SGR 6.

Journal ArticleDOI
TL;DR: In this article, the authors measured δ238U in shallow-marine limestones from two stratigraphic sections in the Lombardy Basin, northern Italy, spanning over 400 m.
Abstract: The end-Triassic extinction coincided with an increase in marine black shale deposition and biomarkers for photic zone euxinia, suggesting that anoxia played a role in suppressing marine biodiversity. However, global changes in ocean anoxia are difficult to quantify using proxies for local anoxia. Uranium isotopes (δ238U) in CaCO3 sediments deposited under locally well-oxygenated bottom waters can passively track seawater δ238U, which is sensitive to the global areal extent of seafloor anoxia due to preferential reduction of 238U(VI) relative to 235U(VI) in anoxic marine sediments. We measured δ238U in shallow-marine limestones from two stratigraphic sections in the Lombardy Basin, northern Italy, spanning over 400 m. We observe a ∼0.7‰ negative excursion in δ238U beginning in the lowermost Jurassic, coeval with the onset of the initial negative δ13C excursion and persisting for the duration of subsequent high δ13C values in the lower-middle Hettangian stage. The δ238U excursion cannot be realistically explained by local mixing of uranium in primary marine carbonate and reduced authigenic uranium. Based on output from a forward model of the uranium cycle, the excursion is consistent with a 40–100-fold increase in the extent of anoxic deposition occurring worldwide. Additionally, relatively constant uranium concentrations point toward increased uranium delivery to the oceans from continental weathering, which is consistent with weathering-induced eutrophication following the rapid increase in pCO2 during emplacement of the Central Atlantic Magmatic Province. The relative timing and duration of the excursion in δ238U implies that anoxia could have delayed biotic recovery well into the Hettangian stage.

Journal ArticleDOI
TL;DR: In this paper, the chemistry and oxidation state of fluids released during prograde metamorphism of subducted oceanic crust was investigated using metagabbros and metabasalts from the Chenaillet massif, Queyras complex and Zermatt-Saas ophiolite.
Abstract: Arc lavas display elevated Fe3+/ΣFe ratios relative to MORB. One mechanism to explain this is the mobilization and transfer of oxidized or oxidizing components from the subducting slab to the mantle wedge. Here we use iron and zinc isotopes, which are fractionated upon complexation by sulfide, chloride, and carbonate ligands, to remark on the chemistry and oxidation state of fluids released during prograde metamorphism of subducted oceanic crust. We present data for metagabbros and metabasalts from the Chenaillet massif, Queyras complex, and the Zermatt-Saas ophiolite (Western European Alps), which have been metamorphosed at typical subduction zone P-T conditions and preserve their prograde metamorphic history. There is no systematic, detectable fractionation of either Fe or Zn isotopes across metamorphic facies, rather the isotope composition of the eclogites overlaps with published data for MORB. The lack of resolvable Fe isotope fractionation with increasing prograde metamorphism likely reflects the mass balance of the system, and in this scenario Fe mobility is not traceable with Fe isotopes. Given that Zn isotopes are fractionated by S-bearing and C-bearing fluids, this suggests that relatively small amounts of Zn are mobilized from the mafic lithologies in within these types of dehydration fluids. Conversely, metagabbros from the Queyras that are in proximity to metasediments display a significant Fe isotope fractionation. The covariation of δ56Fe of these samples with selected fluid mobile elements suggests the infiltration of sediment derived fluids with an isotopically light signature during subduction.

Journal ArticleDOI
TL;DR: In this paper, the authors present the first volcanic gas compositional time-series taken prior to a paroxysmal eruption of Villarrica volcano (Chile) and demonstrate a temporal evolution of volcanic plume composition, from low CO2/SO2 ratios (0.65-2.7) during November 2014-January 2015 to CO 2/SO 2 ratios up to ≈ 9 then after.
Abstract: We present here the first volcanic gas compositional time-series taken prior to a paroxysmal eruption of Villarrica volcano (Chile). Our gas plume observations were obtained using a fully autonomous Multi-component Gas Analyser System (Multi-GAS) in the 3 month-long phase of escalating volcanic activity that culminated into the March 3 2015 paroxysm, the largest since 1985. Our results demonstrate a temporal evolution of volcanic plume composition, from low CO2/SO2 ratios (0.65-2.7) during November 2014-January 2015 to CO2/SO2 ratios up to ≈ 9 then after. The H2O/CO2 ratio simultaneously declined to <38 in the same temporal interval. We use results of volatile saturation models to demonstrate that this evolution toward CO2-enriched gas was likely caused by unusual supply of deeply sourced gas bubbles. We propose that separate ascent of over-pressured gas bubbles, originating from at least 20-35 MPa pressures, was the driver for activity escalation toward the March 3 climax.

Journal ArticleDOI
TL;DR: In this article, a multi-stage metasomatic and melting model was proposed to account for the origin of the enriched components by extending the subduction factory concept down through the mantle transition zone, with slab temperature a key variable.
Abstract: Volatile and stable isotope data provide tests of mantle processes that give rise to mantle heterogeneity. New data on enriched mid-oceanic ridge basalts (MORB) show a diversity of enriched components. Pacific PREMA-type basalts (H2O/Ce = 215 ± 30, δDSMOW = -45 ± 5 ‰) are similar to those in the northern Atlantic (H2O/Ce = 220 ± 30; δDSMOW = -30 to -40 ‰). Basalts with EM-type signatures have regionally variable volatile compositions. Northern Atlantic EM-type basalts are wetter (H2O/Ce = 330 ± 30) and have isotopically heavier hydrogen (δDSMOW = -57 ± 5 ‰) than northern Atlantic MORB. Southern Atlantic EM-type basalts are damp (H2O/Ce = 120 ± 10) with intermediate δDSMOW (-68 ± 2 ‰), similar to δDSMOW for Pacific MORB. Northern Pacific EM-type basalts are dry (H2O/Ce = 110 ± 20) and isotopically light (δDSMOW = -94 ± 3 ‰). A multi-stage metasomatic and melting model accounts for the origin of the enriched components by extending the subduction factory concept down through the mantle transition zone, with slab temperature a key variable. Volatiles and their stable isotopes are decoupled from lithophile elements, reflecting primary dehydration of the slab followed by secondary rehydration, infiltration and re-equilibration by fluids derived from dehydrating subcrustal hydrous phases (e.g., antigorite) in cooler, deeper parts of the slab. Enriched mantle sources form by addition of <1% carbonated eclogite- ± sediment-derived C-O-H-Cl fluids to depleted mantle at 180 to 280 km (EM) or within the transition zone (PREMA).

Journal ArticleDOI
TL;DR: In this paper, the authors evaluate how these processes vary along the Ecuadorian arc in response to small-scale changes in the age of the subducted plate, subduction angle, and continental crustal basement.
Abstract: Previous studies of the Ecuadorian arc (1°N - 2°S) have revealed across-arc geochemical trends that are consistent with a decrease in mantle melting and slab dehydration away from the trench. The aim of this work is to evaluate how these processes vary along the arc in response to small-scale changes in the age of the subducted plate, subduction angle, and continental crustal basement. We use an extensive database of 1524 samples containing 71 new analyses, of major and trace elements as well as Sr-Nd-Pb isotopes from Ecuadorian and South Colombian volcanic centers. Large geochemical variations are found to occur along the Ecuadorian arc, in particular along the front arc, which encompasses 99% and 71% of the total variations in 206Pb/204Pb and 87Sr/86Sr ratios of Quaternary Ecuadorian volcanics, respectively. The front arc volcanoes also show two major latitudinal trends: (1) the southward increase of 207Pb/204Pb and decrease of 143Nd/144Nd reflect more extensive crustal contamination of magma in the southern part (up to 14%); and (2) the increase of 206Pb/204Pb and decrease of Ba/Th away from ∼0.5°S result from the changing nature of metasomatism in the sub-arc mantle wedge with the aqueous fluid/siliceous slab melt ratio decreasing away from 0.5°S. Subduction of a younger and warmer oceanic crust in the Northern part of the arc might promote slab melting. Conversely, the subduction of a colder oceanic crust south of the Grijalva Fracture Zone and higher crustal assimilation lead to the reduction of slab contribution in southern part of the arc. This article is protected by copyright. All rights reserved.

Journal ArticleDOI
TL;DR: In this article, the authors show that inefficient melt drainage out of the freezing front can retain large amounts of volatiles hosted in the trapped melt in the residual mantle while creating a thick early atmosphere.
Abstract: The Earth's deep interior contains significant reservoirs of volatiles such as H, C, and N. Due to the incompatible nature of these volatile species, it has been difficult to reconcile their storage in the residual mantle immediately following crystallization of the terrestrial magma ocean (MO). As the magma ocean freezes, it is commonly assumed that very small amounts of melt are retained in the residual mantle, limiting the trapped volatile concentration in the primordial mantle. In this article, we show that inefficient melt drainage out of the freezing front can retain large amounts of volatiles hosted in the trapped melt in the residual mantle while creating a thick early atmosphere. Using a two-phase flow model, we demonstrate that compaction within the moving freezing front is inefficient over time scales characteristic of magma ocean solidification. We employ a scaling relation between the trapped melt fraction, the rate of compaction, and the rate of freezing in our magma ocean evolution model. For cosmochemically plausible fractions of volatiles delivered during the later stages of accretion, our calculations suggest that up to 77% of total H2O and 12% of CO2 could have been trapped in the mantle during magma ocean crystallization. The assumption of a constant trapped melt fraction underestimates the mass of volatiles in the residual mantle by more than an order of magnitude.

Journal ArticleDOI
TL;DR: In this paper, the authors report new CO2 surveys from the Main Ethiopian Rift (MER, northernmost EARS), and reassess the rift-related CO2 flux, and suggest that 6−18 Mt−1 CO 2 flux can be accounted for by magmatic extension, which implies an important role for volatile-enriched lithosphere, crustal assimilation and/or additional magmatic intrusion to account for the upper range of flux estimates.
Abstract: Deep carbon emissions from historically inactive volcanoes, hydrothermal, and tectonic structures are among the greatest unknowns in the long-term (∼Myr) carbon cycle. Recent estimates of diffuse CO2 flux from the Eastern Rift of the East African Rift System (EARS) suggest this could equal emissions from the entire mid-ocean ridge system. We report new CO2 surveys from the Main Ethiopian Rift (MER, northernmost EARS), and reassess the rift-related CO2 flux. Since degassing in the MER is concentrated in discrete areas of volcanic and off-edifice activity, characterization of such areas is important for extrapolation to a rift-scale budget. Locations of hot springs and fumaroles along the rift show numerous geothermal areas away from volcanic edifices. With these new data, we estimate total CO2 emissions from the central and northern MER as 0.52–4.36 Mt yr−1. Our extrapolated flux from the Eastern Rift is 3.9–32.7 Mt yr−1 CO2, overlapping with lower end of the range presented in recent estimates. By scaling, we suggest that 6–18 Mt yr−1 CO2 flux can be accounted for by magmatic extension, which implies an important role for volatile-enriched lithosphere, crustal assimilation, and/or additional magmatic intrusion to account for the upper range of flux estimates. Our results also have implications for the nature of volcanism in the MER. Many geothermal areas are found >10 km from the nearest volcanic center, suggesting ongoing hazards associated with regional volcanism.

Journal ArticleDOI
TL;DR: In this article, a cross-scale thermomechanical model aimed to simulate the subduction process from 1 minute to million years' time scale was developed, employing elasticity, nonlinear transient viscous rheology, and rate-and-state friction.
Abstract: Subduction is substantially multi-scale process where the stresses are built by long-term tectonic motions, modified by sudden jerky deformations during earthquakes, and then restored by following multiple relaxation processes. Here, we develop a cross-scale thermomechanical model aimed to simulate the subduction process from 1 minute to million years' time scale. The model employs elasticity, nonlinear transient viscous rheology, and rate-and-state friction. It generates spontaneous earthquake sequences and by using an adaptive time-step algorithm, recreates the deformation process as observed naturally during the seismic cycle and multiple seismic cycles. The model predicts that viscosity in the mantle wedge drops by more than three orders of magnitude during the great earthquake with a magnitude above 9. As a result, the surface velocities just an hour or day after the earthquake are controlled by viscoelastic relaxation in the several hundred km of mantle landward of the trench and not by the afterslip localized at the fault as is currently believed. Our model replicates centuries-long seismic cycles exhibited by the greatest earthquakes and is consistent with the postseismic surface displacements recorded after the Great Tohoku Earthquake. We demonstrate that there is no contradiction between extremely low mechanical coupling at the subduction megathrust in South Chile inferred from long-term geodynamic models and appearance of the largest earthquakes, like the Great Chile 1960 Earthquake.

Journal ArticleDOI
TL;DR: In this paper, a model of the P-V-T-X evolution of olivine-hosted melt inclusions was developed so that the properties of the inclusion system could be tracked as the hosts follow a model P-T path.
Abstract: The CO2 contents of olivine-hosted melt inclusions have previously been used to constrain the depth of magma chambers in basaltic systems. However, the vast majority of inclusions have CO2 contents which imply entrapment pressures that are significantly lower than those obtained from independent petrological barometers. Furthermore, a global database of melt inclusions compositions from low H2O settings, indicates that the distribution of saturation pressures varies surprisingly little between mid-ocean ridges, ocean islands and continental rift zones. 95% of the inclusions in the database have saturation pressures of 200 MPa or less, indicating that melt inclusion CO2, does not generally provide an accurate estimate of magma chamber depths. A model of the P-V-T-X evolution of olivine-hosted melt inclusions was developed so that the properties of the inclusion system could be tracked as the hosts follow a model P-T path. The models indicate that the principal control on the saturation of CO2 in the inclusion and the formation of vapour bubbles is the effect of post-entrapment crystallisation on the major element composition of the inclusions and how this translates into variation in CO2 solubility. The pressure difference between external melt and the inclusion is likely to be sufficiently high to cause decrepitation of inclusions in most settings. Decrepitation can account for the apparent mismatch between CO2-based barometry and other petrological barometers, and can also account for the observed global distribution of saturation pressures. Only when substantial post-entrapment crystallisation occurs can reconstructed inclusion compositions provide an accurate estimate of magma chamber depth. This article is protected by copyright. All rights reserved.

Journal ArticleDOI
TL;DR: In this paper, the authors use geodynamic models with a moving-boundary approach to study convection and mixing within the growing cumulate layer, and thereafter within the fully crystallized mantle.
Abstract: Terrestrial planets are thought to experience episode(s) of large-scale melting early in their history. Fractionation during magma-ocean freezing leads to unstable stratification within the related cumulate layers due to progressive iron enrichment upward, but the effects of incremental cumulate overturns during MO crystallization remain to be explored. Here, we use geodynamic models with a moving-boundary approach to study convection and mixing within the growing cumulate layer, and thereafter within the fully crystallized mantle. For fractional crystallization, cumulates are efficiently stirred due to subsequent incremental overturns, except for strongly iron-enriched late-stage cumulates, which persist as a stably stratified layer at the base of the mantle for billions of years. Less extreme crystallization scenarios can lead to somewhat more subtle stratification. In any case, the long-term preservation of at least a thin layer of extremely enriched cumulates with Fe# > 0.4, as predicted by all our models, is inconsistent with seismic constraints. Based on scaling relationships, however, we infer that final-stage Fe-rich magma-ocean cumulates originally formed near the surface should have overturned as small diapirs, and hence undergone melting and reaction with the host rock during sinking. The resulting moderately iron-enriched metasomatized/hybrid rock assemblages should have accumulated at the base of the mantle, potentially fed an intermittent basal magma ocean, and be preserved through the present-day. Such moderately iron-enriched rock assemblages can reconcile the physical properties of the large low shear-wave velocity provinces in the present-day lower mantle. Thus, we reveal Hadean melting and rock-reaction processes by integrating magma-ocean crystallization models with the seismic-tomography snapshot.

Journal ArticleDOI
TL;DR: In this article, the authors first identified 45 seamounts in the northern margin of the South China Sea (SCS) and simulated their shape with elliptical cones, and estimated the total volume of these 45 seamsounts above seafloor is estimated at about 1885-3078 km3, which is close to the estimates for classic large igneous provinces across the world.
Abstract: The extensive intraplate seamounts are obvious features in the northern South China Sea (SCS) However, the distribution, volume, and origin of these seamounts are not well understood, which greatly hinders our understanding of magmatism in the SCS Based on high-resolution bathymetric data and 147 seismic profiles, and combining gravity and magnetic data, we first identify 45 seamounts in the northern margin of the SCS and simulate their shape with elliptical cones Results show that the total volume of these 45 seamounts above seafloor is estimated at about 1885–3078 km3 and the total volume of intrusive magma above Moho is about 015 Mkm3, which is close to the estimates for classic large igneous provinces across the world These seamounts are mostly located on the continental slope with thin crust (approximately 12–18 km), which reduces the overlying pressure and shortens the magmatic conduits The dominant azimuth of elliptical major axis in seamounts is consistent with the synrift and synspreading fault strikes (NE-NEE), indicating that these pre-existing faults provide magmatic conduits for the subsequent postrift intraplate seamounts Based on three existing clues, ie, (1) the intraplate seamounts, high velocity layer and Hainan mantle plume are contiguous in 3-D space, (2) the high velocity layer is thicker beneath the continental shelf but thinner beneath the slope and (3) the basalts dredged from certain seamounts show OIB-type geochemical features, we propose a magmatic upwelling pattern which contains Hainan mantle plume to explain the spatial and morphological characteristics of these intraplate seamounts

Journal ArticleDOI
TL;DR: In this article, the authors study grain size evolution, its interplay with stress and strain rate in the convecting mantle, and its influence on seismic velocities and attenuation.
Abstract: Grain size plays a key role in controlling the mechanical properties of the Earth's mantle, affecting both long-timescale flow patterns and anelasticity on the timescales of seismic wave propagation. However, dynamic models of Earth's convecting mantle usually implement flow laws with constant grain size, stress-independent viscosity, and a limited treatment of changes in mineral assemblage. We study grain size evolution, its interplay with stress and strain rate in the convecting mantle, and its influence on seismic velocities and attenuation. Our geodynamic models include the simultaneous and competing effects of dynamic recrystallization resulting from dislocation creep, grain growth in multiphase assemblages, and recrystallization at phase transitions. They show that grain size evolution drastically affects the dynamics of mantle convection and the rheology of the mantle, leading to lateral viscosity variations of six orders of magnitude due to grain size alone, and controlling the shape of upwellings and downwellings. Using laboratory-derived scaling relationships, we convert model output to seismologically-observable parameters (velocity, attenuation) facilitating comparison to Earth structure. Reproducing the fundamental features of the Earth's attenuation profile requires reduced activation volume and relaxed shear moduli in the lower mantle compared to the upper mantle, in agreement with geodynamic constraints. Faster lower mantle grain growth yields best fit to seismic observations, consistent with our re-examination of high pressure grain growth parameters. We also show that ignoring grain size in interpretations of seismic anomalies may underestimate the Earth's true temperature variations.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the rare earth fractionation during chemical weathering and river sediment transport based on the systematic observations from a granodiorite-weathering profile and Mulanxi River sediments in southeast China.
Abstract: Although rare earth element (REE) has been widely applied for provenance study and paleoenvironmental reconstruction, its mobility and fractionation during earth surface processes from weathering to sediment deposition remain more clarification. We investigated the REE fractionations during chemical weathering and river sediment transport based on the systematic observations from a granodiorite-weathering profile and Mulanxi River sediments in southeast China. Two chemical phases (leachates and residues) were separated by 1 N HCl leaching and the leachates account for 20∼70% of the bulk REE concentration. REEs in the weathering profile have been mobilized and fractionated to different extents during chemical weathering and pedogenesis. Remarkable cerium anomalies (Ce/Ce*=0.1∼10.6) occur during weathering as a result of co-precipitation with Mn (hydro)oxides in the profile, while poor or no Ce anomalies in the river sediments were observed. This contrasting feature sheds new light on the indication of Ce anomaly for redox change. The hydraulic sorting-induced mineral redistribution can further homogenize the weathering and pedogenic alterations and thus weaken the REE fractionations in river sediments. The mineral assemblage is the ultimate control on REE composition, and the Mn–Fe (hydro)oxides and secondary phosphate minerals are the main hosts of acid-leachable REEs, while the clay minerals could be important reservoirs for residual REEs. We thus suggest that the widely-used REE proxies such as (LREE/HREE)UCC ratio in the residues is reliable for the indication of sediment provenance, while the ratio in the leachates can indicate the total weathering process to some extent. This article is protected by copyright. All rights reserved.

Journal ArticleDOI
TL;DR: In this article, the first discovery of gas hydrates exposed on the seafloor of the South China Sea was reported, and the in situ chemical compositions and cage structures of these hydates were measured at the depth of 1,130m below sea level using a Raman insertion probe (RiP-Gh) that was carried and controlled by a remotely operated vehicle (ROV) Faxian.
Abstract: Gas hydrates are usually buried in sediments. Here we report the first discovery of gas hydrates exposed on the seafloor of the South China Sea. The in situ chemical compositions and cage structures of these hydrates were measured at the depth of 1,130 m below sea level using a Raman insertion probe (RiP-Gh) that was carried and controlled by a remotely operated vehicle (ROV) Faxian. This in situ analytical technique can avoid the physical and chemical changes associated with the transport of samples from the deep sea to the surface. Natural gas hydrate samples were analyzed at two sites. The in situ spectra suggest that the newly formed hydrate was Structure I but contains a small amount of C3H8 and H2S. Pure gas spectra of CH4, C3H8, and H2S were also observed at the SCS-SGH02 site. These data represent the first in situ proof that free gas can be trapped within the hydrate fabric during rapid hydrate formation. We provide the first in situ confirmation of the hydrate growth model for the early stages of formation of crystalline hydrates in a methane-rich seafloor environment. Our work demonstrates that natural hydrate deposits, particularly those in the early stages of formation, are not monolithic single structures but instead exhibit significant small-scale heterogeneities due to inclusions of free gas and the surrounding seawater, there inclusions also serve as indicators of the likely hydrate formation mechanism. These data also reinforce the importance of correlating visual and in situ measurements when characterizing a sampling site.

Journal ArticleDOI
TL;DR: The GMT/MATLAB toolbox as discussed by the authors is a basic interface between MATLAB and GMT, the Generic Mapping Tools, which allows MATLAB users full access to all GMT modules.
Abstract: The GMT/MATLAB toolbox is a basic interface between MATLAB® (or Octave) and GMT, the Generic Mapping Tools, which allows MATLAB users full access to all GMT modules. Data may be passed between the two programs using intermediate MATLAB structures that organize the metadata needed; these are produced when GMT modules are run. In addition, standard MATLAB matrix data can be used directly as input to GMT modules. The toolbox improves interoperability between two widely used tools in the geosciences and extends the capability of both tools: GMT gains access to the powerful computational capabilities of MATLAB while the latter gains the ability to access specialized gridding algorithms and can produce publication-quality PostScript-based illustrations. The toolbox is available on all platforms and may be downloaded from the GMT website.

Journal ArticleDOI
TL;DR: In this paper, the authors show the relationship and complementary roles of k-means cluster analysis (KCA), principal component analysis (PCA), and independent component analysis(ICA) to capture the true data structure.
Abstract: Identifying the data structure including trends and groups/clusters in geochemical problems is essential to discuss the origin of sources and processes from the observed variability of data. An increasing number and high dimensionality of recent geochemical data require efficient and accurate multivariate statistical analysis methods. In this paper, we show the relationship and complementary roles of k-means cluster analysis (KCA), principal component analysis (PCA), and independent component analysis (ICA) to capture the true data structure. When the data are preprocessed by primary standardization (i.e., with the zero mean and normalized by the standard deviation), KCA and PCA provide essentially the same results, although the former returns the solution in a discretized space. When the data are preprocessed by whitening (i.e., normalized by eigenvalues along the principal components), KCA and ICA may identify a set of independent trends and groups, irrespective of the amplitude (power) of variance. As an example, basalt isotopic compositions have been analyzed with KCA on the whitened data, demonstrating clear rock‒tectonic occurrence‒mantle end-member discrimination. Therefore, the combination of these methods, particularly KCA on whitened data, is useful to capture and discuss the data structure of various geochemical systems, for which an Excel program is provided. This article is protected by copyright. All rights reserved.