scispace - formally typeset
Search or ask a question

Showing papers in "Geophysical Research Letters in 2016"


Journal ArticleDOI
TL;DR: In this article, the authors show that black carbon aerosols play a key role in modifying the PBL meteorology and hence enhancing the haze pollution in megacities in China.
Abstract: Aerosol-planetary boundary layer (PBL) interactions have been found to enhance air pollution in megacities in China. We show that black carbon (BC) aerosols play the key role in modifying the PBL meteorology and hence enhancing the haze pollution. With model simulations and data analysis from various field observations in December 2013, we demonstrate that BC induces heating in the PBL, particularly in the upper PBL, and the resulting decreased surface heat flux substantially depresses the development of PBL and consequently enhances the occurrences of extreme haze pollution episodes. We define this process as the “dome effect” of BC and suggest an urgent need for reducing BC emissions as an efficient way to mitigate the extreme haze pollution in megacities of China.

563 citations


Journal ArticleDOI
TL;DR: In this paper, the authors presented new calculations of the radiative forcing (RF) for the three main well-mixed greenhouse gases, methane, nitrous oxide, and carbon dioxide.
Abstract: New calculations of the radiative forcing (RF) are presented for the three main well‐mixed greenhouse gases, methane, nitrous oxide, and carbon dioxide. Methane’s RF is particularly impacted because of the inclusion of the shortwave forcing; the 1750–2011 RF is about 25% higher (increasing from 0.48 W m−2 to 0.61 W m−2) compared to the value in the Intergovernmental Panel on Climate Change (IPCC) 2013 assessment; the 100 year global warming potential is 14% higher than the IPCC value. We present new simplified expressions to calculate RF. Unlike previous expressions used by IPCC, the new ones include the overlap between CO2 and N2O; for N2O forcing, the CO2 overlap can be as important as the CH4 overlap. The 1750–2011 CO2 RF is within 1% of IPCC’s value but is about 10% higher when CO2 amounts reach 2000 ppm, a value projected to be possible under the extended RCP8.5 scenario.

484 citations


Journal ArticleDOI
TL;DR: A coastwide bloom of the toxigenic diatom Pseudo-nitzschia in spring 2015 resulted in the largest recorded outbreak of the neurotoxin, domoic acid, along the North American west coast as discussed by the authors.
Abstract: A coastwide bloom of the toxigenic diatom Pseudo-nitzschia in spring 2015 resulted in the largest recorded outbreak of the neurotoxin, domoic acid, along the North American west coast. Elevated toxins were measured in numerous stranded marine mammals and resulted in geographically extensive and prolonged closures of razor clam, rock crab, and Dungeness crab fisheries. We demonstrate that this outbreak was initiated by anomalously warm ocean conditions. Pseudo-nitzschia australis thrived north of its typical range in the warm, nutrient-poor water that spanned the northeast Pacific in early 2015. The seasonal transition to upwelling provided the nutrients necessary for a large-scale bloom; a series of spring storms delivered the bloom to the coast. Laboratory and field experiments confirming maximum growth rates with elevated temperatures and enhanced toxin production with nutrient enrichment, together with a retrospective analysis of toxic events, demonstrate the potential for similarly devastating ecological and economic disruptions in the future.

333 citations


Journal ArticleDOI
TL;DR: In this paper, the authors explore which flood-generating processes control the seasonality and magnitude of maximum annual flows and identify the primary drivers of flooding across the contiguous United States.
Abstract: River flooding can have severe societal, economic, and environmental consequences. However, limited understanding of the regional differences in flood-generating mechanisms results in poorly understood historical flood trends and uncertain predictions of future flood conditions. Through systematic data analyses of 420 catchments we expose the primary drivers of flooding across the contiguous United States. This is achieved by exploring which flood-generating processes control the seasonality and magnitude of maximum annual flows. The regional patterns of seasonality and interannual variabilities of maximum annual flows are, in general, poorly explained by rainfall characteristics alone. For most catchments soil moisture dependent precipitation excess, snowmelt, and rain-on-snow events are found to be much better predictors of the flooding responses. The continental-scale classification of dominant flood-generating processes we generate here emphasizes the disparity in timing and variability between extreme rainfall and flooding and can assist predictions of flooding and flood risk within the continental U.S.

275 citations


Journal ArticleDOI
TL;DR: In this article, the authors quantify, using CMIP5 global climate model simulations calibrated to remove spatial biases, how projected sea ice loss might increase opportunities for Arctic-transit shipping.
Abstract: The observed decline in Arctic sea ice is projected to continue, opening shorter trade routes across the Arctic Ocean, with potentially global economic implications. Here we quantify, using CMIP5 global climate model simulations calibrated to remove spatial biases, how projected sea ice loss might increase opportunities for Arctic-transit shipping. By mid-century for standard Open Water vessels, the frequency of navigable periods doubles, with routes across the central Arctic becoming available. A sea ice – ship speed relationship is used to show that European routes to Asia typically become 10 days faster via the Arctic than alternatives by mid-century, and 13 days faster by late-century, while North American routes become 4 days faster. Future greenhouse-gas emissions have a larger impact by late-century; the shipping season reaching 4-8 months in RCP8.5, double that of RCP2.6, both with substantial inter-annual variability. Moderately ice-strengthened vessels likely enable Arctic transits for 10-12 months by late century.

245 citations


Journal ArticleDOI
TL;DR: The 2015-2016 El Nino is by some measures one of the strongest on record, comparable to the 1982-1983 and 1997-1998 events that triggered widespread ecosystem change in the northeast Pacific as discussed by the authors.
Abstract: The 2015–2016 El Nino is by some measures one of the strongest on record, comparable to the 1982–1983 and 1997–1998 events that triggered widespread ecosystem change in the northeast Pacific. Here we describe impacts of the 2015–2016 El Nino on the California Current System (CCS) and place them in historical context using a regional ocean model and underwater glider observations. Impacts on the physical state of the CCS are weaker than expected based on tropical sea surface temperature anomalies; temperature and density fields reflect persistence of multiyear anomalies more than El Nino. While we anticipate El Nino-related impacts on spring/summer 2016 productivity to be similarly weak, their combination with preexisting anomalous conditions likely means continued low phytoplankton biomass. This study highlights the need for regional metrics of El Nino's effects and demonstrates the potential to assess these effects before the upwelling season, when altered ecosystem functioning is most apparent.

244 citations


Journal ArticleDOI
TL;DR: In this paper, the authors use multiple models to examine whether such a pattern is indeed forced by sea ice loss specifically and by anthropogenic forcing in general, and they find that neither of them yield trends toward colder continental temperatures.
Abstract: The emergence of rapid Arctic warming in recent decades has coincided with unusually cold winters over Northern Hemisphere continents. It has been speculated that this “Warm Arctic, Cold Continents” trend pattern is due to sea ice loss. Here we use multiple models to examine whether such a pattern is indeed forced by sea ice loss specifically and by anthropogenic forcing in general. While we show much of Arctic amplification in surface warming to result from sea ice loss, we find that neither sea ice loss nor anthropogenic forcing overall yield trends toward colder continental temperatures. An alternate explanation of the cooling is that it represents a strong articulation of internal atmospheric variability, evidence for which is derived from model data, and physical considerations. Sea ice loss impact on weather variability over the high-latitude continents is found, however, to be characterized by reduced daily temperature variability and fewer cold extremes.

239 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigate the 2013/2014 winter wave conditions that severely impacted the Atlantic coast of Europe and demonstrate that this winter was the most energetic along most of the Atlantic Coast of Europe since at least 1948.
Abstract: Studies of coastal vulnerability due to climate change tend to focus on the consequences of sea level rise, rather than the complex coastal responses resulting from changes to the extreme wave climate. Here we investigate the 2013/2014 winter wave conditions that severely impacted the Atlantic coast of Europe and demonstrate that this winter was the most energetic along most of the Atlantic coast of Europe since at least 1948. Along exposed open-coast sites, extensive beach and dune erosion occurred due to offshore sediment transport. More sheltered sites experienced less erosion and one of the sites even experienced accretion due to beach rotation induced by alongshore sediment transport. Storm wave conditions such as were encountered during the 2013/2014 winter have the potential to dramatically change the equilibrium state (beach gradient, coastal alignment, and nearshore bar position) of beaches along the Atlantic coast of Europe.

234 citations


Journal ArticleDOI
TL;DR: In this article, the authors pointed out an alarming decrease of up to 20% in phytoplankton in the western Indian Ocean over the past six decades, and found that these trends in chlorophyll are driven by enhanced ocean stratification due to rapid warming in the Indian Ocean, which suppresses nutrient mixing from subsurface layers.
Abstract: Among the tropical oceans, the western Indian Ocean hosts one of the largest concentrations of marine phytoplankton blooms in summer. Interestingly, this is also the region with the largest warming trend in sea surface temperatures in the tropics during the past century—although the contribution of such a large warming to productivity changes has remained ambiguous. Earlier studies had described the western Indian Ocean as a region with the largest increase in phytoplankton during the recent decades. On the contrary, the current study points out an alarming decrease of up to 20% in phytoplankton in this region over the past six decades. We find that these trends in chlorophyll are driven by enhanced ocean stratification due to rapid warming in the Indian Ocean, which suppresses nutrient mixing from subsurface layers. Future climate projections suggest that the Indian Ocean will continue to warm, driving this productive region into an ecological desert.

230 citations


Journal ArticleDOI
TL;DR: In this article, the authors analyzed local rain gauge data and compared them to a large ensemble of both fully coupled and sea surface temperature-forced simulations, showing that the Pacific Decadal Oscillation explains about half of the precipitation trend observed in central Chile.
Abstract: Within large uncertainties in the precipitation response to greenhouse gas forcing, the Southeast Pacific drying stands out as a robust signature within climate models. A precipitation decline, of consistent direction but of larger amplitude than obtained in simulations with historical climate forcing, has been observed in central Chile since the late 1970s. To attribute the causes of this trend, we analyze local rain gauge data and contrast them to a large ensemble of both fully coupled and sea surface temperature-forced simulations. We show that in concomitance with large-scale circulation changes, the Pacific Decadal Oscillation explains about half of the precipitation trend observed in central Chile. The remaining fraction is unlikely to be driven exclusively by natural phenomena but rather consistent with the simulated regional effect of anthropogenic climate change. We particularly estimate that a quarter of the rainfall deficit affecting this region since 2010 is of anthropogenic origin. An increased persistence and recurrence of droughts in central Chile emerges then as a realistic scenario under the current socioeconomic pathway.

215 citations


Journal ArticleDOI
TL;DR: A suite of 3-D climate simulations using topographic data from the Magellan mission, solar spectral irradiance estimates for 2.9 and 0.715 Gya, present-day Venus orbital parameters, an ocean volume consistent with current theory, and an atmospheric composition estimated for early Venus find that such a world could have had moderate temperatures if Venus had a rotation period slower than ~16 Earth days.
Abstract: Present-day Venus is an inhospitable place with surface temperatures approaching 750K and an atmosphere 90 times as thick as Earth's. Billions of years ago the picture may have been very different. ...

Journal ArticleDOI
TL;DR: In this paper, the authors presented a possible mechanism linking snowmelt rate and streamflow generation using a gridded implementation of the Budyko framework. But, they did not consider the effect of seasonal changes in regional air temperature on streamflow.
Abstract: Declining mountain snowpack and earlier snowmelt across the western United States has implications for downstream communities. We present a possible mechanism linking snowmelt rate and streamflow generation using a gridded implementation of the Budyko framework. We computed an ensemble of Budyko streamflow anomalies (BSA) using Variable Infiltration Capacity model-simulated evapotranspiration, potential evapotranspiration, and estimated precipitation at 1/16° resolution from 1950-2013. BSA was correlated with simulated baseflow efficiency (r2 = 0.64) and simulated snowmelt rate (r2 = 0.42). The strong correlation between snowmelt rate and baseflow efficiency (r2 = 0.73) links these relationships and supports a possible streamflow generation mechanism wherein greater snowmelt rates increase subsurface flow. Rapid snowmelt may thus bring the soil to field capacity, facilitating below-root-zone percolation, streamflow, and a positive BSA. Previous works have shown that future increases in regional air temperature may lead to earlier, slower snowmelt, and hence, decreased streamflow production via the mechanism proposed by this work.

Journal ArticleDOI
TL;DR: This bottom-up modeling study, supported by new population census 2011 data, simulates ozone (O3) and fine particulate matter (PM2.5) exposure on local to regional scales and quantifies, present-day premature mortalities associated with the exposure to near-surface PM2.3 and O3 concentrations in India using a regional chemistry model.
Abstract: This bottom-up modeling study, supported by new population census 2011 data, simulates ozone (O3) and fine particulate matter (PM2.5) exposure on local to regional scales. It quantifies, present-day premature mortalities associated with the exposure to near-surface PM2.5 and O3 concentrations in India using a regional chemistry model. We estimate that PM2.5 exposure leads to about 570,000 (CI95: 320,000–730,000) premature mortalities in 2011. On a national scale, our estimate of mortality by chronic obstructive pulmonary disease (COPD) due to O3 exposure is about 12,000 people. The Indo-Gangetic region accounts for a large part (~42%) of the estimated mortalities. The associated lost life expectancy is calculated as 3.4 ± 1.1 years for all of India with highest values found for Delhi (6.3 ± 2.2 years). The economic cost of estimated premature mortalities associated with PM2.5 and O3 exposure is about 640 (350–800) billion USD in 2011, which is a factor of 10 higher than total expenditure on health by public and private expenditure.

Journal ArticleDOI
TL;DR: The mean depth-independent, or barotropic transport, determined from the near-bottom current meter records was 45.6 Sv with an uncertainty of 8.9 Sv as mentioned in this paper.
Abstract: The Antarctic Circumpolar Current is an important component of the global climate system connecting the major ocean basins as it flows eastward around Antarctica, yet due to the paucity of data it remains unclear how much water is transported by the current. Between 2007 and 2011 flow through Drake Passage was continuously monitored with a line of moored instrumentation with unprecedented horizontal and temporal resolution. Annual mean near-bottom currents are remarkably stable from year to year. The mean depth-independent, or barotropic transport, determined from the near-bottom current meter records was 45.6 Sv with an uncertainty of 8.9 Sv. Summing the mean barotropic transport with the mean baroclinic transport relative to zero at the seafloor of 127.7 Sv gives a total transport through Drake Passage of 173.3 Sv. This new measurement is 30% larger than the canonical value often used as the benchmark for global circulation and climate models.

Journal ArticleDOI
TL;DR: In this paper, the year-to-year variation of the Madden-Julian oscillation activity shows significant changes with the quasi-biennial oscillation (QBO) in the tropical stratosphere.
Abstract: Madden-Julian oscillation (MJO), the dominant mode of intraseasonal variability in the tropical troposphere, has a significant impact on global weather and climate. Here we present that the year-to-year variation of the MJO activity shows significant changes with the quasi-biennial oscillation (QBO) in the tropical stratosphere. Specifically, the boreal winter MJO amplitude, evaluated by various metrics, is typically stronger than normal during the QBO easterly phase at 50 hPa and weaker than normal during the QBO westerly phase at 50 hPa. This relationship, which is possibly mediated by the QBO-related static stability and/or vertical wind shear changes in the tropical upper troposphere and lower stratosphere, is robust whether or not the activeness of the MJO or QBO is taken into account. This result suggests a new potential route from the stratosphere that regulates the organized tropical convection, helping to improve the prediction skill of the boreal winter MJO.

Journal ArticleDOI
TL;DR: In this paper, the ability of spaceborne Global Navigation Satellite System (GNSS) bistatic radar receivers to sense changes in soil moisture was investigated using observations from the low Earth orbiting UK TechDemoSat-1 satellite (TDS-1).
Abstract: The ability of spaceborne Global Navigation Satellite System (GNSS) bistatic radar receivers to sense changes in soil moisture is investigated using observations from the low Earth orbiting UK TechDemoSat-1 satellite (TDS-1). Previous studies using receivers on aircraft or towers have shown that ground-reflected GNSS signals are sensitive to changes in soil moisture, though the ability to sense this variable from space has yet to be quantified. Data from TDS-1 show a 7 dB sensitivity of reflected signals to temporal changes in soil moisture. If the effects of surface roughness and vegetation on the reflected signals can be quantified, spaceborne GNSS bistatic radar receivers could provide soil moisture on relatively small spatial and temporal scales.

Journal ArticleDOI
TL;DR: This article presented the first results from the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), where nine global climate models have perturbed CO2, CH4, black carbon, sulfate, and solar insolation.
Abstract: Precipitation is expected to respond differently to various drivers of anthropogenic climate change. We present the first results from the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), where nine global climate models have perturbed CO2, CH4, black carbon, sulfate, and solar insolation. We divide the resulting changes to global mean and regional precipitation into fast responses that scale with changes in atmospheric absorption and slow responses scaling with surface temperature change. While the overall features are broadly similar between models, we find significant regional intermodel variability, especially over land. Black carbon stands out as a component that may cause significant model diversity in predicted precipitation change. Processes linked to atmospheric absorption are less consistently modeled than those linked to top-of-atmosphere radiative forcing. We identify a number of land regions where the model ensemble consistently predicts that fast precipitation responses to climate perturbations dominate over the slow, temperature-driven responses.

Journal ArticleDOI
TL;DR: In this paper, a relationship between the change in the landscape parameter in a Budyko equation and vegetation change was established for catchments in China, where, due to large-scale soil and water conservation projects implemented by the Chinese government, vegetation and regional hydrology have changed substantially over the past 30 years.
Abstract: The Budyko framework is widely used to investigate the impacts of climate and landscape changes on regional hydrology, but quantifying the effect of vegetation change is still a challenge due to the lack of an explicit expression of vegetation in Budyko equations. This study establishes a relationship between the change in the landscape parameter in a Budyko equation and vegetation change (represented by fPAR, the fraction of Photosynthetically Active Radiation absorbed by vegetation) for catchments in China, where, due to large-scale soil and water conservation projects implemented by the Chinese government, vegetation and regional hydrology have changed substantially over the past 30 years. The ratio of landscape parameter change to the change in fPAR has a strong relationship with the aridity index, and thus, vegetation change can be converted into a change in the landscape parameter. Then, the fPAR elasticity of runoff is introduced and formulated under the Budyko framework. It provides a useful tool for the quantitative evaluation of the regional hydrological response to vegetation change, but the proposed relationship still needs to be evaluated in other catchments around the globe where large-scale afforestation or vegetation recovery has occurred.

Journal ArticleDOI
TL;DR: In this paper, the authors invert waveforms from 26 three-component strong motion accelerometers, filtered between 0.02 and 0.5 Hz, within 45 km from the fault.
Abstract: On 24 August 2016 a magnitude ML 6.0 occurred in the Central Apennines (Italy) between Amatrice and Norcia causing nearly 300 fatalities. The main shock ruptured a NNW-SSE striking, WSW dipping normal fault. We invert waveforms from 26 three-component strong motion accelerometers, filtered between 0.02 and 0.5 Hz, within 45 km from the fault. The inferred slip distribution is heterogeneous and characterized by two shallow slip patches updip and NW from the hypocenter, respectively. The rupture history shows bilateral propagation and a relatively high rupture velocity (3.1 km/s). The imaged rupture history produced evident directivity effects both N-NW and SE of the hypocenter, explaining near-source peak ground motions. Fault dimensions and peak slip values are large for a moderate-magnitude earthquake. The retrieved rupture model fits the recorded ground velocities up to 1 Hz, corroborating the effects of rupture directivity and slip heterogeneity on ground shaking and damage pattern.

Journal ArticleDOI
TL;DR: However, during the boreal summer of 2014, the Bjerknes feedback failed to kick in, aided and abetted by a strong easterly wind burst as mentioned in this paper.
Abstract: Following strong westerly wind bursts in boreal winter and spring of 2014, both the scientific community and the popular press were abuzz with the possibility of a major El Nino developing. However, during the boreal summer of 2014, the Bjerknes feedback failed to kick in, aided and abetted by a strong easterly wind burst. The widely anticipated major 2014–2015 El Nino event failed to materialize and even failed to qualify as an El Nino by conventional definitions. However, the boreal summer easterly wind burst had the effect of not only inhibiting the growth of the El Nino event but also preventing and then reversing the discharge of the equatorial heat content that typically occurs during the course of an El Nino event. This head start of equatorial heat content helped push the 2015–2016 El Nino event to extreme magnitude.

Journal ArticleDOI
TL;DR: In this article, the authors proposed a set of idealized emission pathways consistent with the Paris Agreement to limit warming to 2 or 1.5°C above preindustrial level, although combined Intended Nationally Determined Contributions (INDCs) are likely insufficient to achieve these targets.
Abstract: The 2015 Paris Agreement aims to limit warming to 2 or 1.5°C above preindustrial level, although combined Intended Nationally Determined Contributions (INDCs) are likely insufficient to achieve these targets. We propose a set of idealized emission pathways consistent with the targets. If countries reduce emissions in line with their INDCs, the 2°C threshold could be avoided only if net zero greenhouse gas emissions (GHGEs) are achieved by 2085 and late century negative emissions are considerably in excess of those assumed in Representative Concentration Pathway (RCP) 2.6 (net −5 Gt CO2/yr, compared with −1.5 Gt CO2/yr in RCP2.6). More aggressive near-term reductions would allow 2°C to be avoided with less end-of-century carbon removal capacity. A 10% cut in GHGEs by 2030 (relative to 2015) could likely achieve 2°C with RCP2.6 level negative emissions. The 1.5°C target requires GHGEs to be reduced by almost a third by 2030 and net zero by 2050, while a 50 year overshoot of 1.5°C allows net zero GHGEs by 2060.

Journal ArticleDOI
TL;DR: In this article, a simple model of marsh migration into adjacent uplands and couple it with existing models of seaward edge erosion and vertical soil accretion to explore how ecosystem connectivity influences marsh size and response to sea level rise.
Abstract: Coastal wetlands are among the most valuable ecosystems on Earth, where ecosystem services such as flood protection depend nonlinearly on wetland size and are threatened by sea level rise and coastal development. Here we propose a simple model of marsh migration into adjacent uplands and couple it with existing models of seaward edge erosion and vertical soil accretion to explore how ecosystem connectivity influences marsh size and response to sea level rise. We find that marsh loss is nearly inevitable where topographic and anthropogenic barriers limit migration. Where unconstrained by barriers, however, rates of marsh migration are much more sensitive to accelerated sea level rise than rates of edge erosion. This behavior suggests a counterintuitive, natural tendency for marsh expansion with sea level rise and emphasizes the disparity between coastal response to climate change with and without human intervention.

Journal ArticleDOI
TL;DR: In this paper, the authors show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality, and test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution.
Abstract: Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to its sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.

Journal ArticleDOI
TL;DR: In this article, particle phase measurements performed at a suburban site in the Netherlands showed that organic nitrates contribute substantially to particulate nitrate and organic mass, implying a substantial potential of PM reduction by NOx emission control.
Abstract: In the atmosphere nighttime removal of volatile organic compounds is initiated to a large extent by reaction with the nitrate radical (NO3) forming organic nitrates which partition between gas and particulate phase. Here we show based on particle phase measurements performed at a suburban site in the Netherlands that organic nitrates contribute substantially to particulate nitrate and organic mass. Comparisons with a chemistry transport model indicate that most of the measured particulate organic nitrates are formed by NO3 oxidation. Using aerosol composition data from three intensive observation periods at numerous measurement sites across Europe, we conclude that organic nitrates are a considerable fraction of fine particulate matter (PM1) at the continental scale. Organic nitrates represent 34% to 44% of measured submicron aerosol nitrate and are found at all urban and rural sites, implying a substantial potential of PM reduction by NOx emission control.

Journal ArticleDOI
TL;DR: In this article, the authors argue that SCR earthquakes are better explained by transient perturbations of local stress or fault strength that release elastic energy from a pre-stressed lithosphere.
Abstract: Large earthquakes within stable continental regions (SCR) show that significant amounts of elastic strain can be released on geological structures far from plate boundary faults, where the vast majority of the Earth's seismic activity takes place. SCR earthquakes show spatial and temporal patterns that differ from those at plate boundaries and occur in regions where tectonic loading rates are negligible. However, in the absence of a more appropriate model, they are traditionally viewed as analogous to their plate boundary counterparts, occuring when the accrual of tectonic stress localized at long-lived active faults reaches failure threshold. Here we argue that SCR earthquakes are better explained by transient perturbations of local stress or fault strength that release elastic energy from a pre-stressed lithosphere. As a result, SCR earthquakes can occur in regions with no previous seismicity and no surface evidence for strain accumulation. They need not repeat, since the tectonic loading rate is close to zero. Therefore, concepts of recurrence time or fault slip rate do not apply. As a consequence, seismic hazard in SCRs is likely more spatially distributed than indicated by paleoearthquakes, current seismicity, or geodetic strain rates.

Journal ArticleDOI
TL;DR: In this article, an eddy-resolving regional ocean model with synthetic float trajectories and observations was used to study the recirculation of the Atlantic Water in Fram Strait that significantly impacts the redistribution of oceanic heat between the Nordic Seas and the Arctic Ocean.
Abstract: Eddy-resolving regional ocean model results in conjunction with synthetic float trajectories and observations provide new insights into the recirculation of the Atlantic Water (AW) in Fram Strait that significantly impacts the redistribution of oceanic heat between the Nordic Seas and the Arctic Ocean. The simulations confirm the existence of a cyclonic gyre around the Molloy Hole near 80°N, suggesting that most of the AW within the West Spitsbergen Current recirculates there, while colder AW recirculates in a westward mean flow south of 79°N that primarily relates to the eastern rim of the Greenland Sea Gyre. The fraction of waters recirculating in the northern branch roughly doubles during winter, coinciding with a seasonal increase of eddy activity along the Yermak Plateau slope that also facilitates subduction of AW beneath the ice edge in this area.

Journal ArticleDOI
TL;DR: In this article, a 16ka long, alkenone-based summer temperature record from Lake Qinghai, northeastern Tibet was presented, which demonstrates major regional temperature response to changes in summer insolation and Atlantic Meridional Overturning Circulation during the Holocene and late glacial.
Abstract: Summer temperatures on the Tibetan Plateau (TP) significantly affect stability of glaciers that provide steady water resources to nearly half of the world population. However, lack of reliable, long-term proxy records greatly impedes understanding of regional temperature sensitivity to climate forcings. Here we present a 16ka long, alkenone-based summer temperature record from Lake Qinghai, northeastern TP that demonstrates major regional temperature response to changes in summer insolation and Atlantic Meridional Overturning Circulation during the Holocene and late glacial. Importantly, we find a period of sustained summer temperature decline (>4 degrees C) between 5 and 3.5ka, which coincides with expansion of Barents Sea ice coverage and is likely driven by intensification of the Westerlies. This unusually long and pronounced regional cooling event likely delayed permanent human settlements on the high-altitude regions (>3000m) of the TP by at least 500years.

Journal ArticleDOI
TL;DR: In this article, the authors describe the evolution of the quasi-biennial oscillation during the Northern Hemisphere winter of 2015-16 using radiosonde observations and meteorological reanalyses.
Abstract: The quasi-biennial oscillation (QBO) is a tropical lower stratospheric, downward propagating zonal wind variation, with an average period of approximately 28 months. The QBO has been constantly documented since 1953. Here we describe the evolution of the QBO during the Northern Hemisphere winter of 2015-16 using radiosonde observations and meteorological reanalyses. Normally, the QBO would show a steady downward propagation of the westerly phase. In 2015-16, there was an anomalous upward displacement of this westerly phase from approximately30 hPa to 15 hPa. These westerlies impinge on, or “cut-off” the normal downward propagation of the easterly phase. In addition, easterly winds develop at 40 hPa. Comparisons to tropical wind statistics for the 1953-present record demonstrate that this 2015-16 QBO disruption is unprecedented.

Journal ArticleDOI
TL;DR: In this paper, the authors quantify the relative role of climate change and soil moisture-temperature feedbacks for the buildup of the exceptionally high temperatures and conclude that internal climate variability causing the dry 2010 soil moisture conditions formed a necessary basis for the extreme heat wave.
Abstract: The severe 2010 heat wave in western Russia was found to be influenced by anthropogenic climate change. Additionally, soil moisture-temperature feedbacks were deemed important for the buildup of the exceptionally high temperatures. We quantify the relative role of both factors by applying the probabilistic event attribution framework and analyze ensemble simulations to distinguish the effect of climate change and the 2010 soil moisture conditions for annual maximum temperatures. The dry 2010 soil moisture alone has increased the risk of a severe heat wave in western Russia sixfold, while climate change from 1960 to 2000 has approximately tripled it. The combined effect of climate change and 2010 soil moisture yields a 13 times higher heat wave risk. We conclude that internal climate variability causing the dry 2010 soil moisture conditions formed a necessary basis for the extreme heat wave.

Journal ArticleDOI
TL;DR: The ocean in Jupiter's moon Europa may have redox balance similar to Earth's as discussed by the authors, and the estimated oxidant flux to Europa's ocean is comparable to estimated hydrogen fluxes.
Abstract: The ocean in Jupiter's moon Europa may have redox balance similar to Earth's. On Earth, low-temperature hydration of crustal olivine produces substantial hydrogen, comparable to any potential flux from volcanic activity. Here we compare hydrogen and oxygen production rates of the Earth system with fluxes to Europa's ocean. Even without volcanic hydrothermal activity, water-rock alteration in Europa causes hydrogen fluxes 10 times smaller than Earth's. Europa's ocean may have become reducing for a brief epoch, for example, after a thermal-orbital resonance ∼2 Gyr after accretion. Estimated oxidant flux to Europa's ocean is comparable to estimated hydrogen fluxes. Europa's ice delivers oxidants to its ocean at the upper end of these estimates if its ice is geologically active, as evidence of geologic activity and subduction implies.