scispace - formally typeset
Search or ask a question
JournalISSN: 0094-8276

Geophysical Research Letters 

American Geophysical Union
About: Geophysical Research Letters is an academic journal published by American Geophysical Union. The journal publishes majorly in the area(s): Stratosphere & Magnetosphere. It has an ISSN identifier of 0094-8276. Over the lifetime, 45217 publications have been published receiving 2209370 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The Arctic Oscillation (AO) as mentioned in this paper is the signature of modulations in the strength of the polar vortex aloft, and it resembles the NAO in many respects; but its primary center of action covers more of the Arctic, giving it a more zonally symmetric appearance.
Abstract: The leading empirical orthogonal function of the wintertime sea-level pressure field is more strongly coupled to surface air temperature fluctuations over the Eurasian continent than the North Atlantic Oscillation (NAO). It resembles the NAO in many respects; but its primary center of action covers more of the Arctic, giving it a more zonally symmetric appearance. Coupled to strong fluctuations at the 50-hPa level on the intraseasonal, interannual, and interdecadal time scales, this "Arctic Oscillation" (AO)can be interpreted as the surface signature of modulations in the strength of the polar vortex aloft. It is proposed that the zonally asymmetric surface air temperature and mid-tropospheric circulation anomalies observed in association with the AO may be secondary baroclinic features induced by the land-sea contrasts. The same modal structure is mirrored in the pronounced trends in winter and springtime surface air temperature, sea-level pressure, and 50-hPa height over the past 30 years: parts of Eurasia have warmed by as much as several K, sea-level pressure over parts of the Arctic has fallen by 4 hPa, and the core of the lower stratospheric polar vortex has cooled by several K. These trends can be interpreted as the development of a systematic bias in one of the atmosphere's dominant, naturally occurring modes of variability.

3,800 citations

Journal ArticleDOI
TL;DR: In this article, the optimal recalibration of NUVEL-1 is proposed to multiply the angular velocities by a constant, α, of 0.9562, which is a compromise among slightly different calibrations appropriate for slow, medium, and fast rates of seafloor spreading.
Abstract: Recent revisions to the geomagnetic time scale indicate that global plate motion model NUVEL-1 should be modified for comparison with other rates of motion including those estimated from space geodetic measurements. The optimal recalibration, which is a compromise among slightly different calibrations appropriate for slow, medium, and fast rates of seafloor spreading, is to multiply NUVEL-1 angular velocities by a constant, α, of 0.9562. We refer to this simply recalibrated plate motion model as NUVEL-1A, and give correspondingly revised tables of angular velocities and uncertainties. Published work indicates that space geodetic rates are slower on average than those calculated from NUVEL-1 by 6±1%. This average discrepancy is reduced to less than 2% when space geodetic rates are instead compared with NUVEL-1A.

3,359 citations

Journal ArticleDOI
TL;DR: The Atlantic Multidecadal Oscillation (AMO) as mentioned in this paper is a 65-80 year cycle with a 0.4 C range, referred to as the AMO by Kerr (2000).
Abstract: North Atlantic sea surface temperatures for 1856-1999 contain a 65-80 year cycle with a 0.4 C range, referred to as the Atlantic Multidecadal Oscillation (AMO) by Kerr (2000). AMO warm phases occurred during 1860- 1880 and 1940-1960, and cool phases during 1905-1925 and 1970-1990. The signal is global in scope, with a posi- tively correlated co-oscillation in parts of the North Pa- cic, but it is most intense in the North Atlantic and cov- ers the entire basin there. During AMO warmings most of the United States sees less than normal rainfall, including Midwest droughts in the 1930s and 1950s. Between AMO warm and cool phases, Mississippi River outflow varies by 10% while the inflow to Lake Okeechobee, Florida varies by 40%. The geographical pattern of variability is influenced mainly by changes in summer rainfall. The winter patterns of interannual rainfall variability associated with El Ni~no- Southern Oscillation are also signicantly changed between AMO phases.

2,582 citations

Journal ArticleDOI
TL;DR: In this paper, the gravity models developed with this data are more than an order of magnitude better at the long and mid wavelengths than previous models and the error estimates indicate a 2-cm accuracy uniformly over the land and ocean regions, a consequence of the highly accurate, global and homogenous nature of the GRACE data.
Abstract: [1] The GRACE mission is designed to track changes in the Earth's gravity field for a period of five years. Launched in March 2002, the two GRACE satellites have collected nearly two years of data. A span of data available during the Commissioning Phase was used to obtain initial gravity models. The gravity models developed with this data are more than an order of magnitude better at the long and mid wavelengths than previous models. The error estimates indicate a 2-cm accuracy uniformly over the land and ocean regions, a consequence of the highly accurate, global and homogenous nature of the GRACE data. These early results are a strong affirmation of the GRACE mission concept.

2,188 citations

Journal ArticleDOI
TL;DR: In this article, organic aerosol data acquired by the AMS in 37 field campaigns were deconvolved into hydrocarbon-like OA (HOA) and several types of oxygenated OA components.
Abstract: Organic aerosol (OA) data acquired by the Aerosol Mass Spectrometer (AMS) in 37 field campaigns were deconvolved into hydrocarbon-like OA (HOA) and several types of oxygenated OA (OOA) components. HOA has been linked to primary combustion emissions (mainly from fossil fuel) and other primary sources such as meat cooking. OOA is ubiquitous in various atmospheric environments, on average accounting for 64%, 83% and 95% of the total OA in urban, urban downwind, and rural/remote sites, respectively. A case study analysis of a rural site shows that the OOA concentration is much greater than the advected HOA, indicating that HOA oxidation is not an important source of OOA, and that OOA increases are mainly due to SOA. Most global models lack an explicit representation of SOA which may lead to significant biases in the magnitude, spatial and temporal distributions of OA, and in aerosol hygroscopic properties.

2,167 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20231,482
20223,319
20211,718
20201,617
20191,584
20181,464