scispace - formally typeset
Search or ask a question

Showing papers in "Geophysics in 2016"


Journal ArticleDOI
TL;DR: Adaptive waveform inversion (AWI) as mentioned in this paper uses least-squares convolutional filters to transform the predicted data into the observed data, and the inversion problem is formulated such that the subsurface model is iteratively updated to force these Wiener filters toward zero-lag delta functions.
Abstract: Conventional full-waveform seismic inversion attempts to find a model of the subsurface that is able to predict observed seismic waveforms exactly; it proceeds by minimizing the difference between the observed and predicted data directly, iterating in a series of linearized steps from an assumed starting model. If this starting model is too far removed from the true model, then this approach leads to a spurious model in which the predicted data are cycle skipped with respect to the observed data. Adaptive waveform inversion (AWI) provides a new form of full-waveform inversion (FWI) that appears to be immune to the problems otherwise generated by cycle skipping. In this method, least-squares convolutional filters are designed that transform the predicted data into the observed data. The inversion problem is formulated such that the subsurface model is iteratively updated to force these Wiener filters toward zero-lag delta functions. As that is achieved, the predicted data evolve toward the observed...

280 citations


Journal ArticleDOI
TL;DR: The proposed method is based on the synchrosqueezed continuous wavelet transform (SS-CWT) and custom thresholding of single-channel data and incorporates a detection procedure that uses the thresholded wavelet coefficients and detects an arrival as a local maxima in a characteristic function.
Abstract: Typical microseismic data recorded by surface arrays are characterized by low signal-to-noise ratios (S/Ns) and highly nonstationary noise that make it difficult to detect small events. Currently, array or crosscorrelation-based approaches are used to enhance the S/N prior to processing. We have developed an alternative approach for S/N improvement and simultaneous detection of microseismic events. The proposed method is based on the synchrosqueezed continuous wavelet transform (SS-CWT) and custom thresholding of single-channel data. The SS-CWT allows for the adaptive filtering of time- and frequency-varying noise as well as offering an improvement in resolution over the conventional wavelet transform. Simultaneously, the algorithm incorporates a detection procedure that uses the thresholded wavelet coefficients and detects an arrival as a local maxima in a characteristic function. The algorithm was tested using a synthetic signal and field microseismic data, and our results have been compared wit...

216 citations


Journal ArticleDOI
TL;DR: In this paper, a damping factor was introduced into traditional multichannel singular spectrum analysis (MSSA) to dampen the singular values to distinguish between signal and noise in seismic data.
Abstract: Multichannel singular spectrum analysis (MSSA) is an effective algorithm for random noise attenuation in seismic data, which decomposes the vector space of the Hankel matrix of the noisy signal into a signal subspace and a noise subspace by truncated singular value decomposition (TSVD). However, this signal subspace actually still contains residual noise. We have derived a new formula of low-rank reduction, which is more powerful in distinguishing between signal and noise compared with the traditional TSVD. By introducing a damping factor into traditional MSSA to dampen the singular values, we have developed a new algorithm for random noise attenuation. We have named our modified MSSA as damped MSSA. The denoising performance is controlled by the damping factor, and our approach reverts to the traditional MSSA approach when the damping factor is sufficiently large. Application of the damped MSSA algorithm on synthetic and field seismic data demonstrates superior performance compared with the conve...

185 citations


Journal ArticleDOI
TL;DR: This work has developed a double-sparsity dictionary (DSD) for seismic data to combine the benefits of both approaches and evaluated two models to learn the DSD: the synthesis model and the analysis model.
Abstract: A key step in sparsifying signals is the choice of a sparsity-promoting dictionary. There are two basic approaches to design such a dictionary: the analytic approach and the learning-based approach. Although the analytic approach enjoys the advantage of high efficiency, it lacks adaptivity to various data patterns. On the other hand, the learning-based approach can adaptively sparsify different data sets but has a heavier computational complexity and involves no prior-constraint pattern information for particular data. We have developed a double-sparsity dictionary (DSD) for seismic data to combine the benefits of both approaches. We have evaluated two models to learn the DSD: the synthesis model and the analysis model. The synthesis model learns DSD in the data domain, and the analysis model learns DSD in the model domain. We tested the analysis model and proposed to use the seislet transform and data-driven tight frame (DDTF) as the base transform and adaptive dictionary, respectively, in the DS...

173 citations


Journal ArticleDOI
TL;DR: This work has proposed to incorporate shaping regularization into least-squares reverse time migration (LSRTM) and use it for suppressing interference noise caused by simultaneous-source data or migration artifacts caused by incomplete data.
Abstract: Simultaneous-source acquisition improves the efficiency of the seismic data acquisition process. However, direct imaging of simultaneous-source data may introduce crosstalk artifacts in the final image. Likewise, direct imaging of incomplete data avoids the step of data reconstruction, but it can suffer from migration artifacts. We have proposed to incorporate shaping regularization into least-squares reverse time migration (LSRTM) and use it for suppressing interference noise caused by simultaneous-source data or migration artifacts caused by incomplete data. To implement LSRTM, we have applied lowrank one-step reverse time migration and its adjoint iteratively in the conjugate-gradient algorithm to minimize the data misfit. A shaping operator imposing structure constraints on the estimated model was applied at each iteration. We constructed the shaping operator as a structure-enhancing filtering to attenuate migration artifacts and crosstalk noise while preserving structural information. We have carried out numerical tests on synthetic models in which the proposed method exhibited a fast convergence rate and was effective in attenuating migration artifacts and crosstalk noise.

159 citations


Journal ArticleDOI
TL;DR: In this paper, the arrival-time picking algorithms for downhole microseismic data were evaluated and the key parameters for each algorithm were determined and recommendations for optimal parameter selection based on their analysis and experience.
Abstract: We have evaluated arrival-time picking algorithms for downhole microseismic data. The picking algorithms that we considered may be classified as window-based single-level methods (e.g., energy-ratio [ER] methods), nonwindow-based single-level methods (e.g., Akaike information criterion), multilevel- or array-based methods (e.g., crosscorrelation approaches), and hybrid methods that combine a number of single-level methods (e.g., Akazawa’s method). We have determined the key parameters for each algorithm and developed recommendations for optimal parameter selection based on our analysis and experience. We evaluated the performance of these algorithms with the use of field examples from a downhole microseismic data set recorded in western Canada as well as with pseudo-synthetic microseismic data generated by adding 100 realizations of Gaussian noise to high signal-to-noise ratio microseismic waveforms. ER-based algorithms were found to be more efficient in terms of computational speed and were there...

148 citations


Journal ArticleDOI
TL;DR: Tesseroids as discussed by the authors is a set of command-line programs to perform forward modeling of gravitational fields in spherical coordinates. But it does not support the integration of tesseroid prisms.
Abstract: We have developed the open-source software Tesseroids, a set of command-line programs to perform forward modeling of gravitational fields in spherical coordinates. The software is implemented in the C programming language and uses tesseroids (spherical prisms) for the discretization of the subsurface mass distribution. The gravitational fields of tesseroids are calculated numerically using the Gauss-Legendre quadrature (GLQ). We have improved upon an adaptive discretization algorithm to guarantee the accuracy of the GLQ integration. Our implementation of adaptive discretization uses a “stack-based” algorithm instead of recursion to achieve more control over execution errors and corner cases. The algorithm is controlled by a scalar value called the distance-size ratio (D) that determines the accuracy of the integration as well as the computation time. We have determined optimal values of D for the gravitational potential, gravitational acceleration, and gravity gradient tensor by comparing the comp...

143 citations


Journal ArticleDOI
TL;DR: A novel time-frequency decomposition approach for analyzing seismic data inspired by the newly developed variational mode decomposition (VMD), which can nonrecursively decompose a multicomponent signal into several quasi-orthogonal intrinsic mode functions.
Abstract: We have introduced a novel time-frequency decomposition approach for analyzing seismic data. This method is inspired by the newly developed variational mode decomposition (VMD). The principle of VMD is to look for an ensemble of modes with their respective center frequencies, such that the modes collectively reproduce the input signal and each mode is smooth after demodulation into baseband. The advantage of VMD is that there is no residual noise in the modes and it can further decrease redundant modes compared with the complete ensemble empirical mode decomposition (CEEMD) and improved CEEMD (ICEEMD). Moreover, VMD is an adaptive signal decomposition technique, which can nonrecursively decompose a multicomponent signal into several quasi-orthogonal intrinsic mode functions. This new tool, in contrast to empirical mode decomposition (EMD) and its variations, such as EEMD, CEEMD, and ICEEMD, is based on a solid mathematical foundation and can obtain a time-frequency representation that is less sens...

142 citations


Journal ArticleDOI
TL;DR: There has been much excitement recently about big data and the dire need for data scientists who possess the ability to extract meaning from it, but now that large, complex data sets are widely available, there has been a proliferation of tools and techniques for analyzing them.
Abstract: There has been much excitement recently about big data and the dire need for data scientists who possess the ability to extract meaning from it. Geoscientists, meanwhile, have been doing science with voluminous data for years, without needing to brag about how big it is. But now that large, complex data sets are widely available, there has been a proliferation of tools and techniques for analyzing them. Many free and open-source packages now exist that provide powerful additions to the geoscientist9s toolbox, much of which used to be only available in proprietary (and expensive) software platforms.

133 citations


Journal ArticleDOI
TL;DR: The SEISCOPE optimization toolbox is a set of FORTRAN 90 routines, which implement first- order methods and second-order methods, for the solution of large-scale nonlinear optimization problems, including Traveltime tomography, least-squares migration, or full-waveform inversion.
Abstract: The SEISCOPE optimization toolbox is a set of FORTRAN 90 routines, which implement first-order methods (steepest-descent and nonlinear conjugate gradient) and second-order methods (l-BFGS and truncated Newton), for the solution of large-scale nonlinear optimization problems. An efficient line-search strategy ensures the robustness of these implementations. The routines are proposed as black boxes easy to interface with any computational code, where such large-scale minimization problems have to be solved. Traveltime tomography, least-squares migration, or full-waveform inversion are examples of such problems in the context of geophysics. Integrating the toolbox for solving this class of problems presents two advantages. First, it helps to separate the routines depending on the physics of the problem from the ones related to the minimization itself, thanks to the reverse communication protocol. This enhances flexibility in code development and maintenance. Second, it allows us to switch easily betw...

133 citations


Journal ArticleDOI
TL;DR: This work has represented a fault surface using a simpler linked data structure, in which each sample of a fault corresponded to exactly one seismic image sample, and the fault samples were linked above and below in the fault dip directions, and left and right in the Fault strike directions.
Abstract: Numerous methods have been proposed to automatically extract fault surfaces from 3D seismic images, and those surfaces are often represented by meshes of triangles or quadrilaterals. However, extraction of intersecting faults is still a difficult problem that is not well addressed. Moreover, mesh data structures are more complex than the arrays used to represent seismic images, and they are more complex than necessary for subsequent processing tasks, such as that of automatically estimating fault slip vectors. We have represented a fault surface using a simpler linked data structure, in which each sample of a fault corresponded to exactly one seismic image sample, and the fault samples were linked above and below in the fault dip directions, and left and right in the fault strike directions. This linked data structure was easy to exchange between computers and facilitated subsequent image processing for faults. We then developed a method to construct complete fault surfaces without holes using thi...

Journal ArticleDOI
TL;DR: A new approach of time-reversal imaging is developed that reduces the computational cost and the scanning dimensions from 4D to 3D (no time) and increases the spatial resolution of the source image.
Abstract: Time reversal is a powerful tool used to image directly the location and mechanism of passive seismic sources. This technique assumes seismic velocities in the medium and propagates time-reversed observations of ground motion at each receiver location. Assuming an accurate velocity model and adequate array aperture, the waves will focus at the source location. Because we do not know the location and the origin time a priori, we need to scan the entire 4D image (3D in space and 1D in time) to localize the source, which makes time-reversal imaging computationally demanding. We have developed a new approach of time-reversal imaging that reduces the computational cost and the scanning dimensions from 4D to 3D (no time) and increases the spatial resolution of the source image. We first individually extrapolate wavefields at each receiver, and then we crosscorrelate these wavefields (the product in the frequency domain: geometric mean). This crosscorrelation creates another imaging condition, and focusi...

Journal ArticleDOI
TL;DR: A novel method to suppress low-frequency noise in microseismic data based on mathematical morphology theory that aims at distinguishing useful signals and noise according to their tiny differences of waveform is developed.
Abstract: The frequency of microseismic data is higher than that of conventional seismic data. The range of effective frequency is usually from 100 to 500 Hz, and low-frequency noise is a common disturbance in downhole monitoring. Conventional signal analysis techniques, such as band-pass filters, have their limitation in microseismic data processing when the useful signals and noise share the same frequency band. We have developed a novel method to suppress low-frequency noise in microseismic data based on mathematical morphology theory that aims at distinguishing useful signals and noise according to their tiny differences of waveform. By choosing suitable structure elements, we have extracted low-frequency noise from a original data set. We first developed the fundamental principle of mathematical morphology and the formulation of our approach. Then, we used a synthetic data example that was composed of a Ricker wavelet and low-frequency noise to test the feasibility and performance of the proposed appro...

Journal ArticleDOI
TL;DR: In this article, an adaptive substitution of the multidimensional Marchenko equation has been introduced to integrate internal multiple reflections in the seismic imaging process, without the need of a macro velocity model of the subsurface.
Abstract: Iterative substitution of the multidimensional Marchenko equation has been introduced recently to integrate internal multiple reflections in the seismic imaging process. In so-called Marchenko imaging, a macro velocity model of the subsurface is required to meet this objective. The model is used to back-propagate the data during the first iteration and to truncate integrals in time during all successive iterations. In case of an erroneous model, the image will be blurred (akin to conventional imaging) and artifacts may arise from inaccurate integral truncations. However, the scheme is still successful in removing artifacts from internal multiple reflections. Inspired by these observations, we rewrote the Marchenko equation, such that it can be applied early in a processing flow, without the need of a macro velocity model. Instead, we have required an estimate of the two-way traveltime surface of a selected horizon in the subsurface. We have introduced an approximation, such that adaptive subtracti...

Journal ArticleDOI
TL;DR: In this article, the authors developed a new approach based on the linearization of the rock-physics forward model using first-order Taylor series approximations to estimate the reservoir model of petrophysical properties.
Abstract: The estimation of rock and fluid properties from seismic attributes is an inverse problem. Rock-physics modeling provides physical relations to link elastic and petrophysical variables. Most of these models are nonlinear; therefore, the inversion generally requires complex iterative optimization algorithms to estimate the reservoir model of petrophysical properties. We have developed a new approach based on the linearization of the rock-physics forward model using first-order Taylor series approximations. The mathematical method adopted for the inversion is the Bayesian approach previously applied successfully to amplitude variation with offset linearized inversion. We developed the analytical formulation of the linearized rock-physics relations for three different models: empirical, granular media, and inclusion models, and we derived the formulation of the Bayesian rock-physics inversion under Gaussian assumptions for the prior distribution of the model. The application of the inversion to real ...

Journal ArticleDOI
TL;DR: In this article, the authors explored the possibility of synthesizing the low frequencies computationally from high-frequency data and used the resulting prediction of the missing data to seed the frequency sweep of FWI.
Abstract: The availability of low-frequency data is an important factor in the success of full-waveform inversion (FWI) in the acoustic regime. The low frequencies help determine the kinematically relevant, low-wavenumber components of the velocity model, which are in turn needed to avoid convergence of FWI to spurious local minima. However, acquiring data less than 2 or 3 Hz from the field is a challenging and expensive task. We have explored the possibility of synthesizing the low frequencies computationally from high-frequency data and used the resulting prediction of the missing data to seed the frequency sweep of FWI. As a signal-processing problem, bandwidth extension is a very nonlinear and delicate operation. In all but the simplest of scenarios, it can only be expected to lead to plausible recovery of the low frequencies, rather than their accurate reconstruction. Even so, it still requires a high-level interpretation of band-limited seismic records into individual events, each of which can be extr...

Journal ArticleDOI
TL;DR: In this paper, a Bayesian inference framework was used to estimate model uncertainties associated with FWI, and the uncertainties were assessed based on an a posteriori covariance operator, evaluated at the maximum-a posteriori model.
Abstract: Full-waveform inversion (FWI) enables us to obtain high-resolution subsurface images; however, estimating model uncertainties associated with this technique is still a challenging problem. We have used a Bayesian inference framework to estimate model uncertainties associated with FWI. The uncertainties were assessed based on an a posteriori covariance operator, evaluated at the maximum a posteriori model. For the prior distribution, we have used a spatially nonstationary covariance operator based on a plane-wave construction with local dips measured from migrated images. Preconditioned frequency-domain FWI was used to estimate the maximum a posteriori model. Efficient manipulation of the posterior covariance was based on a low-rank approximation of the data misfit Hessian preconditioned by the prior covariance operator. The strong decay of the singular values indicated that data were mostly informative about a low-dimensional subspace of model parameters. To reduce computational cost of the random...

Journal ArticleDOI
Yi Luo, Yue Ma1, Yan Wu1, Hongwei Liu, Lei Cao1 
TL;DR: In this article, a wave-equation-based traveltime inversion methodology, referred to as full-traveltime (i.e., fully dependent on traveltime) inversion (FTI), was developed to automatically estimate a kinematically accurate velocity model from seismic data.
Abstract: Many previously published wave-equation-based methods, which attempt to automatically invert traveltime or kinematic information in seismic data or migrated gathers for smooth velocities, suffer a common and severe problem — the inversions are involuntarily and unconsciously hijacked by amplitude information. To overcome this problem, we have developed a new wave-equation-based traveltime inversion methodology, referred to as full-traveltime (i.e., fully dependent on traveltime) inversion (FTI), to automatically estimate a kinematically accurate velocity model from seismic data. The key idea of FTI is to make the inversion fully dependent on traveltime information, and thus prevent amplitude interference during inversion. Under the assumption that velocity perturbations cause only traveltime changes, we have derived the FTI method in the data and image domains, which are applicable to transmitted arrivals and reflected waves, respectively. FTI does not require an accurate initial velocity model or...

Journal ArticleDOI
TL;DR: In this article, the forward and adjoint operators of the least-squares iterative inversion (LSRTM) were derived based on the low-rank one-step seismic modeling operator in viscoacoustic media, and derived its adjoint operator using nonstationary filtering theory.
Abstract: Attenuation of seismic waves needs to be taken into account to improve the accuracy of seismic imaging. In viscoacoustic media, reverse time migration (RTM) can be performed with Q-compensation, which is also known as Q-RTM. Least-squares RTM (LSRTM) has also been shown to be able to compensate for attenuation through linearized inversion. However, seismic attenuation may significantly slow down the convergence rate of the least-squares iterative inversion process without proper preconditioning. We have found that incorporating attenuation compensation into LSRTM can improve the speed of convergence in attenuating media, obtaining high-quality images within the first few iterations. Based on the low-rank one-step seismic modeling operator in viscoacoustic media, we have derived its adjoint operator using nonstationary filtering theory. The proposed forward and adjoint operators can be efficiently applied to propagate viscoacoustic waves and to implement attenuation compensation. Recognizing that, ...

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a periodically varying code that can avoid the problem of local coherency and make the interference distribute uniformly in a given range; hence, it was better at suppressing incoherent interference (blending noise) and preserving coherent useful signals compared with a random dithering code.
Abstract: We have designed a periodically varying code that can avoid the problem of the local coherency and make the interference distribute uniformly in a given range; hence, it was better at suppressing incoherent interference (blending noise) and preserving coherent useful signals compared with a random dithering code. We have also devised a new form of the iterative method to remove interference generated from the simultaneous source acquisition. In each iteration, we have estimated the interference using the blending operator following the proposed formula and then subtracted the interference from the pseudodeblended data. To further eliminate the incoherent interference and constrain the inversion, the data were then transformed to an auxiliary sparse domain for applying a thresholding operator. During the iterations, the threshold was decreased from the largest value to zero following an exponential function. The exponentially decreasing threshold aimed to gradually pass the deblended data to a more...

Journal ArticleDOI
TL;DR: In this paper, the authors considered the problem of estimating the elastic constants of a fractured medium using multiparameter FWI and modeling naturally fractured reservoirs as equivalent anisotropic media.
Abstract: In seismic full-waveform inversion (FWI), subsurface parameters are estimated by iteratively minimizing the difference between the modeled and the observed data. We have considered the problem of estimating the elastic constants of a fractured medium using multiparameter FWI and modeling naturally fractured reservoirs as equivalent anisotropic media. Multiparameter FWI, although promising, remains exposed to a range of challenges, one being the parameter crosstalk problem resulting from the overlap of Frechet derivative wavefields. Parameter crosstalk is strongly influenced by the form of the scattering pattern for each parameter. We have derived 3D radiation patterns associated with scattering from a range of elastic constants in general anisotropic media. Then, we developed scattering patterns specific to a horizontal transverse isotropic (HTI) medium to draw conclusions about parameter crosstalk in FWI. Bare gradients exhibit crosstalk, as well as artifacts caused by doubly scattered energy in ...

Journal ArticleDOI
TL;DR: In this paper, a new rock-physics modeling scheme honoring the maturity levels (immature, mature, and overmature), which are constrained by the evolution of the physical properties of organic shale upon kerogen maturation, is presented.
Abstract: Modeling the elastic properties of organic shale has been of long-standing interest for source rocks and unconventional reservoir characterization. Organic shales exhibit significant variabilities in rock texture and reservoir properties at different maturity stages, subsequently affecting their elastic responses. We have developed a new rock-physics modeling scheme honoring the maturity levels (immature, mature, and overmature), which are constrained by the evolution of the physical properties of organic shale upon kerogen maturation. In particular, at different maturity stages, the manners in which the compliant organic materials interact with the inorganic mineral matrix are characterized by different effective medium theories. On the basis of the developed rock-physics templates, organic shales have different elastic behaviors at different maturity stages. Ignoring the impact of kerogen maturation is insufficient to adequately characterize the elasticity of the whole organic shale system. Mode...

Journal ArticleDOI
TL;DR: In this article, the authors measured velocity and attenuation anisotropy of P- and S-waves in dry Whitby Mudstone samples as a function of stress and found that the degree of attenuation can be as large as 70% for velocity and 50% for attenuation.
Abstract: We have conducted ultrasonic experiments, between 0.3 and 1 MHz, to measure velocity and attenuation (Q?1) anisotropy of P- and S-waves in dry Whitby Mudstone samples as a function of stress. We found the degree of anisotropy to be as large as 70% for velocity and attenuation. The sensitivity of P-wave anisotropy change with applied stress is more conspicuous than for S-waves. The closure of large aspect-ratio pores (and/or micro cracks) seems to be a dominant mechanism controlling the change of anisotropy. Generally, the highest attenuation is perceived for samples that have their bed layering perpendicular (90°) to the wave path. The observed attenuation in the samples is partly due to the scattering on the different layers, and it is partly due to the intrinsic attenuation. Changes in attenuation due to crack closure during the loading stage of the experiment are an indication of the intrinsic attenuation. The remaining attenuation can then be attributed to the layer scattering. Finally, the changes in attenuation anisotropy with applied stress are more dynamic with respect to changes in velocity anisotropy, supporting the validity of a higher sensitivity of attenuation to rock property changes.

Journal ArticleDOI
TL;DR: In this article, a joint inversion of multiple geophysical data has become an active area of research due to its potential to greatly enhance the fidelity of inverted models, and the authors have developed an approach that handles multimodal petrophysical information through guided fuzzy c-means clustering in the parameter domain.
Abstract: Joint inversion of multiple geophysical data has become an active area of research due to its potential to greatly enhance the fidelity of inverted models. Many open questions and challenges still remain. One of them is how to effectively incorporate into joint inversion multimodal petrophysical information that describes the statistical behavior of physical property values in the parameter domain (i.e., in a crossplot). We have regarded the multimodal petrophysical data as different clusters in the parameter domain and developed an approach that handles multimodal petrophysical information through guided fuzzy c-means (FCM) clustering in the parameter domain. We inverted the petrophysical data in the parameter domain in a similar manner to and simultaneously with the geophysical data in the spatial domain through minimizing one common objective function. Numerical examples have determined that the resulting models from this multidomain joint-inversion strategy are able to reproduce both the geoph...

Journal ArticleDOI
TL;DR: In this paper, a global optimization method is proposed to estimate a starting model using a random starting model and is not generally susceptible to being trapped in a local minimum, unlike a local optimization approach that can converge to a local minima if the starting model used is not close enough to an optimal model.
Abstract: Full-waveform inversion (FWI) has become a popular method to estimate elastic earth properties from seismograms. It is formulated as a data-fitting least-squares minimization problem that iteratively updates an initial velocity model with the scaled gradient of the misfit until a satisfactory match between the real and synthetic data is obtained. However, such a local optimization approach can converge to a local minimum if the starting model used is not close enough to an optimal model. We have developed a two-step process in which we first estimate a starting model using a global optimization method. Unlike local optimization methods, a global optimization method starts with a random starting model and is not generally susceptible to be trapped in a local minimum. The starting model for FWI that we aim to estimate is sparsely parameterized and contains a set of interfaces and velocities that are used to represent the entire velocity model. We have obtained the depth of the interfaces and the vel...

Journal ArticleDOI
TL;DR: In this paper, a perturbation imaging condition that yields scalar images of squared P- and S-velocity perturbations was proposed to improve the energy focusing and illumination of the elastic images.
Abstract: Least-squares migration can produce images with improved resolution and reduced migration artifacts, compared with conventional imaging. We have developed a method for elastic least-squares reverse time migration (LSRTM) based on a new perturbation imaging condition that yields scalar images of squared P- and S-velocity perturbations. These perturbation images do not suffer from polarity reversals that are common for more conventional elastic imaging methods. We use 2D synthetic and field-data examples to demonstrate the proposed LSRTM algorithm using the perturbation imaging condition. Our results show that elastic LSRTM improves the energy focusing and illumination of the elastic images and it attenuates artifacts resulting, for instance, from sparseness in the wavefield sampling and crosstalk of the P- and S-modes. Compared with RTM images, the LSRTM images provide more accurate relative amplitude information that is useful for reservoir characterization.

Journal ArticleDOI
TL;DR: Least-squares migration (LSM) as mentioned in this paper is an inversion algorithm and is sensitive to inaccuracies in the source wavelet, velocity model, data preprocessing, and the propagator used.
Abstract: Conventional amplitude inversion assumes that the migrated image preserves relative-amplitude information. However, illumination effects caused by complex geologic settings, undersampled acquisition geometry, and limited recording aperture pose a challenge to even the most advanced imaging algorithms. In addition, standard depth-migration images can suffer from lack of resolution caused by wavelet stretch, attenuation, and suboptimal deghosting. Least-squares migration (LSM) can mitigate many of these problems and produce better resolved migration images suitable for AVO inversion. However, whether formulated in the data domain or the image domain, LSM is an inversion algorithm and is sensitive to inaccuracies in the source wavelet, velocity model, data preprocessing, and the propagator used. Practical considerations to mitigate these problems under nonideal conditions and cost-reduction strategies differ between the data- and image-domain formulations. The relative merits of each approach are ev...

Journal ArticleDOI
TL;DR: In this article, a hybrid method of seismic interferometry and the roadside passive multichannel analysis of surface waves (MASW) using cross-correlation to produce common virtual source gathers from 1-h multi-channel noise records is proposed.
Abstract: Passive seismic methods in highly populated urban areas have gained much attention from geophysics and civil engineering communities because traditional seismic surveys, especially in complex urbanized environments, might be improperly applied. In passive seismic methods, directional noise sources will inevitably bring azimuthal effects and spatial aliasing to dispersion measurements due to the fact that true randomness of ambient noise cannot be achieved in reality. To solve these problems, multichannel analysis of passive surface (MAPS) waves based on long noise sequence crosscorrelations is proposed. We have introduced a hybrid method of seismic interferometry and the roadside passive multichannel analysis of surface waves (MASW) using crosscorrelation to produce common virtual source gathers from 1 h multichannel noise records. Common virtual source gathers are then used to do dispersion analysis with an active scheme based on phase-shift measurement. Synthetic tests demonstrated the advantage...

Journal ArticleDOI
TL;DR: In this paper, the authors present an algorithm for time-domain elastic FWI in laterally heterogeneous VTI (transversely isotropic with a vertical symmetry axis) media, where the adjoint-state method is employed to derive the gradient of the objective function with respect to the stiffness coefficients and then to a chosen set of VTI parameters.
Abstract: Most existing implementations of full-waveform inversion (FWI) are limited to acoustic approximations. In this paper, we present an algorithm for time-domain elastic FWI in laterally heterogeneous VTI (transversely isotropic with a vertical symmetry axis) media. The adjoint-state method is employed to derive the gradients of the objective function with respect to the stiffness coefficients and then to a chosen set of VTI parameters. To test the algorithm, we introduce Gaussian anomalies in the Thomsen parameters of a homogeneous VTI medium and perform 2D FWI of multicomponent transmission data for two different model parameterizations. To analyze the sensitivity of the objective function to the model parameters, the Frechet kernel of FWI is obtained by linearizing the elastic wave equation using the Born approximation and employing the asymptotic Green’s function. The amplitude of the kernel (“radiation pattern”) yields the angle-dependent energy scattered by a perturbation in a certain model parameter. Then we convert the general expressions into simple approximations for the radiation patterns of P- and SV-waves in VTI media. These analytic developments provide valuable insight into the potential of multicomponent elastic FWI and help explain the numerical results for models with Gaussian anomalies in the VTI parameters.

Journal ArticleDOI
TL;DR: In this article, the convergence of extended least-squares migration is accelerated by combining the conjugate gradient algorithm with weighted norms in range (data) and domain (model) spaces that render the extended Born modeling operator approximately unitary.
Abstract: Least-squares migration (LSM) iteratively achieves a mean-square best fit to seismic reflection data, provided that a kinematically accurate velocity model is available. The subsurface offset extension adds extra degrees of freedom to the model, thereby allowing LSM to fit the data even in the event of significant velocity error. This type of extension also implies additional computational expense per iteration from crosscorrelating source and receiver wavefields over the subsurface offset, and therefore places a premium on rapid convergence. We have accelerated the convergence of extended least-squares migration by combining the conjugate gradient algorithm with weighted norms in range (data) and domain (model) spaces that render the extended Born modeling operator approximately unitary. We have developed numerical examples that demonstrate that the proposed algorithm dramatically reduces the number of iterations required to achieve a given level of fit or gradient reduction compared with conjuga...