scispace - formally typeset
Search or ask a question
JournalISSN: 1639-4488

Geostandards and Geoanalytical Research 

Wiley-Blackwell
About: Geostandards and Geoanalytical Research is an academic journal published by Wiley-Blackwell. The journal publishes majorly in the area(s): Chemistry & Geology. It has an ISSN identifier of 1639-4488. Over the lifetime, 1351 publications have been published receiving 56295 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the results of a study to develop natural zircon geochemical standards for calibrating the U-(Th)-Pb geochronometer and Hf isotopic analyses are reported.
Abstract: We report here the results of a study to develop natural zircon geochemical standards for calibrating the U-(Th)-Pb geochronometer and Hf isotopic analyses. Additional data were also collected for the major, minor and trace element contents of the three selected sample sets. A total of five large zircon grains (masses between 0.5 and 238 g) were selected for this study, representing three different suites of zircons with ages of 1065 Ma, 2.5 Ma and 0.9 Ma. Geochemical laboratories can obtain these materials by contacting Geostandards Newsletter.

4,845 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a compilation of trace element data from approximately sixty published works for NIST SRM 611 and NISTSRM 613 and provide useful new working values for these reference materials.
Abstract: Microanalytical trace element techniques (such as ion probe or laser ablation ICP-MS) are hampered by a lack of well characterized, homogeneous standards. Two silicate glass reference materials produced by National Institute of Standards and Technology (NIST), NIST SRM 610 and NIST SRM 612, have been shown to be homogeneous and are spiked with up to sixty one trace elements at nominal concentrations of 500 μg g-1 and 50 μg g-1 respectively. These samples (supplied as 3 mm wafers) are equivalent to NIST SRM 611 and NIST SRM 613 respectively (which are supplied as 1 mm wafers) and are becoming more widely used as potential microanalytical reference materials. NIST however, only certifies up to eight elements in these glasses. Here we have compiled concentration data from approximately sixty published works for both glasses, and have produced new analyses from our laboratories. Compilations are presented for the matrix composition of these glasses and for fifty eight trace elements. The trace element data includes all available new and published data, and summaries present the overall average and standard deviation, the range, median, geometric mean and a preferred average (which excludes all data outside ± one standard deviation of the overall average). For the elements which have been certified, there is a good agreement between the compiled averages and the NIST data. This compilation is designed to provide useful new working values for these reference materials.

2,487 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented new reference values for the NIST SRM 610-617 glasses following ISO guidelines and the International Association of Geoanalysts' protocol, and determined quantitatively possible element inhomogeneities using different test portion masses of 1, 0.1 and 0.02μg.
Abstract: We present new reference values for the NIST SRM 610–617 glasses following ISO guidelines and the International Association of Geoanalysts’ protocol. Uncertainties at the 95% confidence level (CL) have been determined for bulk- and micro-analytical purposes. In contrast to former compilation procedures, this approach delivers data that consider present-day requirements of data quality. New analytical data and the nearly complete data set of the GeoReM database were used for this study. Data quality was checked by the application of the Horwitz function and by a careful investigation of analytical procedures. We have determined quantitatively possible element inhomogeneities using different test portion masses of 1, 0.1 and 0.02 μg. Although avoiding the rim region of the glass wafers, we found moderate inhomogeneities of several chalcophile/siderophile elements and gross inhomogeneities of Ni, Se, Pd and Pt at small test portion masses. The extent of inhomogeneity was included in the determination of uncertainties. While the new reference values agree with the NIST certified values with the one exception of Mn in SRM 610, they typically differ by as much as 10% from the Pearce et al. (1997) values in current use. In a few cases (P, S, Cl, Ta, Re) the discrepancies are even higher. Nous presentons des nouvelles valeurs de reference pour les verres NIST SRM 610–617 en suivant les recommandations de l’ISO et le protocole de l’IAG. Les incertitudes au niveau de confiance de 95% ont ete determinees a des fins d’analyse totale et de micro-analyse. Contrairement aux procedures de compilation precedentes, cette approche fournit des donnees qui tiennent compte des exigences actuelles dans la qualite des donnees. De nouvelles donnees analytiques et le jeu de donnees presque complet de la base de donnees GeoReM ont ete utilises pour cette etude. La qualite des donnees a ete verifiee par l’application de la fonction de Horwitz et par un examen minutieux des procedures analytiques. Nous avons determine quantitativement les possibles inhomogeneites d’element en utilisant des prises d’essai de masses differentes correspondant a 1, 0.1 et 0.02 μg. Bien que nous ayons evite les zones de bordure des disques de verre, nous avons trouve des inhomogeneites moderees pour plusieurs elements chalcophiles/siderophiles et des inhomogeneites flagrantes de Ni, Se, Pd et Pt pour les prises d’essai de petites masses. La mesure d’inhomogeneite a ete incluse dans la determination des incertitudes. Alors que les nouvelles valeurs de reference sont en accord avec les valeurs NIST certifiees a la seule exception du Mn dans SRM 610, elles sont generalement differentes, avec des ecarts de pres de 10%, des valeurs de Pearce et al. (1997) qui sont d’un usage courant. Dans quelques cas (P, S, Cl, Ta, Re), les ecarts sont encore plus eleves.

1,388 citations

Journal ArticleDOI
TL;DR: In this paper, laser ablation-inductively coupled plasma-mass spectrometry was used for age determination of zircons of Proterozoic to Oligocene ages (1060-31 Ma).
Abstract: Various zircons of Proterozoic to Oligocene ages (1060-31 Ma) were analysed by laser ablation-inductively coupled plasma-mass spectrometry. Calibration was performed using Harvard reference zircon 91500 or Australian National University reference zircon TEMORA 1 as external calibrant. The results agree with those obtained by SIMS within 2s error. Twenty-four trace and rare earth elements (P, Ti, Cr, Y, Nb, fourteen REE, Hf, Ta, Pb, Th and U) were analysed on four fragments of zircon 91500. NIST SRM 610 was used as the reference material and 29Si was used as internal calibrant. Based on determinations of four fragments, this zircon shows significant intra-and inter-fragment variations in the range from 10% to 85% on a scale of 120 μm, with the variation of REE concentrations up to 38.7%, although the chondrite-normalised REE distributions are very similar. In contrast, the determined age values for zircon 91500 agree with TIMS data and are homogeneous within 8.7 Ma (2s). A two-stage ablation strategy was developed for optimising U-Pb age determinations with satisfactory trace element and REE results. The first cycle of ablation was used to collect data for age determination only, which was followed by continuous ablation on the same spot to determine REE and trace element concentrations. Based on this procedure, it was possible to measure zircon ages as low as 30.37 0.39 Ma (MSWD = 1.4; 2s). Other examples for older zircons are also given.

1,206 citations

Journal ArticleDOI
TL;DR: In this article, the results from a second characterisation of the 91500 zircon, including data from electron probe microanalysis, laser ablation inductively coupled plasma-mass spectrometer (LA-ICP-MS), secondary ion mass spectrometry (SIMS), and laser fluorination analyses, were reported.
Abstract: This paper reports the results from a second characterisation of the 91500 zircon, including data from electron probe microanalysis, laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS), secondary ion mass spectrometry (SIMS) and laser fluorination analyses. The focus of this initiative was to establish the suitability of this large single zircon crystal for calibrating in situ analyses of the rare earth elements and oxygen isotopes, as well as to provide working values for key geochemical systems. In addition to extensive testing of the chemical and structural homogeneity of this sample, the occurrence of banding in 91500 in both backscattered electron and cathodoluminescence images is described in detail. Blind intercomparison data reported by both LA-ICP-MS and SIMS laboratories indicate that only small systematic differences exist between the data sets provided by these two techniques. Furthermore, the use of NIST SRM 610 glass as the calibrant for SIMS analyses was found to introduce little or no systematic error into the results for zircon. Based on both laser fluorination and SIMS data, zircon 91500 seems to be very well suited for calibrating in situ oxygen isotopic analyses.

1,131 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202339
202266
202144
202049
201944
201838