scispace - formally typeset
Search or ask a question
JournalISSN: 0894-1491

Glia 

Wiley
About: Glia is an academic journal published by Wiley. The journal publishes majorly in the area(s): Neuroglia & Astrocyte. It has an ISSN identifier of 0894-1491. Over the lifetime, 4792 publications have been published receiving 320721 citations. The journal is also known as: glial cells & neuroglia.


Papers
More filters
Journal ArticleDOI
01 Apr 2007-Glia
TL;DR: It is demonstrated that through TNFα, peripheral inflammation in adult animals can activate brain microglia to produce chronically elevated pro‐inflammatory factors and induce delayed and progressive loss of DA neurons in the SN, providing valuable insight into the potential pathogenesis and self‐propelling nature of Parkinson's disease.
Abstract: Inflammation is implicated in the progressive nature of neurodegenerative diseases, such as Parkinson's disease, but the mechanisms are poorly understood. A single systemic lipopolysaccharide (LPS, 5 mg/kg, i.p.) or tumor necrosis factor alpha (TNFα, 0.25 mg/kg, i.p.) injection was administered in adult wild-type mice and in mice lacking TNFα receptors (TNF R1/R2−/−) to discern the mechanisms of inflammation transfer from the periphery to the brain and the neurodegenerative consequences. Systemic LPS administration resulted in rapid brain TNFα increase that remained elevated for 10 months, while peripheral TNFα (serum and liver) had subsided by 9 h (serum) and 1 week (liver). Systemic TNFα and LPS administration activated microglia and increased expression of brain pro-inflammatory factors (i.e., TNFα, MCP-1, IL-1β, and NF-κB p65) in wild-type mice, but not in TNF R1/R2−/− mice. Further, LPS reduced the number of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra (SN) by 23% at 7-months post-treatment, which progressed to 47% at 10 months. Together, these data demonstrate that through TNFα, peripheral inflammation in adult animals can: (1) activate brain microglia to produce chronically elevated pro-inflammatory factors; (2) induce delayed and progressive loss of DA neurons in the SN. These findings provide valuable insight into the potential pathogenesis and self-propelling nature of Parkinson's disease.

1,802 citations

Journal ArticleDOI
01 Nov 2002-Glia
TL;DR: Strong responses and modulatory influences can be demonstrated, adding to the emerging view that microglial behavior is highly dependent on the (cytokine) environment and that reactions to a challenge may vary with the stimulation context.
Abstract: Cytokines constitute a significant portion of the immuno- and neuromodulatory messengers that can be released by activated microglia. By virtue of potent effects on resident and invading cells, microglial cyto- and chemokines regulate innate defense mechanisms, help the initiation and influence the type of immune responses, participate in the recruitment of leukocytes to the CNS, and support attempts of tissue repair and recovery. Microglia can also receive cyto- and chemokine signals as part of auto- and paracrine communications with astrocytes, neurons, the endothelium, and leukocyte infiltrates. Strong responses and modulatory influences can be demonstrated, adding to the emerging view that microglial behavior is highly dependent on the (cytokine) environment and that reactions to a challenge may vary with the stimulation context. In principle, microglial activation aims at CNS protection. However, failed microglial engagement due to excessive or sustained activation could significantly contribute to acute and chronic neuropathologies. Dysregulation of microglial cytokine production could thereby promote harmful actions of the defense mechanisms, result in direct neurotoxicity, as well as disturb neural cell functions as they are sensitive to cytokine signaling.

1,508 citations

Journal ArticleDOI
01 Jun 2005-Glia
TL;DR: Astrocytes become activated (reactive) in response to many CNS pathologies, such as stroke, trauma, growth of a tumor, or neurodegenerative disease, and its possible roles in the CNS trauma and ischemia are discussed.
Abstract: Astrocytes become activated (reactive) in response to many CNS pathologies, such as stroke, trauma, growth of a tumor, or neurodegenerative disease. The process of astrocyte activation remains rather enigmatic and results in so-called "reactive gliosis," a reaction with specific structural and functional characteristics. In stroke or in CNS trauma, the lesion itself, the ischemic environment, disrupted blood-brain barrier, the inflammatory response, as well as in metabolic, excitotoxic, and in some cases oxidative crises--all affect the extent and quality of reactive gliosis. The fact that astrocytes function as a syncytium of interconnected cells both in health and in disease, rather than as individual cells, adds yet another dimension to this picture. This review focuses on several aspects of astrocyte activation and reactive gliosis and discusses its possible roles in the CNS trauma and ischemia. Particular emphasis is placed on the lessons learnt from mouse genetic models in which the absence of intermediate filament proteins in astrocytes leads to attenuation of reactive gliosis with distinct pathophysiological and clinical consequences.

1,492 citations

Journal ArticleDOI
01 Nov 2001-Glia
TL;DR: The signals regulatingmicroglia innate immune functions, the role of microglia in antigen presentation, and their possible involvement in the development of CNS immunopathology are focused on.
Abstract: During the past decade, mechanisms involved in the immune surveillance of the central nervous system (CNS) have moved to the forefront of neuropathological research mainly because of the recognition that most neurological disorders involve activation and, possibly, dysregulation of microglia, the intrinsic macrophages of the CNS. Increasing evidence indicates that, in addition to their well-established phagocytic function, microglia may also participate in the regulation of non specific inflammation as well as adaptive immune responses. This article focuses on the signals regulating microglia innate immune functions, the role of microglia in antigen presentation, and their possible involvement in the development of CNS immunopathology.

1,241 citations

Journal ArticleDOI
01 Nov 2001-Glia
TL;DR: The functional role of astrocytes as immune effector cells and how this may influence aspects of inflammation and immune reactivity within the brain follows, emphasizing the involvement of astracytes in promoting Th2 responses.
Abstract: Astrocytes are the major glial cell within the central nervous system (CNS) and have a number of important physiological properties related to CNS homeostasis. The aspect of astrocyte biology addressed in this review article is the astrocyte as an immunocompetent cell within the brain. The capacity of astrocytes to express class II major histocompatibility complex (MHC) antigens and costimulatory molecules (B7 and CD40) that are critical for antigen presentation and T-cell activation are discussed. The functional role of astrocytes as immune effector cells and how this may influence aspects of inflammation and immune reactivity within the brain follows, emphasizing the involvement of astrocytes in promoting Th2 responses. The ability of astrocytes to produce a wide array of chemokines and cytokines is discussed, with an emphasis on the immunological properties of these mediators. The significance of astrocytic antigen presentation and chemokine/cytokine production to neurological diseases with an immunological component is described.

1,220 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023100
2022202
2021199
2020167
2019159
2018181