scispace - formally typeset
Search or ask a question

Showing papers in "Global Biogeochemical Cycles in 2002"


Journal ArticleDOI
TL;DR: In this article, the influence of various factors regulating emissions from mineral soils was assessed using 846 N2O emission measurements in agricultural fields and 99 measurements for NO emissions, and the available data can be used to develop simple models based on the major regulating factors which describe the spatial variability of emissions of N 2O and NO with less uncertainty than emission factor approaches based on country N inputs.
Abstract: [1] Information from 846 N2O emission measurements in agricultural fields and 99 measurements for NO emissions was summarized to assess the influence of various factors regulating emissions from mineral soils. The data indicate that there is a strong increase of both N2O and NO emissions accompanying N application rates, and soils with high organic-C content show higher emissions than less fertile soils. A fine soil texture, restricted drainage, and neutral to slightly acidic conditions favor N2O emission, while (though not significant) a good soil drainage, coarse texture, and neutral soil reaction favor NO emission. Fertilizer type and crop type are important factors for N2O but not for NO, while the fertilizer application mode has a significant influence on NO only. Regarding the measurements, longer measurement periods yield more of the fertilization effect on N2O and NO emissions, and intensive measurements (≥1 per day) yield lower emissions than less intensive measurements (2–3 per week). The available data can be used to develop simple models based on the major regulating factors which describe the spatial variability of emissions of N2O and NO with less uncertainty than emission factor approaches based on country N inputs, as currently used in national emission inventories.

858 citations


Journal ArticleDOI
TL;DR: In this paper, the authors show that most of the organic carbon rain in the deep sea is carried by calcium carbonate, because it is denser than opal and more abundant than terrigenous material.
Abstract: [1] We compiled and standardized sediment trap data below 1000 m depth from 52 locations around the globe to infer the implications of the Armstrong et al. [2002] “ballast” model to the ratio of organic carbon to calcium carbonate in the deep sea (the rain ratio). We distinguished three forms of mineral ballast: calcium carbonate, opal, and lithogenic material. We concur with Armstrong et al. [2002] that organic carbon sinking fluxes correlate tightly with mineral fluxes. Based on the correlations seen in the trap data, we conclude that most of the organic carbon rain in the deep sea is carried by calcium carbonate, because it is denser than opal and more abundant than terrigenous material. This analysis explains the constancy of the organic carbon to calcium carbonate rain ratio in the deep sea today, and argues against large changes in the mean value of this ratio in the past. However, sediment trap data show variability in the ratio in areas of high relative calcium carbonate export (mass CaCO3/mass ratio > 0.4), unexplainable by the model, leaving open the possibility of regional variations in the rain ratio in the past.

733 citations


Journal ArticleDOI
TL;DR: In this paper, the influence of various factors regulating emissions from mineral soils in models for calculating global N2O and NO emissions were included in the models, and the most important controls on NO emission include the N application rate per fertilizer type, soil organic-C content and soil drainage.
Abstract: [1] Information from 846 N2O emission measurements in agricultural fields and 99 measurements for NO emissions was used to describe the influence of various factors regulating emissions from mineral soils in models for calculating global N2O and NO emissions. Only those factors having a significant influence on N2O and NO emissions were included in the models. For N2O these were (1) environmental factors (climate, soil organic C content, soil texture, drainage and soil pH); (2) management-related factors (N application rate per fertilizer type, type of crop, with major differences between grass, legumes and other annual crops); and (3) factors related to the measurements (length of measurement period and frequency of measurements). The most important controls on NO emission include the N application rate per fertilizer type, soil organic-C content and soil drainage. Calculated global annual N2O-N and NO-N emissions from fertilized agricultural fields amount to 2.8 and 1.6 Mtonne, respectively. The global mean fertilizer-induced emissions for N2O and NO amount to 0.9% and 0.7%, respectively, of the N applied. These overall results account for the spatial variability of the main N2O and NO emission controls on the landscape scale.

658 citations


Journal ArticleDOI
TL;DR: In this paper, the authors measured the total ecosystem respiration in a natural, 2 and 3 year (young) and 7 and 8 year (old) postcutover peatland near Sainte-Marguerite-Marie, Quebec, during the summers of 1998 and 1999.
Abstract: [i] Peatlands represent an important component of the global carbon cycle, storing 23 g C m -2 yr -1 . Peatland mining eliminates the carbon sink function of the peatland. In this paper we measure the total ecosystem respiration in a natural, 2 and 3 year (young) and 7 and 8 year (old) postcutover peatland near Sainte-Marguerite-Marie, Quebec, during the summers of 1998 and 1999. Although the natural site was a source of CO 2 during the dry 1998 study season (138 g C m -2 ), CO 2 emissions were between 260 and 290% higher in the cutover sites (363 and 399 g C m -2 for young and old, respectively). Cutover site CO 2 emissions were only 88 and 112 g CO 2 .C m -2 at the young and old sites during the wet 1999 study season. Total ecosystem respiration was more dependent on the water table position than on changes in the thermal regime or the labile carbon of the peat in a dry summer, but the opposite was the case in a wet summer. CO 2 emissions increased with postharvest time regardless of a decrease in labile carbon, demonstrating that cutover peatlands are a large persistent source of atmospheric CO 2 . Direct measurement of the net ecosystem CO 2 exchange in cutover peatlands, as opposed to determining the loss of carbon from bulk density determinations, provides a better understanding of how peat drainage and harvesting operations affect the carbon balance in peatlands.

630 citations


Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate the potential of combining observed river discharge information with climate-driven water balance model (WBM) outputs to develop composite runoff fields, which simultaneously reflect the numerical accuracy of the discharge measurements and preserve the spatial and temporal distribution of simulated runoff.
Abstract: [1] This paper demonstrates the potential of combining observed river discharge information with climate-driven water balance model (WBM) outputs to develop composite runoff fields. Such combined runoff fields simultaneously reflect the numerical accuracy of the discharge measurements and preserve the spatial and temporal distribution of simulated runoff. Selected gauging stations from the World Meteorological Organization Global Runoff Data Centre (GRDC) data archive were geographically coregistered to a gridded simulated topological network at 30′ (longitude × latitude) spatial resolution (STN–30p). Interstation regions between gauging stations along the STN–30p network were identified, and annual interstation runoff was calculated. The annual interstation runoff was compared with outputs from WBM calculations, which were performed using long-term mean monthly climate forcings (air temperature and precipitation). The simulated runoff for each cell was multiplied by the ratio of observed to simulated runoff of the corresponding interstation region from the GRDC data set to create spatially distributed runoff fields at 30′ resolution. The resulting composite runoff fields (UNH/GRDC Composite Runoff Fields V1.0) are released to the scientific community along with intermediate data sets, such as station attributes and long-term monthly regimes of the selected gauging stations, the simulated topological network (STN–30p), STN–30p derived attributes for the selected stations, and gridded fields of the interstation regions along STN–30p. These data sets represent high-resolution fields that are of value to a broad range of water-related research, including terrestrial modeling, climate-atmosphere interactions, and global water resource assessments.

615 citations


Journal ArticleDOI
TL;DR: In this article, the authors estimate that the dry deposition of reactive gaseous Hg (RGHg) to the ocean, which has not been previously considered in global budgets, is 35% of the total Hg input to the oceans.
Abstract: [1] Air-sea exchange of mercury (Hg) is a critical part of the global Hg cycle as it determines, to a large degree, the response time of the biosphere to changes in mercury inputs. Recent measurements have demonstrated that the cycling of Hg between the ocean and atmosphere is complex, principally because of the enhanced oxidation of elemental Hg (Hgo), and the formation of reactive gaseous Hg (RGHg) in the marine boundary layer. We estimate that the dry deposition of RGHg to the ocean, which has not been previously considered in global budgets, is 35% of the total Hg input to the ocean. A further reevaluation of the global Hg cycle suggests that there is a net transfer of Hg from the terrestrial environment to the ocean and that the deep ocean Hg concentration is increasing by a few percent per year. Similarly, anthropogenic inputs on land have increased Hg on the Earth's surface layer with accumulation in the terrestrial environment accounting for nearly 80% of the net input from man's activities. Dry deposition of RGHg is important for the terrestrial realm but because of its relatively short residence time in the atmosphere, it is the oxidation of Hgo over the ocean, rather than RGHg transport offshore, which is primarily contributing to oceanic RGHg deposition.

537 citations


Journal ArticleDOI
TL;DR: In this article, multiple linear regression is used to derive an algorithm suggesting that the transfer efficiency of organic carbon increases with the flux of carbonate and decreases with water depth and seasonality.
Abstract: [1] Particle fluxes measured with time series sediment traps deployed below 2000 m at 68 sites in the world ocean are combined with satellite-derived estimates of export production from the overlying water to assess the factors affecting the transfer of particulate organic matter from surface to deep water. Multiple linear regression is used to derive an algorithm suggesting that the transfer efficiency of organic carbon, defined as the settling flux of organic carbon normalized to export production, increases with the flux of carbonate and decreases with water depth and seasonality. The algorithm predicts >80% of the organic carbon transfer efficiency variability in diverse oceanic regions. The influence of the carbonate flux suggests that the ballasting effect of this biogenic mineral may be an important factor promoting export of organic carbon to the deep sea by increasing the density of settling particles. However, the lack of a similar effect for biogenic opal suggests that factors other than particle density also play a role. The adverse effect of increasing seasonality on the transfer efficiency of carbon to the deep sea is tentatively attributed to greater biodegradability of organic matter exported during bloom events. In high latitude opal-dominated regions with high f-ratios and seasonality, while a higher fraction of net production is exported, a higher fraction of the exported organic matter is remineralized before reaching bathypelagic depths. On the other hand, in warm, low latitude, carbonate-dominated regions with low f-ratios and seasonality, a higher fraction of the exported organic matter sinks to the deep sea.

530 citations


Journal ArticleDOI
TL;DR: The terrestrial biogeochemical Si cycle is of great interest because of its impact on global CO2 concentrations through the combined processes of weathering of silicate minerals and transfer of CO2 from the atmosphere to the lithosphere as discussed by the authors.
Abstract: [1] Most research on the global Si cycle has focused nearly exclusively on weathering or the oceanic Si cycle and has not explored the complexity of the terrestrial biogeochemical cycle. The global biogeochemical Si cycle is of great interest because of its impact on global CO2 concentrations through the combined processes of weathering of silicate minerals and transfer of CO2 from the atmosphere to the lithosphere. A sizable pool of Si is contained as accumulations of amorphous silica, or biogenic silica (BSi), in living tissues of growing plants, known as phytoliths, and, after decomposition of organic material, as remains in the soil. The annual fixation of phytolith silica ranges from 60–200 Tmol yr−1 and rivals that fixed in the oceanic biogeochemical cycle (240 Tmol yr−1). Internal recycling of the phytolith pool is intense with riverine fluxes of dissolved silicate to the oceans buffered by the terrestrial biogeochemical Si cycle, challenging the ability of weathering models to predict rates of weathering and consequently, changes in global climate. Consideration must be given to the influence of the terrestrial BSi pool on variations in the global biogeochemical Si cycle over geologic time and the influence man has had on modifying both the terrestrial and aquatic biogeochemical cycles.

497 citations


Journal ArticleDOI
TL;DR: In this paper, the authors presented simulations with the National Center for Atmospheric Research land surface model (NCAR LSM) that examined the effect of representing vegetation as patches of plant functional types (PFTs) that coexist within a model grid cell.
Abstract: [1] While most land models developed for use with climate models represent vegetation as discrete biomes, this is, at least for mixed life-form biomes, inconsistent with the leaf-level and whole-plant physiological parameterizations needed to couple these biogeophysical models with biogeochemical and ecosystem dynamics models. In this paper, we present simulations with the National Center for Atmospheric Research land surface model (NCAR LSM) that examined the effect of representing vegetation as patches of plant functional types (PFTs) that coexist within a model grid cell. This approach is consistent with ecological theory and models and allows for unified treatment of vegetation in climate and ecosystem models. In the standard NCAR LSM the PFT composition and leaf area for each grid cell are obtained by classifying grid cells as 1 of 28 possible biomes. Here, we develop a data set from 1-km satellite data that provides each model grid cell a unique PFT composition and leaf area for each PFT. Global simulations at 3° × 3° spatial resolution showed that ground temperature, ground evaporation, and northern high-latitude winter albedo exhibited direct responses to these landscape changes, which led to indirect effects such as in soil moisture and sensible and latent heat fluxes. Additional simulations at 2° × 2° and 1° × 1° spatial resolution showed that low-resolution simulations masked landscape heterogeneity in both approaches but the satellite-based, continuous representation of vegetation reduced model sensitivity to resolution. It is argued that the use of spatially continuous distributions of coexisting PFTs is a necessary step to link climate and ecosystem models.

462 citations


Journal ArticleDOI
TL;DR: In this paper, a nitrogen stable isotopic model was constructed in order to constrain the Holocene marine-fixed nitrogen budget, and the primary sources and sinks considered were riverine and atmospheric sources, nitrogen fixation, sedimentary and water column denitrification, and sediment burial.
Abstract: [1] A nitrogen stable isotopic model was constructed in order to constrain the Holocene marine-fixed nitrogen budget. The primary sources and sinks considered were riverine and atmospheric sources, nitrogen fixation, sedimentary and water column denitrification, and sediment burial. The source budget was found to be insensitive to changes in nitrogen fixation rates, and thus could not be used to constrain this term. However, the isotopic value of fixed nitrogen losses was very sensitive to the amount of sedimentary denitrification. If the isotopic value of marine-fixed nitrogen has not changed during the Holocene, as supported by sedimentary records, then in order to balance the isotopic value of sinks and sources, approximately 280 Tg N yr−1 of sedimentary denitrification is required. If such a high rate of denitrification has been sustained throughout the Holocene, it implies that present-day estimates of marine nitrogen fixation are grossly underestimated. It also implies that the marine nitrogen budget has a residence time of less than 2000 years.

439 citations


Journal ArticleDOI
TL;DR: In this paper, a summary model using linear regression based on weighted median values for NH3 volatilization and by calculating global NH3 loss from fertilizer application using 0.5° resolution data on land use and soils is presented.
Abstract: [1] One of the main causes of the low efficiency in nitrogen (N) use by crops is the volatilization of ammonia (NH3) from fertilizers. Information taken from 1667 NH3 volatilization measurements documented in 148 research papers was summarized to assess the influence on NH3 volatilization of crop type, fertilizer type, and rate and mode of application and temperature, as well as soil organic carbon, texture, pH, CEC, measurement technique, and measurement location. The data set was summarized in three ways: (1) by calculating means for each of the factors mentioned, in which findings from each research paper were weighted equally; (2) by calculating weighted median values corrected for unbalanced features of the collected data; and (3) by developing a summary model using linear regression based on weighted median values for NH3 volatilization and by calculating global NH3 volatilization losses from fertilizer application using 0.5° resolution data on land use and soils. The calculated median NH3 loss from global application of synthetic N fertilizers (78 million tons N per year) and animal manure (33 million tons N per year) amount to 14% (10–19%) and 23% (19–29%), respectively. In developing countries, because of high temperatures and the widespread use of urea, ammonium sulfate, and ammonium bicarbonate, estimated NH3 volatilization loss from synthetic fertilizers amounts to 18%, and in industrialized countries it amounts to 7%. The estimated NH3 loss from animal manure is 21% in industrialized and 26% in developing countries.

Journal ArticleDOI
TL;DR: In this paper, a major fraction of the variability is consistent with two emission pulses coinciding with large biomass burning events in tropical and boreal regions, and observations of unusually high levels of combustion products in the overlying troposphere at these times.
Abstract: [1] High-precision, multispecies measurements of flask air samples since 1992 from CSIRO's global sampling network reveal strong correlation among interannual growth rate variations of CO2 and its δ13C, H2, CH4, and CO. We show that a major fraction of the variability is consistent with two emission pulses coinciding with large biomass burning events in 1994/1995 and 1997/1998 in tropical and boreal regions, and observations of unusually high levels of combustion products in the overlying troposphere at these times. Implied pulse strengths and multispecies emission ratios are not consistent with any other single process, but do not exclude possible contributions from covarying processes that are linked through climatic forcing. Comparison of CO2 with its δ13C indicates that most of the CO2 variation is from terrestrial exchange, but does not distinguish forcing by biomass burning from imbalance in photosynthesis/respiration of terrestrial ecosystems. Partitioning of terrestrial CO2 fluxes is constrained by H2, CH4, and CO, all of which are products of biomass burning but which have no direct link to net respiration of CO2. While CO is a strong indicator of biomass burning, its short lifetime prevents it from usefully constraining the magnitude of CO2 emissions. If the H2 and CH4 variations were dominated by biomass burning, they would imply associated carbon emissions in excess of mean annual levels of other years, of 0.6–3.5 and 0.8–3.7 Pg C for 1994/1995 and 1997/1998, respectively. The large range in emission estimates mainly reflects uncertainty in H2/CO2 and CH4/CO2 emission ratios of fires in these years.

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper developed a simulation model, Wetland-DNDC, for C dynamics and methane (CH4) emissions in wetland ecosystems, which integrates the primary drivers of climate, hydrology, soil and vegetation.
Abstract: [1] Wetland ecosystems are an important component in global carbon (C) cycles and may exert a large influence on global climate change. Predictions of C dynamics require us to consider interactions among many critical factors of soil, hydrology, and vegetation. However, few such integrated C models exist for wetland ecosystems. In this paper, we report a simulation model, Wetland-DNDC, for C dynamics and methane (CH4) emissions in wetland ecosystems. The general structure of Wetland-DNDC was adopted from PnET-N-DNDC, a process-oriented biogeochemical model that simulates C and N dynamics in upland forest ecosystems. Several new functions and algorithms were developed for Wetland-DNDC to capture the unique features of wetland ecosystems, such as water table dynamics, growth of mosses and herbaceous plants, and soil biogeochemical processes under anaerobic conditions. The model has been validated against various observations from three wetland sites in Northern America. The validation results are in agreement with the measurements of water table dynamics, soil temperature, CH4 fluxes, net ecosystem productivity (NEP), and annual C budgets. Sensitivity analysis indicates that the most critical input factors for C dynamics in the wetland ecosystems are air temperature, water outflow parameters, initial soil C content, and plant photosynthesis capacity. NEP and CH4 emissions are sensitive to many of the tested input variables. By integrating the primary drivers of climate, hydrology, soil and vegetation, the Wetland-DNDC model is capable of predicting C biogeochemical cycles in wetland ecosystems.

Journal ArticleDOI
TL;DR: In this article, the vertical flux and sedimentation rate of planktic foraminiferal tests are quantified and a global PLF caCO 3 budget is presented, according to the distribution of species obtained from multinet and sediment trap samples, highlighting the importance of ecological, autecological and biogeochemical conditions that determine the presence or absence of species.
Abstract: [1] The vertical flux and sedimentation rate of planktic foraminiferal tests are quantified and a global planktic foraminiferal CaC0 3 budget is presented. Test and calcite flux rates are calculated according to the distribution of species obtained from multinet and sediment trap samples. Modern planktic foraminiferal population dynamics are discussed as a prerequisite for the quantification of the calcite budget, highlighting the importance of ecological, autecological (e.g., reproduction), and biogeochemical conditions that determine the presence or absence of species. To complete the open-marine, particulate CaCO 3 inventory, the contribution of coccolithophores, pteropods, and calcareous dinophytes is discussed. Based on the studied regions, the global planktic foraminiferal calcite flux rate at 100 m depth amounts to 1.3-3.2 Gt yr -1 , equivalent to 23-56% of the total open marine CaCO 3 flux. The preservation of tests varies on a regional and temporal scale, and is affected by local hydrography and dissolution. During most of the year (off-peak periods), many tests dissolve above 700-m water depth while settling through the water column, with on average only 1-3% of the initially exported CaCO 3 reaching the deep-seafloor. Pulsed flux events, mass dumps of fast settling particles, yield a major contribution of tests to the formation of deep-sea sediments. On average, ∼25% of the initially produced planktic foraminiferal test CaC0 3 settles on the seafloor. The total planktic foraminiferal contribution of CaCO 3 to global surface sediments amounts to 0.36-0.88 Gt yr -1 , ∼32-80% of the total deep-marine calcite budget.

Journal ArticleDOI
TL;DR: In this paper, the authors combined county-scale agricultural census statistics on total cropland area and sown area of 17 major crops in 1990 with a fine-resolution land-cover map derived from 1995-1996 optical remote sensing (Landsat) data to generate 0.5� resolution maps of the distribution of rice agriculture in mainland China.
Abstract: [1] Large-scale assessments of the potential for food production and its impact on biogeochemical cycling require the best possible information on the distribution of cropland. This information can come from ground-based agricultural census data sets and/ or spaceborne remote sensing products, both with strengths and weaknesses. Official cropland statistics for China contain much information on the distribution of crop types, but are known to significantly underestimate total cropland areas and are generally at coarse spatial resolution. Remote sensing products can provide moderate to fine spatial resolution estimates of cropland location and extent, but supply little information on crop type or management. We combined county-scale agricultural census statistics on total cropland area and sown area of 17 major crops in 1990 with a fine-resolution land-cover map derived from 1995–1996 optical remote sensing (Landsat) data to generate 0.5� resolution maps of the distribution of rice agriculture in mainland China. Agricultural census data were used to determine the fraction of crop area in each 0.5� grid cell that was in single rice and each of 10 different multicrop paddy rice rotations (e.g., winter wheat/ rice), while the remote sensing land-cover product was used to determine the spatial distribution and extent of total cropland in China. We estimate that there were 0.30 million km 2 of paddy rice cropland; 75% of this paddy land was multicropped, and 56% had two rice plantings per year. Total sown area for paddy rice was 0.47 million km 2 . Paddy rice agriculture occurred on 23% of all cultivated land in China. INDEX TERMS: 0315 Atmospheric Composition and Structure: Biosphere/atmosphere interactions; 1615 Global Change: Biogeochemical processes (4805); KEYWORDS: paddy rice, maps, China, multicropping rotation, Landsat

Journal ArticleDOI
TL;DR: In this article, the authors investigated whether it is possible to explain changes in climate and vegetation cover in the northern subtropical and circumpolar regions in the Holocene by accounting for the orbital forcing for the climate system.
Abstract: Holocene was accompanied by significant changes in vegetation cover and an increase inatmosphericCO2concentration.Theessentialquestioniswhetheritispossibletoexplain thesechangesinaconsistentway,accounting fortheorbitalparametersasthemainexternal forcing for the climate system. We investigate this problem using the computationally efficient model of climate system, CLIMBER-2, which includes models for oceanic and terrestrial biogeochemistry. We found that changes in climate and vegetation cover in the northern subtropical and circumpolar regions can be attributed to the changes in the orbital forcing. Explanation of the atmospheric CO2 record requires an additional assumption of excessive CaCO3sedimentation in the ocean. The modeled decrease in the carbonate ion concentration in the deep ocean is similar to that inferred from CaCO3 sediment data [Broecker et al., 1999]. For 8 kyr B.P., the model estimates the terrestrial carbon pool ca. 90 Pg higher than its preindustrial value. Simulated atmospheric d 13 C declines during the

Journal ArticleDOI
TL;DR: In this paper, the authors used a coupled climate model to estimate the ocean and land sinks of fossil fuel CO2 and showed that the global oceanic O2 and heat fluxes are strongly correlated for both the decadal variations and the climate trend.
Abstract: [1] Atmospheric O2 concentrations have been used to estimate the ocean and land sinks of fossil fuel CO2. In previous work, it has been assumed that the oceans have no long-term influence on atmospheric O2. We address the validity of this assumption using model results and observations. Oceanic O2 fluxes for the 1860–2100 period are simulated using a coupled climate model in which is nested an ocean biogeochemistry model. Simulated oceanic O2 fluxes exhibit large interannual (±40 Tmol yr−1) and decadal (±13 Tmol yr−1) variability, as well as a net outgassing to the atmosphere caused by climate change (up to 125 Tmol yr−1 by 2100). Roughly one quarter of this outgassing is caused by warming of the ocean surface, and the remainder is caused by ocean stratification. The global oceanic O2 and heat fluxes are strongly correlated for both the decadal variations and the climate trend. Using the observed heat fluxes and the modeled O2 flux/heat flux relationship, we infer the contribution of the oceans to atmospheric O2 and infer a correction to the partitioning of the ocean and land CO2 sinks. After considering this correction, the ocean and land sinks are 1.8 ± 0.8 Pg C yr−1 and 0.3 ± 0.9 Pg C yr−1, respectively, for the 1980s (a correction of 0.1 from ocean to land) and are 2.3 ± 0.7 Pg C yr−1 and 1.2 ± 0.9 Pg C yr−1, respectively, in the 1990–1996 period (a correction of 0.5 from land to ocean). This correction reconciles the 1990s ocean sink estimated by the Intergovernmental Panel on Climate Change Third Assessment Report with ocean models.

Journal ArticleDOI
TL;DR: In this article, the authors measured 14C/12C in density fractions from soils collected before and after atmospheric thermonuclear weapons testing to examine soil organic matter (SOM) dynamics along a 3 million year California soil chronosequence.
Abstract: [1] We measured 14C/12C in density fractions from soils collected before and after atmospheric thermonuclear weapons testing to examine soil organic matter (SOM) dynamics along a 3 million year California soil chronosequence. The mineral-free particulate organic matter (FPOM; 2.2 g cm−3) consists of relatively OM-free sand and OM-rich clays. Three indicators of decomposition (C:N, δ13C, and δ15N) all suggest increasing SOM decomposition with increasing fraction density. The Δ14C-derived SOM turnover rates suggest that ≥90% of FPOM turns over in <10 years. The four mineral-associated fractions contain 69–86% “stabilized” (decadal) SOM with the remainder assumed to be “passive” (millenial) SOM. Within each soil, the four mineral-associated fractions display approximately the same residence time (34–42 years in 200 kyr soil, 29–37 years in 600 kyr soil, and 18–26 years in 1–3 Myr soils), indicating that a single stabilized SOM “pool” exists in these soils and may turn over primarily as a result of soil disruption.

Journal ArticleDOI
TL;DR: In this article, a set of >255 non-headwater lakes sampled by floatplane during 1993 and 1994 is strongly correlated with varying hydroclimatic conditions across the region of northern Canada.
Abstract: [1] Regional variations in evaporation losses and water budget are interpreted from systematic isotopic patterns in surface waters across a 275,000 km2 region of northern Canada. Differential heavy isotope enrichment in a set of >255 nonheadwater lakes sampled by floatplane during 1993 and 1994 is strongly correlated to varying hydroclimatic conditions across the region. Calculated catchment-weighted evaporation losses typically range from ∼10–15% in tundra areas draining into the Arctic Ocean to as high as 60% in forested subarctic areas draining to the Mackenzie River via Great Bear or Great Slave Lakes. Because of the diversity in drainage order and the ratio of catchment to surface area, lakes in the region may inherit as little as 30% to as much as 99% of their isotopic enrichment signal from upstream water bodies. Open-water evaporation generally decreases with increasing latitude and accounts for 5–50% of total evapotranspiration. Coupling of meteorological and isotopic data permits a novel assessment of regional evaporation-transpiration flux partitioning in the three major ecoclimatic zones (high-boreal forest, subarctic forest-tundra, and low-arctic shrub tundra), while the differing frequency distributions of lake water balance in these zones provides a new index of landscape-scale hydroclimatology that may have significant potential for investigating ongoing (or past) changes in response to high-latitude climate change.

Journal ArticleDOI
TL;DR: In this paper, the effects of a reduced Si:N uptake ratio by Antarctic phytoplankton on the marine silica cycle and atmospheric CO2 were investigated using a simple box model.
Abstract: [1] Using a simple box model, we investigate the effects of a reduced Si:N uptake ratio by Antarctic phytoplankton on the marine silica cycle and atmospheric pCO2. Recent incubation experiments demonstrate such a phenomenon in diatoms when iron is added [Hutchins and Bruland, 1998; Takeda, 1998; Franck et al., 2000]. The Southern Ocean may have supported diatoms with reduced Si:N uptake ratios compared to today during the dustier glacial times [Petit et al., 1999]. A similar reduction in the uptake ratio may be realized with an increased production of nondiatom phytoplankton such as Phaeocystis. Our model shows that reduced Si:N export ratios in the Southern Ocean create excess silicic acid, which may then be leaked out to lower latitudes. Any significant consumption of the excess silicic acid by diatoms that leads to an enhancement in their growth at the expense of coccolithophorids diminishes CaCO3 production and therefore diminishes the carbonate pump. In our box model the combination of a reduced carbonate pump and an open system carbonate compensation draw down steady state atmospheric CO2 from the interglacial 277 to 230–242 ppm, depending on where the excess silicic acid is consumed. By comparison, the atmospheric pCO2 sensitivity of general circulation models to carbonate pump forcing is ∼3.5–fold greater, which, combined with carbonate compensation, can account for peak glacial atmospheric pCO2. We discuss the importance of the initial rain ratio of CaCO3 to organic carbon on atmospheric pCO2 and relevant sedimentary records that support and constrain this “silicic acid leakage” scenario.

Journal ArticleDOI
TL;DR: In this article, a positive linear relationship between potential C sequestration and mean annual precipitation was found, which was extrapolated to estimate global CO 2 sequestration potential with rehabilitation of overgrazed grassland.
Abstract: [1] Excessive grazing pressure is detrimental to plant productivity and may lead to declines in soil organic matter. Soil organic matter is an important source of plant nutrients and can enhance soil aggregation, limit soil erosion, and can also increase cation exchange and water holding capacities, and is, therefore, a key regulator of grassland ecosystem processes. Changes in grassland management which reverse the process of declining productivity can potentially lead to increased soil C. Thus, rehabilitation of areas degraded by overgrazing can potentially sequester atmospheric C. We compiled data from the literature to evaluate the influence of grazing intensity on soil C. Based on data contained within these studies, we ascertained a positive linear relationship between potential C sequestration and mean annual precipitation which we extrapolated to estimate global C sequestration potential with rehabilitation of overgrazed grassland. The GLASOD and IGBP DISCover data sets were integrated to generate a map of overgrazed grassland area for each of four severity classes on each continent. Our regression model predicted losses of soil C with decreased grazing intensity in drier areas (precipitation less than 333 mm yr−1), but substantial sequestration in wetter areas. Most (93%) C sequestration potential occurred in areas with MAP less than 1800 mm. Universal rehabilitation of overgrazed grasslands can sequester approximately 45 Tg C yr−1, most of which can be achieved simply by cessation of overgrazing and implementation of moderate grazing intensity. Institutional level investments by governments may be required to sequester additional C.

Journal ArticleDOI
TL;DR: The physical and chemical processes that select for coccolithophorid blooms detected in Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color imagery are addressed and a rule of “universal distribution and local selection” is suggested: coccolitophorids can be considered cosmopolitan taxa, but their genetic plasticity provides physiological accommodation to local environmental selection pressure.
Abstract: Carbonates are the largest reservoirs of carbon on Earth. From mid-Mesozoic time, the biologically catalyzed precipitation of calcium carbonates by pelagic phytoplankton has been primarily due to the production of calcite by coccolithophorids. In this paper we address the physical and chemical processes that select for coccolithophorid blooms detected in Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color imagery. Our primary goal is to develop both diagnostic and prognostic models that represent the spatial and temporal dynamics of coccolithophorid blooms in order to improve our knowledge of the role of these organisms in mediating fluxes of carbon between the ocean, the atmosphere, and the lithosphere. On the basis of monthly composite images of classified coccolithophorid blooms and global climatological maps of physical variables and nutrient fields, we developed a probability density function that accounts for the physical chemical variables that predict the spatiotemporal distribution of coccolithophorids in the world oceans. Our analysis revealed that areas with sea surface temperatures (SST) between 3° and 15°C, a critical irradiance between 25 and 150 µmol quanta m-2 s-1, and decreasing nitrate concentrations (N/t < 0) are selective for upper ocean large-scale coccolithophorid blooms. While these conditions favor both Northern and Southern Hemisphere blooms of the most abundant coccolithophorid in the modern oceans, Emiliania huxleyi, the Northern and Southern Hemisphere populations of this organism are genetically distinct. Applying amplified fragment length polymorphism as a marker of genetic diversity, we identified two major taxonomic clades of E. huxleyi; one is associated with the Northern Hemisphere blooms, while the other is found in the Southern Hemisphere. We suggest a rule of “universal distribution and local selection”: that is, coccolithophorids can be considered cosmopolitan taxa, but their genetic plasticity provides physiological accommodation to local environmental selection pressure. Sea surface temperature, critical irradiance, and N/t were predicted for the years 2060–2070 using the NCAR Community Climate System Model to generate future monthly probability distributions of coccolithophorids based upon the relationships observed between the environmental variables and coccolithophorid blooms in modern oceans. Our projected probability distribution analysis suggests that in the North Atlantic, the largest habitat for coccolithophorids on Earth, the areal extent of blooms will decrease by up to 50% by the middle of this century. We discuss how the magnitude of carbon fluxes may be affected by the evolutionary success of coccolithophorids in future climate scenarios.

Journal ArticleDOI
TL;DR: In this article, a single-blind round-robin comparison of satellite primary productivity algorithms was conducted to determine the accuracy of the algorithms in predicting depth-integrated primary production from information amenable to remote sensing.
Abstract: [1] Results of a single-blind round-robin comparison of satellite primary productivity algorithms are presented. The goal of the round-robin exercise was to determine the accuracy of the algorithms in predicting depth-integrated primary production from information amenable to remote sensing. Twelve algorithms, developed by 10 teams, were evaluated by comparing their ability to estimate depth-integrated daily production (IP, mg C m−2) at 89 stations in geographically diverse provinces. Algorithms were furnished information about the surface chlorophyll concentration, temperature, photosynthetic available radiation, latitude, longitude, and day of the year. Algorithm results were then compared with IP estimates derived from 14C uptake measurements at the same stations. Estimates from the best-performing algorithms were generally within a factor of 2 of the 14C-derived estimates. Many algorithms had systematic biases that can possibly be eliminated by reparameterizing underlying relationships. The performance of the algorithms and degree of correlation with each other were independent of the algorithms’ complexity.

Journal ArticleDOI
TL;DR: In this paper, high-resolution N 2 O records from the European Project for Ice Coring in Antarctica (EPICA) Dome C Antarctic ice core were used to compare variations of the three most important greenhouse gases (after water vapor) without any uncertainty in their relative timing.
Abstract: [1] Nitrous oxide (N 2 O) concentration records exist for the last 1000 years and for time periods of rapid climatic changes like the transition from the last glacial to today's interglacial and for one of the fast climate variations during the last ice age. Little is known, however, about possible N 2 O variations during the more stable climate of the present interglacial (Holocene) spanning the last 11 thousand years. Here we fill this gap with a high-resolution N 2 O record measured along the European Project for Ice Coring in Antarctica (EPICA) Dome C Antarctic ice core. On the same ice we obtained high-resolution methane and carbon dioxide records. This provides the unique opportunity to compare variations of the three most important greenhouse gases (after water vapor) without any uncertainty in their relative timing. The CO 2 and CH 4 records are in good agreement with previous measurements on other ice cores. The N 2 O concentration started to decrease in the early Holocene and reached minimum values around 8 ka (<260 ppbv) before a slow increase to its preindustrial concentration of ∼265 ppbv.

Journal ArticleDOI
TL;DR: In this paper, the authors assess the extent to which particulate organic carbon (POC) transport to the ocean's interior can be predicted from primary production or export flux using a review of parameters derived from 14C uptake experiments, regional remote sensing, 234Th studies, nitrogen balances, and sediment trap records.
Abstract: [1] Carbon transport within sinking biogenic matter in the ocean contributes to the uptake of CO2 from the atmosphere. Here we assess the extent to which particulate organic carbon (POC) transport to the ocean’s interior can be predicted from primary production or export flux. Relationships between POC flux and depth are generally described by a uniform power law or rational decrease with depth, scaled to new or total primary production of POC. While these parameterizations of flux are used in most quantitative biogeochemical models, they are based on data sets from a limited geographic and depth range. We examine these relationships through a review of parameters derived from 14C uptake experiments, regional remote sensing, 234Th studies, nitrogen balances, and sediment trap records. Ocean regions considered include sites studied by the Joint Global Ocean Flux Study, Hawaii Ocean Time-series, and Bermuda Atlantic Time-series Study programs and involve observed and radiochemically corrected flux to depth. We demonstrate regional variability in the efficiency of the biological pump to transport organic carbon from surface waters to the ocean’s interior. Commonly applied flux relationships, while representative of some areas of the ocean, generally overestimate flux to depth. We estimate that the fraction of carbon transported as POC to depths greater than 1.5 km ranges between 0.10 and 8.8% (1.1% average) of primary production and between 0.28 and 30% (5.7% average) of export from the base of the euphotic zone. We develop empirical parameterizations of flux to depth using region-specific constants. Using a one-dimensional ocean model, we predict that the residence time of biogenic carbon may vary by up to 2 orders of magnitude depending on the regional efficiency of export and vertical transport.

Journal ArticleDOI
TL;DR: In this article, the atmospheric deposition of mercury (Hg) over the last 800-1000 years in both hemispheres was reconstructed using two different natural archiving media from remote locations.
Abstract: [1] Using two different natural archiving media from remote locations, we have reconstructed the atmospheric deposition of mercury (Hg) over the last 800–1000 years in both hemispheres. This effort was designed (1) to quantify the historical variation and distributional patterns of atmospheric Hg fluxes in the midlatitudes of North America at Nova Scotia (N.S.) and at a comparable midlatitude region in the Southern Hemisphere at New Zealand (N.S.), (2) to identify and quantify the influence of anthropogenic and natural Hg contributions to atmospheric Hg fluxes, (3) to further investigate the suitability and comparability of our two selected media (lake sediments and ombrotrophic peat) for Hg depositional reconstructions, and (4) to assess the relative importance of wet and dry deposition to the study areas. Significant findings from the study include the following: (1) The lake sediments examined appear to faithfully record the contemporary flux of Hg from the atmosphere (e.g., 1997: N.S. Lakes: approximately 8 ± 3 μg m−2 yr−1; N.S. Rain: 8 μg m−2 yr−1). The upper 10 cm (approximately 10 yr) of ombrotrophic peat cores from Nova Scotia were dated using a biological chronometer (Polytrichum) and were also consistent with the flux data provided by current direct sampling of precipitation. These observations place limits on the contribution of dry deposition (40 ± 50% of wet flux). Unfortunately, the peat samples could not be dated below 10 cm. This was due to the apparent diagenetic mobility of the geochronological tracer (210Pb). (2) There is no evidence of a significant enhancement in the atmospheric Hg flux as a result of preindustrial (<1900 c.e. (Common Era)) activities such as the extensive Au and Ag mining in the Americas. (3) A factor of 3 and 5x increase in the deposition of Hg to the lake sediment archives was observed since the advent of the industrial revolution in New Zealand and Nova Scotia respectively, suggesting a worldwide increase in the atmospheric deposition of Hg. Furthermore, this increase is synchronous with increases in the release of CO2 from combustion of fossil fuels on a global scale. The magnitude of increase since industrialization appears larger in Nova Scotia than in New Zealand. This may be due to enhanced deposition of Hg as a result of either regional emission of Hg or enhanced regional oxidation of Hg°.

Journal ArticleDOI
TL;DR: In this article, a carbon cycle model for the world of the end-Triassic was proposed, which emphasizes the chemical weathering of silicate and carbonate rocks and the ocean carbonate chemistry.
Abstract: [1] The end-Triassic mass extinctions represent one of the five most severe biotic crises in Earth history, yet remain one of the most enigmatic. Ongoing debate concerns the environmental effects of the Central Atlantic Magmatic Province (CAMP) eruptions and their linkage with the mass extinction event across the Triassic-Jurassic boundary. There is conflicting paleo-evidence for changes in atmospheric pCO2 during the extrusion of the CAMP basalts. Studies on sediments from European and Pacific localities have, however, identified a substantial negative isotopic anomaly (up to −3.5‰) across the TR-J boundary, providing an important indicator of changes in the operation of the ancient global carbon cycle. We sought to explain the paleo-evidence by utilizing a carbon cycle model for the “hothouse” world of the end-Triassic that emphasizes the chemical weathering of silicate and carbonate rocks and the ocean carbonate chemistry. We find that volcanic CO2 outgassing fails to fully account for either a sufficient rise in atmospheric pCO2 (indicated by the stomata of fossil leaves) or the sedimentary isotopic fingerprint. Instead, the scenario that best fits all of the geologic evidence is a positive feedback loop in which warming, due to a buildup of volcanically derived CO2, triggers destabilization of seafloor methane hydrates and the catastrophic release of CH4 [Palfy et al., 2001]. We calculate that this carbon cycle perturbation was huge, involving the release of ∼8000–9000 Gt C as CO2 during the CAMP basaltic eruptions and ∼5000 Gt C as CH4. In the model the initial isotopic excursion is assumed to take place over ∼70 kyr, while complete reequilibration of the ocean-atmosphere system with respect to CO2 is accomplished over 700–1000 kyr. Our results thus provide a preliminary theoretical explanation for the bioevents, estimated pCO2 changes, and isotopic excursions observed in marine and continental sediments at this time.

Journal ArticleDOI
TL;DR: In this article, the mass of methanol in the atmospheric reservoir, the annual mass flux from sources to sinks, and the estimated atmospheric lifetime of the free troposphere, marine boundary layer, continental boundary layer and in-cloud were evaluated.
Abstract: [1] Methanol is a biogeochemically active compound and a significant component of the volatile organic carbon in the atmosphere. It influences background tropospheric photochemistry and may serve as a tracer for biogenic emissions. The mass of methanol in the atmospheric reservoir, the annual mass flux of methanol from sources to sinks, and the estimated atmospheric lifetime of methanol in the free troposphere, marine boundary layer, continental boundary layer, and in-cloud, are evaluated. The atmosphere contains approximately 4 Tg (terragrams, 1012 g) of methanol. Estimates of global methanol sources and sinks total 340 and 270 Tg methanol yr−1, respectively, and are in balance given their estimated precision. Sink terms were evaluated using observed methanol distributions; the total loss is approximately a factor of 5 larger than prior estimates. The adopted source is a factor of 3 larger than its prior estimate. Recent net flux observations and the magnitude of the estimated sink suggest biogenic methanol emissions to be near their current estimated upper limit, >280 Tg methanol yr−1, and this value was adopted. The methanol source will be larger with the inclusion of an argued for oceanic gross emission of 30 Tg methanol yr−1, but a major uncertainty concerns whether the oceans are a major net sink or source of methanol, an issue which will not be resolved without new measurements. Other large uncertainties are the estimates of primary biogenic emissions and gas surface deposition. The first loss estimates of methanol by in-cloud chemistry and precipitation are presented. They are approximately equal at 10 Tg methanol yr−1, each. These are small in comparison to the surface loss and gas phase photochemical loss estimated here but would be significant additional losses in earlier budgets. Surface exchange processes dominate the atmospheric budget of methanol and its distribution. The atmospheric deposition of methanol and the argued for methanol produced in the upper ocean are ubiquitous sources of C1 substrate capable of sustaining methylotrophic organisms throughout the surface ocean.

Journal ArticleDOI
TL;DR: In this paper, the nanomorphology and chemical structure of soil organic carbon (SOC) from central European chernozems were characterized using high-resolution transmission electron microscopy, electron energy loss spectroscopy, micro Raman spectroscopic and radiocarbon dating.
Abstract: [1] A common paradigm is that chernozem soils developed in the Holocene under grassland steppes, with their formation largely determined by three factors, parent material, climate and faunal mixing. For European chernozems, however, pollen records show that steppes were rare. Here, using high-resolution transmission electron microscopy, electron energy loss spectroscopy, micro Raman spectroscopy and radiocarbon dating, we characterized the nanomorphology and chemical structure of soil organic carbon (SOC) from central European chernozems. We identified submicron remnants of burned biomass (15–45 percent of SOC), coexisting as amorphous char-black carbon (BC) derived from pyrolized cellulose or soot-BC. The BC was several millenia in age (1160–5040 carbon-14 years) and up to 3990 radiocarbon years older than bulk SOC, indicating significant residence times for BC in soils. These results challenge common paradigms on chernozem formation and add fire as an important novel factor. It is also clear that the role of fire in soil formation has been underestimated outside classical fire prone biomes. Furthermore, our results demonstrate the importance of quantifying BC in soils because of its large contribution, longevity and potential role in the global biogeochemical carbon cycle.

Journal ArticleDOI
TL;DR: In this paper, a simple empirical relationship that permits global-ocean monthly distributions of DMS concentration to be computed from a combination of remotely sensed biospheric data (chlorophyll a) and climatological geophysical data (mixed layer depth) was found.
Abstract: [1] Among the biosphere-atmosphere interactions that influence climate, the emission of dimethylsulfide (DMS) from the ocean plays a prominent role for its high potential in cloud albedo regulation. In order to advance in our understanding and quantification of this coupled ocean-atmosphere system, both synoptic and predictive capabilities must be largely improved. Hitherto, large-scale oceanic DMS has eluded being captured from remote sensing, correlated with synoptic variables, or simulated by mechanistic modeling. We have found a simple empirical relationship that permits global-ocean monthly distributions of DMS concentration to be computed from a combination of remotely sensed biospheric data (chlorophyll a) and climatological geophysical data (mixed layer depth). This relationship allows for the desired synopticity and predictability in the ocean-to-atmosphere sulfur flux, which we have globally quantified as 23–35 Tg S yr−1. Also, our algorithm stands in support of a biogenic-DMS/solar-radiation negative feedback and opens the door toward quantifying its strength and its response to global warming.