scispace - formally typeset
Search or ask a question

Showing papers in "Global Biogeochemical Cycles in 2009"


Journal ArticleDOI
TL;DR: In this article, the authors reported a new estimate of the carbon pools in soils of the northern permafrost region, including deeper layers and pools not accounted for in previous analyses.
Abstract: of all soils in the northern permafrost region is approximately 18,782 � 10 3 km 2 ,o r approximately 16% of the global soil area. In the northern permafrost region, organic soils (peatlands) and cryoturbated permafrost-affected mineral soils have the highest mean soil organic carbon contents (32.2–69.6 kg m �2 ). Here we report a new estimate of the carbon pools in soils of the northern permafrost region, including deeper layers and pools not accounted for in previous analyses. Carbon pools were estimated to be 191.29 Pg for the 0–30 cm depth, 495.80 Pg for the 0–100 cm depth, and 1024.00 Pg for the 0–300 cm depth. Our estimate for the first meter of soil alone is about double that reported for this region in previous analyses. Carbon pools in layers deeper than 300 cm were estimated to be 407 Pg in yedoma deposits and 241 Pg in deltaic deposits. In total, the northern permafrost region contains approximately 1672 Pg of organic carbon, of which approximately 1466 Pg, or 88%, occurs in perennially frozen soils and deposits. This 1672 Pg of organic carbon would account for approximately 50% of the estimated global belowground organic carbon pool.

2,130 citations


Journal ArticleDOI
TL;DR: In this article, the Millennium Ecosystem Assessment scenarios for 2000 to 2050 describe contrasting future developments in agricultural land use under changing climate, and show that even with rapidly increasing agricultural efficiency, the global N balance, ammonia, leaching and denitrification loss will not decrease from their current levels even in the most optimistic scenario.
Abstract: [1] The Millennium Ecosystem Assessment scenarios for 2000 to 2050 describe contrasting future developments in agricultural land use under changing climate. Differences are related to the total crop and livestock production and the efficiency of nutrient use in agriculture. The scenarios with a reactive approach to environmental problems show increases in agricultural N and P soil balances in all developing countries. In the scenarios with a proactive attitude, N balances decrease and P balances show no change or a slight increase. In Europe and North America, the N balance will decline in all scenarios, most strongly in the environment-oriented scenarios; the P balance declines (proactive) or increases slowly (reactive approach). Even with rapidly increasing agricultural efficiency, the global N balance, ammonia, leaching and denitrification loss will not decrease from their current levels even in the most optimistic scenario. Soil P depletion seems to be a major problem in large parts of the global grassland area.

481 citations


Journal ArticleDOI
TL;DR: Fenton et al. as mentioned in this paper synthesize estimates of the contemporary net air-sea CO2 flux on the basis of an inversion of interior ocean carbon observations using a suite of 10 ocean general circulation models and compare them to estimates based on a new climatology of the airsea difference of the partial pressure of CO2 (pCO2) (Takahashi et al., 2008).
Abstract: We synthesize estimates of the contemporary net air-sea CO2 flux on the basis of an inversion of interior ocean carbon observations using a suite of 10 ocean general circulation models (Mikaloff Fletcher et al., 2006, 2007) and compare them to estimates based on a new climatology of the air-sea difference of the partial pressure of CO2 (pCO2) (Takahashi et al., 2008). These two independent flux estimates reveal a consistent description of the regional distribution of annual mean sources and sinks of atmospheric CO2 for the decade of the 1990s and the early 2000s with differences at the regional level of generally less than 0.1 Pg C a−1. This distribution is characterized by outgassing in the tropics, uptake in midlatitudes, and comparatively small fluxes in thehigh latitudes. Both estimates point toward a small (∼ −0.3 Pg C a−1) contemporary CO2 sink in the Southern Ocean (south of 44°S), a result of the near cancellation between a substantial outgassing of natural CO2 and a strong uptake of anthropogenic CO2. A notable exception in the generally good agreement between the two estimates exists within the Southern Ocean: the ocean inversion suggests a relatively uniform uptake, while the pCO2-based estimate suggests strong uptake in the region between 58°S and 44°S, and a source in the region south of 58°S. Globally and for a nominal period between 1995 and 2000, the contemporary net air-sea flux of CO2 is estimated to be −1.7 ± 0.4 Pg C a−1 (inversion) and −1.4 ± 0.7 Pg C a−1 (pCO2-climatology), respectively, consisting of an outgassing flux of river-derived carbon of ∼+0.5 Pg C a−1, and an uptake flux of anthropogenic carbon of −2.2 ± 0.3 Pg C a−1 (inversion) and −1.9 ± 0.7 Pg C a−1 (pCO2-climatology). The two flux estimates also imply a consistent description of the contemporary meridional transport of carbon with southward ocean transport throughout most of the Atlantic basin, and strong equatorward convergence in the Indo-Pacific basins. Both transport estimates suggest a small hemispheric asymmetry with a southward transport of between −0.2 and −0.3 Pg C a−1 across the equator. While the convergence of these two independent estimates is encouraging and suggests that it is now possible to provide relatively tight constraints for the net air-sea CO2 fluxes at the regional basis, both studies are limited by their lack of consideration of long-term changes in the ocean carbon cycle, such as the recent possible stalling in the expected growth of the Southern Ocean carbon sink.

469 citations


Journal ArticleDOI
TL;DR: In this article, half-hourly measurements of the net exchanges of carbon dioxide and water vapor between terrestrial ecosystems and the atmosphere provide estimates of gross primary production (GPP) and evapotranspiration (ET) at the ecosystem level and on daily to annual timescales.
Abstract: Half-hourly measurements of the net exchanges of carbon dioxide and water vapor between terrestrial ecosystems and the atmosphere provide estimates of gross primary production (GPP) and evapotranspiration (ET) at the ecosystem level and on daily to annual timescales. The ratio of these quantities represents ecosystem water use efficiency. Its multiplication with mean daylight vapor pressure deficit (VPD) leads to a quantity which we call “inherent water use efficiency” (IWUE*). The dependence of IWUE* on environmental conditions indicates possible adaptive adjustment of ecosystem physiology in response to a changing environment. IWUE* is analyzed for 43 sites across a range of plant functional types and climatic conditions. IWUE* increases during short-term moderate drought conditions. Mean annual IWUE* varied by a factor of 3 among all sites. This is partly explained by soil moisture at field capacity, particularly in deciduous broad-leaved forests. Canopy light interception sets the upper limits to canopy photosynthesis, and explains half the variance in annual IWUE* among herbaceous ecosystems and evergreen needle-leaved forests. Knowledge of IWUE* offers valuable improvement to the representation of carbon and water coupling in ecosystem process models

399 citations


Journal ArticleDOI
TL;DR: In this article, the authors present methylated (MeHg and dimethylmercury (Me2Hg) and total Hg concentrations from 16 hydrographic stations in the eastern North Pacific Ocean.
Abstract: [1] Fish harvested from the Pacific Ocean are a major contributor to human methylmercury (MeHg) exposure. Limited oceanic mercury (Hg) data, particularly MeHg, has confounded our understanding of linkages between sources, methylation sites, and concentrations in marine food webs. Here we present methylated (MeHg and dimethylmercury (Me2Hg)) and total Hg concentrations from 16 hydrographic stations in the eastern North Pacific Ocean. We use these data in combination with information from previous cruises and coupled atmospheric-oceanic modeling results to better understand controls on Hg concentrations, distribution, and bioavailability. Total Hg concentrations (average 1.14 ± 0.38 pM) are elevated relative to previous cruises. Modeling results agree with observed increases and suggest that at present atmospheric Hg deposition rates, basin-wide Hg concentrations will double relative to circa 1995 by 2050. Methylated Hg accounts for up to 29% of the total Hg in subsurface waters (average 260 ± 114 fM). We observed lower ambient methylated Hg concentrations in the euphotic zone and older, deeper water masses, which likely result from decay of MeHg and Me2Hg when net production is not occurring. We found a significant, positive linear relationship between methylated Hg concentrations and rates of organic carbon remineralization (r2 = 0.66, p < 0.001). These results provide evidence for the importance of particulate organic carbon (POC) transport and remineralization on the production and distribution of methylated Hg species in marine waters. Specifically, settling POC provides a source of inorganic Hg(II) to microbially active subsurface waters and can also provide a substrate for microbial activity facilitating water column methylation.

394 citations


Journal ArticleDOI
TL;DR: In this article, the authors developed a dynamic land model (LM3V) able to simulate ecosystem dynamics and exchanges of water, energy, and CO2 between land and atmosphere, which is specifically designed to address the consequences of land use and land management changes including cropland and pasture dynamics, shifting cultivation, logging, fire, and resulting patterns of secondary regrowth.
Abstract: [1] We have developed a dynamic land model (LM3V) able to simulate ecosystem dynamics and exchanges of water, energy, and CO2 between land and atmosphere. LM3V is specifically designed to address the consequences of land use and land management changes including cropland and pasture dynamics, shifting cultivation, logging, fire, and resulting patterns of secondary regrowth. Here we analyze the behavior of LM3V, forced with the output from the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric model AM2, observed precipitation data, and four historic scenarios of land use change for 1700–2000. Our analysis suggests a net terrestrial carbon source due to land use activities from 1.1 to 1.3 GtC/a during the 1990s, where the range is due to the difference in the historic cropland distribution. This magnitude is substantially smaller than previous estimates from other models, largely due to our estimates of a secondary vegetation sink of 0.35 to 0.6 GtC/a in the 1990s and decelerating agricultural land clearing since the 1960s. For the 1990s, our estimates for the pastures' carbon flux vary from a source of 0.37 to a sink of 0.15 GtC/a, and for the croplands our model shows a carbon source of 0.6 to 0.9 GtC/a. Our process-based model suggests a smaller net deforestation source than earlier bookkeeping models because it accounts for decelerated net conversion of primary forest to agriculture and for stronger secondary vegetation regrowth in tropical regions. The overall uncertainty is likely to be higher than the range reported here because of uncertainty in the biomass recovery under changing ambient conditions, including atmospheric CO2 concentration, nutrients availability, and climate.

354 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used the Tier 1 method described in the 2006 IPCC guidelines to estimate the global CH 4 emissions from rice fields and found that if all of the continuously flooded rice fields were drained at least once during the growing season, the emissions would be reduced by 4.1 Tg a -1.
Abstract: [1] The Intergovernmental Panel on Climate Change (IPCC) regularly publishes guidelines for national greenhouse gas inventories and methane emission (CH 4 ) from rice paddies has been an important component of these guidelines. While there have been many estimates of global CH 4 emissions from rice fields, none of them have been obtained using the IPCC guidelines. Therefore, we used the Tier 1 method described in the 2006 IPCC guidelines to estimate the global CH 4 emissions from rice fields. To accomplish this, we used country-specific statistical data regarding rice harvest areas and expert estimates of relevant agricultural activities. The estimated global emission for 2000 was 25.6 Tg a -1 , which is at the lower end of earlier estimates and close to the total emission summarized by individual national communications. Monte Carlo simulation revealed a 95% uncertainty range of 14.8-41.7 Tg a -1 ; however, the estimation uncertainty was found to depend on the reliability of the information available regarding the amount of organic amendments and the area of rice fields that were under continuous flooding. We estimated that if all of the continuously flooded rice fields were drained at least once during the growing season, the CH 4 emissions would be reduced by 4.1 Tg a -1 . Furthermore, we estimated that applying rice straw off season wherever and whenever possible would result in a further reduction in emissions of 4.1 Tg a -1 globally. Finally, if both of these mitigation options were adopted, the global CH 4 emission from rice paddies could be reduced by 7.6 Tg a -1 . Although draining continuously flooded rice fields may lead to an increase in nitrous oxide (N 2 O) emission, the global warming potential resulting from this increase is negligible when compared to the reduction in global warming potential that would result from the CH 4 reduction associated with draining the fields.

350 citations


Journal ArticleDOI
TL;DR: In this article, the authors present estimates for global N and P emissions from sewage for the period 1970-2050 for the four Millennium Ecosystem Assessment scenarios, using country-specific projections for population and economic growth, urbanization, development of sewage systems, and wastewater treatment installations.
Abstract: [1] This paper presents estimates for global N and P emissions from sewage for the period 1970–2050 for the four Millennium Ecosystem Assessment scenarios. Using country-specific projections for population and economic growth, urbanization, development of sewage systems, and wastewater treatment installations, a rapid increase in global sewage emissions is predicted, from 6.4 Tg of N and 1.3 Tg of P per year in 2000 to 12.0–15.5 Tg of N and 2.4–3.1 Tg of P per year in 2050. While North America (strong increase), Oceania (moderate increase), Europe (decrease), and North Asia (decrease) show contrasting developments, in the developing countries, sewage N and P discharge will likely increase by a factor of 2.5 to 3.5 between 2000 and 2050. This is a combined effect of increasing population, urbanization, and development of sewage systems. Even in optimistic scenarios for the development of wastewater treatment systems, global N and P flows are not likely to decline.

345 citations


Journal ArticleDOI
TL;DR: In this article, the authors enhanced the LPJ dynamic global vegetation model by introducing processes necessary to simulate permafrost dynamics, peatland hydrology, and peat land vegetation.
Abstract: Received 25 October 2008; revised 3 April 2009; accepted 7 May 2009; published 22 August 2009. [1] Northern peatlands and permafrost soils are associated with large carbon stocks. Rising temperatures are likely to affect the carbon balance in high-latitude ecosystems, but to what degree is uncertain. We have enhanced the Lund-Potsdam-Jena (LPJ) dynamic global vegetation model by introducing processes necessary to simulate permafrost dynamics, peatland hydrology, and peatland vegetation. The new version, LPJ-WHy v1.2, was used to study soil temperature, active layer depth, permafrost distribution, and water table position. Modeled soil temperatures agreed well with observations, apart from a Siberian site where the soil is insulated by an extensive shrub layer. Water table positions were generally in the range of observations, with some exceptions. Simulated active layer depth showed a mean absolute error of 44 cm when compared to observations, but the error was reduced to 25 cm when the soil type for seven sites was manually corrected to mirror local conditions. A sensitivity test, in which temperature and precipitation were varied independently, showed that soil temperatures and active layer depths increased more under higher temperatures when precipitation was increased at the same time. The sensitivity experiment suggested persisting wet conditions in peatlands even under temperature increases of up to 9C as long as annual precipitation is allowed to increase with temperature to the extent indicated by climate model experiments.

246 citations


Journal ArticleDOI
TL;DR: In this paper, a global mass balance model of the biologically active part of the modern Si cycle is derived on the basis of a systematic review of existing data regarding terrestrial and oceanic production fluxes, reservoir sizes, and residence times for dissolved silicate (DSi) and bSiO(2).
Abstract: Silicon (Si), in the form of dissolved silicate (DSi), is a key nutrient in marine and continental ecosystems. DSi is taken up by organisms to produce structural elements (e.g., shells and phytoliths) composed of amorphous biogenic silica (bSiO(2)). A global mass balance model of the biologically active part of the modern Si cycle is derived on the basis of a systematic review of existing data regarding terrestrial and oceanic production fluxes, reservoir sizes, and residence times for DSi and bSiO(2). The model demonstrates the high sensitivity of biogeochemical Si cycling in the coastal zone to anthropogenic pressures, such as river damming and global temperature rise. As a result, further significant changes in the production and recycling of bSiO(2) in the coastal zone are to be expected over the course of this century.

242 citations


Journal ArticleDOI
TL;DR: In this paper, a high-detail reconstruction of anthropogenic land cover change (ALCC) as the only forcing to the climate system with two goals: (1) to isolate the effects of ALCC on the carbon cycle and the climate independently of any other natural and anthropogenic disturbance and (2) to assess the importance of preindustrial human activities.
Abstract: [1] Transient simulations are performed over the entire last millennium with a general circulation model that couples the atmosphere, ocean, and the land surface with a closed carbon cycle. This setup applies a high-detail reconstruction of anthropogenic land cover change (ALCC) as the only forcing to the climate system with two goals: (1) to isolate the effects of ALCC on the carbon cycle and the climate independently of any other natural and anthropogenic disturbance and (2) to assess the importance of preindustrial human activities. With ALCC as only forcing, the terrestrial biosphere experiences a net loss of 96 Gt C over the last millennium, leading to an increase of atmospheric CO2 by 20 ppm. The biosphere-atmosphere coupling thereby leads to a restoration of 37% and 48% of the primary emissions over the industrial (A.D. 1850–2000) and the preindustrial period (A.D. 800–1850), respectively. Because of the stronger coupling flux over the preindustrial period, only 21% of the 53 Gt C preindustrial emissions remain airborne. Despite the low airborne fraction, atmospheric CO2 rises above natural variability by late medieval times. This suggests that human influence on CO2 began prior to industrialization. Global mean temperatures, however, are not significantly altered until the strong population growth in the industrial period. Furthermore, we investigate the effects of historic events such as epidemics and warfare on the carbon budget. We find that only long-lasting events such as the Mongol invasion lead to carbon sequestration. The reason for this limited carbon sequestration is indirect emissions from past ALCC that compensate carbon uptake in regrowing vegetation for several decades. Drops in ice core CO2 are thus unlikely to be attributable to human action. Our results indicate that climate-carbon cycle studies for present and future centuries, which usually start from an equilibrium state around 1850, start from a significantly disturbed state of the carbon cycle.

Journal ArticleDOI
TL;DR: In this article, the stocks and flows of the global silver, aluminum, chromium, copper, iron, nickel, lead, and zinc cycles quantify over 98% of the total mass of metal mobilized by human activity at the turn of the 21st century.
Abstract: [1] The stocks and flows of the global silver, aluminum, chromium, copper, iron, nickel, lead, and zinc cycles quantify over 98% of the total mass of metal mobilized by human activity at the turn of the 21st century. Iron and aluminum, representing >95% by mass of all metals mined, are for the first time assessed for global anthropogenic emissions to air, water, and land. Anthropogenic activity has significantly perturbed Earth's natural biogeochemical cycles, attested by the “grand nutrient” cycles of carbon, nitrogen, phosphorous, and sulfur and further revealed here by the “anthrobiogeochemical” cycles of metals. We demonstrate that humans today mobilize about half the metal mass of these global elemental metal cycles.

Journal ArticleDOI
TL;DR: In this article, the authors examine the interplay between ecology and biogeochemical cycles in the context of a global three-dimensional ocean model where self-assembling phytoplankton communities emerge from a wide set of potentially viable cell types.
Abstract: [1] We examine the interplay between ecology and biogeochemical cycles in the context of a global three-dimensional ocean model where self-assembling phytoplankton communities emerge from a wide set of potentially viable cell types. We consider the complex model solutions in the light of resource competition theory. The emergent community structures and ecological regimes vary across different physical environments in the model ocean: Strongly seasonal, high-nutrient regions are dominated by fast growing bloom specialists, while stable, low-seasonality regions are dominated by organisms that can grow at low nutrient concentrations and are suited to oligotrophic conditions. In the latter regions, the framework of resource competition theory provides a useful qualitative and quantitative diagnostic tool with which to interpret the outcome of competition between model organisms, their regulation of the resource environment, and the sensitivity of the system to changes in key physiological characteristics of the cells.

Journal ArticleDOI
TL;DR: The results suggest mesoscale physical forcing may comprise an important control on variability in N 2 fixation and diazotroph community structure in the central North Pacific subtropical gyre (NPSG).
Abstract: [1] Dinitrogen (N 2 ) fixing microorganisms (termed diazotrophs) exert important control on the ocean carbon cycle. However, despite increased awareness on the roles of these microorganisms in ocean biogeochemistry and ecology, the processes controlling variability in diazotroph distributions, abundances, and activities remain largely unknown. In this study, we examine 3 years (2004-2007) of approximately monthly measurements of upper ocean diazotroph community structure and rates of N 2 fixation at Station ALOHA (22°45'N, 158°W), the field site for the Hawaii Ocean Time-series program in the central North Pacific subtropical gyre (NPSG). The structure of the N 2 -fixing microorganism assemblage varied widely in time with unicellular N 2 -fixing microorganisms frequently dominating diazotroph abundances in the late winter and early spring, while filamentous microorganisms (specifically various heterocyst-forming cyanobacteria and Trichodesmium spp.) fluctuated episodically during the summer. On average, a large fraction (∼80%) of the daily N 2 fixation was partitioned into the biomass of <10 μm microorganisms. Rates of N 2 fixation were variable in time, with peak N 2 fixation frequently coinciding with periods when heterocystous N 2 -fixing cyanobacteria were abundant. During the summer months when sea surface temperatures exceeded 25.2°C and concentrations of nitrate plus nitrite were at their annual minimum, rates of N 2 fixation often increased during periods of positive sea surface height anomalies, as reflected in satellite altimetry. Our results suggest mesoscale physical forcing may comprise an important control on variability in N 2 fixation and diazotroph community structure in the NPSG.

Journal ArticleDOI
TL;DR: In this article, the authors evaluated how climate change, rising atmospheric CO 2 concentration, and land use change influenced the terrestrial carbon (C) cycle for the last century using a process-based ecosystem model.
Abstract: [1] We evaluated how climate change, rising atmospheric CO 2 concentration, and land use change influenced the terrestrial carbon (C) cycle for the last century using a process-based ecosystem model. Over the last century, the modeled land use change emitted about 129 Pg of C to the atmosphere. About 76% (or 98 Pg C) of this emission, however, was offset by net C uptake on land driven by climate changes and rising atmospheric CO 2 concentration. Thus, the modeled net release of C from the terrestrial ecosystems to the atmosphere from 1901 to 2002 is about 31 Pg C. Global net primary productivity (NPP) has significantly increased by 14% during the last century, especially since the 1970s. From 1980 to 2002, global NPP increased with an average increase rate of 0.4% yr ―1 . At global scale, such an increase seems to be primarily attributed to the increase in atmospheric CO 2 concentration, and then to precipitation change. Over the last 2 decades, climate change and rising CO 2 forced the land carbon sink (1.6 Pg C yr ―1 for 1980s and 2.2 Pg C yr ―1 for 1990s) to be larger than land use change driven carbon emissions (1.0 Pg C yr ―1 for 1980s and 1.2 Pg C yr ―1 for 1990s), resulting a net land sink of 0.5 Pg C yr ―1 in the 1980s and of 1.0 Pg C yr ―1 in the 1990s. The largest C emission from land use change appeared in tropical regions with an average emission of 0.6 Pg C yr ―1 in 1980s and 0.7 Pg C yr ―1 in 1990s, which is slightly larger than net carbon uptake due to CO 2 fertilization and climate change. Thus, net carbon balance of tropical lands is close to neutral over the past 2 decades (about 0.13 Pg C yr ―1 in 1980s and 0.03 Pg C yr ―1 in 1990s). We also found that current global warming has already started accelerating C loss from terrestrial ecosystems, by enhanced decomposition of soil organic carbon. In response to warming trends only, the global net carbon uptake significantly decreased, offsetting about 70% of the increase in global net carbon uptake owing to CO 2 fertilization during 1980―2002. The global terrestrial C cycle also shows large year-to-year variations, and different regions have quite distinct dominant drivers. Generally, interannual changes of carbon fluxes in tropical and temperate ecosystems are mainly explained by precipitation variability, while temperature variability plays a major role in boreal ecosystems.

Journal ArticleDOI
TL;DR: Biogenic dissolution of carbonates by euendoliths in coral reefs may be a dominant mechanism of carbonate dissolution in a more acidic ocean.
Abstract: [1] Eight-month-old blocks of the coral Porites lobata colonized by natural Hawaiian euendolithic and epilithic communities were experimentally exposed to two different aqueous pCO2 treatments, 400 ppmv and 750 ppmv, for 3 months. The chlorophyte Ostreobium quekettii dominated communities at the start and at the end of the experiment (65–90%). There were no significant differences in the relative abundance of euendolithic species, nor were there any differences in bioeroded area at the surface of blocks (27%) between pCO2 treatments. The depth of penetration of filaments of O. quekettii was, however, significantly higher under 750 ppmv (1.4 mm) than under 400 ppmv (1 mm). Consequently, rates of carbonate dissolution measured under elevated pCO2 were 48% higher than under ambient pCO2 (0.46 kg CaCO3 dissolved m−2 a−1 versus 0.31 kg m−2 a−1). Thus, biogenic dissolution of carbonates by euendoliths in coral reefs may be a dominant mechanism of carbonate dissolution in a more acidic ocean.

Journal ArticleDOI
TL;DR: In this paper, the authors report the most comprehensive suite of biogeochemical iron budgets to date for three contrasting sites in subantarctic and polar frontal waters south of Australia.
Abstract: [1] Climate change is projected to significantly alter the delivery (stratification, boundary currents, aridification of landmasses, glacial melt) of iron to the Southern Ocean. We report the most comprehensive suite of biogeochemical iron budgets to date for three contrasting sites in subantarctic and polar frontal waters south of Australia. Distinct regional environments were responsible for differences in the mode and strength of iron supply mechanisms, with higher iron stocks and fluxes observed in surface northern subantarctic waters, where atmospheric iron fluxes were greater. Subsurface waters southeast of Tasmania were also enriched with particulate iron, manganese and aluminum, indicative of a strong advective source from shelf sediments. Subantarctic phytoplankton blooms are thus driven by both seasonal iron supply from southward advection of subtropical waters and by wind-blown dust deposition, resulting in a strong decoupling of iron and nutrient cycles. We discuss the broader global significance our iron budgets for other ocean regions sensitive to climate-driven changes in iron supply.

Journal ArticleDOI
TL;DR: In this paper, the authors quantify the effect of major environmental variables affected by global climate change on CH4 fluxes in the Alaskan Arctic and find that CH4 emissions are not driven by net ecosystem exchange (NEE) and are not limited by labile carbon supply.
Abstract: [1] Much of the 191.8 Pg C in the upper 1 m of Arctic soil of Arctic soil organic mater is, or is at risk of, being released to the atmosphere as CO2 and/or CH4. Global warming will further alter the rate of emission of these gases to the atmosphere. Here we quantify the effect of major environmental variables affected by global climate change on CH4 fluxes in the Alaskan Arctic. Soil temperature best predicts CH4 fluxes and explained 89% of the variability in CH4 emissions. Water table depth has a nonlinear impact on CH4 efflux. Increasing water table height above the surface retards CH4 efflux. Decreasing water table depth below the surface has a minor effect on CH4 release once an aerobic layer is formed at the surface. In contrast with several other studies, we found that CH4 emissions are not driven by net ecosystem exchange (NEE) and are not limited by labile carbon supply.

Journal ArticleDOI
TL;DR: In this article, the authors examined the patterns in carbon dioxide partial pressure (pCO2) measured in a number of small boreal streams (<5 km in length) in the northwestern boreal region of Quebec during the ice-free season and compare these to the patterns found in a major river (Eastmain River) and in a tributary in the same region.
Abstract: [1] Here we examine the patterns in carbon dioxide partial pressure (pCO2) measured in a number of small boreal streams (<5 km in length) in the northwestern boreal region of Quebec during the ice-free season and compare these to the patterns found in a major river (Eastmain River) and in a tributary in the same region. All systems were consistently supersaturated in CO2 (range 450 to 5000 μatm) streams having both higher (mean 1850 μatm) and more variable pCO2 than that of rivers (range 550 to 800 μatm). Stream pCO2 was positively related to DOC concentration and stream segment length, both suggesting a direct influence of the surrounding landscape. Calculated stream water-air CO2 fluxes ranged from 700 to over 3000 mg C m−2 d−1, up to 2 orders of magnitude higher than those measured in large rivers and lakes of the same region. Small streams, despite their extremely reduced areal coverage (1% of the aquatic surface), accounted for 25% of the total aquatic C emissions, and the resulting areal stream fluxes were comparable to those measured in different soils or wetlands in the region.

Journal ArticleDOI
TL;DR: The LPJ-WHy v1.2 model as discussed by the authors was used to simulate net ecosystem production (NEP), net primary production, heterotrophic respiration (HR), and soil carbon content.
Abstract: [1] Peatlands and permafrost are important components of the carbon cycle in the northern high latitudes. The inclusion of these components into a dynamic global vegetation model required changes to physical land surface routines, the addition of two new peatland-specific plant functional types, incorporation of an inundation stress mechanism, and deceleration of decomposition under inundation. The new model, LPJ-WHy v1.2, was used to simulate net ecosystem production (NEP), net primary production (NPP), heterotrophic respiration (HR), and soil carbon content. Annual peatland NEP matches observations even though the seasonal amplitude is overestimated. This overestimation is caused by excessive NPP values, probably due to the lack of nitrogen or phosphorus limitation in LPJ-WHy. Introduction of permafrost reduces circumpolar (45–90N) NEP from 1.65 to 0.96 Pg C a � 1 and leads to an increase in soil carbon content of almost 40 Pg C; adding peatlands doubles this soil carbon increase. Peatland soil carbon content and hence HR depend on model spin-up duration and are crucial for simulating NEP. These results highlight the need for a regional peatland age map to help determine spin-up times. A sensitivity experiment revealed that under future climate conditions, NPP may rise more rapidly than HR resulting in increases in NEP.

Journal ArticleDOI
TL;DR: A combination of 15N2 labeling, Tyramide Signal Amplification–Fluorescent in Situ Hybridization (TSA-FISH) assay, and chemical analyses were performed along a trophic gradient in the equatorial Pacific, finding a clear longitudinal pattern of niche partitioning between diazotroph groups.
Abstract: A combination of 15N2 labeling, Tyramide Signal Amplification–Fluorescent in Situ Hybridization (TSA-FISH) assay, and chemical analyses were performed along a trophic gradient (8000 km) in the equatorial Pacific. Nitrogen fixation rates were low (0.06 ± 0.02 to 2.8 ± 2.1 nmol L−1 d−1) in HNLC waters, higher in the warm pool (0.11 ± 0.0 to 18.2 ± 2.8 nmol L−1 d−1), and extremely high close to Papua New Guinea (38 ± 9 to 610 ± 46 nmol L−1 d−1). Rates attributed to the 10-μm fraction, leading to a possible overestimation of this fraction to total N2 fixation. In oceanic waters, 98% of the unicellular diazotrophs were picoplanktonic. Finally, we found a clear longitudinal pattern of niche partitioning between diazotroph groups: while unicellular diazotrophs were present all along the transect, Trichodesmium spp. were detected only in coastal waters, where nitrogen fixation associated to both size fractions was greatly stimulated.

Journal ArticleDOI
TL;DR: It is demonstrated that soils worldwide possess a similar innate capacity to rapidly mineralize amino acids, and the view that the conversion of high molecular weight organic matter to low MW compounds is the rate limiting step in organic matter breakdown in most ecosystems is supported.
Abstract: [1] Understanding and accurately predicting the fate of carbon and nitrogen in the terrestrial biosphere remains a central goal in ecosystem science. Amino acids represent a key pool of C and N in soil, and their availability to plants and microorganisms has been implicated as a major driver in regulating ecosystem functioning. Because of potential differences in biological diversity and litter quality, it has been thought that soils from different latitudes and plant communities may possess intrinsically different capacities to perform key functions such as the turnover of amino acids. In this study we measured the soil solution concentration and microbial mineralization of amino acids in soils collected from 40 latitudinal points from the Arctic through to Antarctica. Our results showed that soil solution amino acid concentrations were relatively similar between sites and not strongly related to latitude. In addition, when constraints of temperature and moisture were removed, we demonstrate that soils worldwide possess a similar innate capacity to rapidly mineralize amino acids. Similarly, we show that the internal partitioning of amino acid-C into catabolic and anabolic processes is conservative in microbial communities and independent of global position. This supports the view that the conversion of high molecular weight (MW) organic matter to low MW compounds is the rate limiting step in organic matter breakdown in most ecosystems.

Journal ArticleDOI
TL;DR: In this article, internal and externally forced variability in oceanic oxygen (O2) were investigated on different spatiotemporal scales using a six-member ensemble from the National Center for Atmospheric Research CSM1.4-carbon coupled climate model.
Abstract: Internal and externally forced variability in oceanic oxygen (O2) are investigated on different spatiotemporal scales using a six-member ensemble from the National Center for Atmospheric Research CSM1.4-carbon coupled climate model. The oceanic O2 inventory is projected to decrease significantly in global warming simulations of the 20th and 21st centuries. The anthropogenically forced O2 decrease is partly compensated by volcanic eruptions, which cause considerable interannual to decadal variability. Volcanic perturbations in oceanic oxygen concentrations gradually penetrate the ocean's top 500 m and persist for several years. While well identified on global scales, the detection and attribution of local O2 changes to volcanic forcing is difficult because of unforced variability. Internal climate modes can substantially contribute to surface and subsurface O2 variability. Variability in the North Atlantic and North Pacific are associated with changes in the North Atlantic Oscillation and Pacific Decadal Oscillation indexes. Simulated decadal variability compares well with observed O2 changes in the North Atlantic, suggesting that the model captures key mechanisms of late 20th century O2 variability, but the model appears to underestimate variability in the North Pacific. Our results suggest that large interannual to decadal variations and limited data availability make the detection of human-induced O2 changes currently challenging.

Journal ArticleDOI
TL;DR: In this paper, the authors found that lateral fluxes overwhelm vertical inputs and vertical export from the water column and support significant phytoplankton blooms in the offshore regions of the Drake Passage.
Abstract: water entrainment while Fe/ 228 Ra ratios were used to calculate the Fe flux. In the summer of 2006 we found rapid mixing and significant lateral iron export, namely, a dissolved iron flux of 1.1 � 10 5 mol d � 1 and total acid leachable iron flux of 1.1 � 10 6 mol d � 1 all of which is transported in the mixed layer from the shelf region offshore. This dissolved iron flux is significant, especially considering that the bloom observed in the offshore region (0.5–2 mg chl a m � 3 ) had an iron demand of 1.1 to 4 � 10 5 mol Fe. Net vertical export fluxes of particulate Fe derived from 234 Th/ 238 U disequilibrium and Fe/ 234 Th ratios accounted for only about 25% of the dissolved iron flux. On the other hand, vertical upward mixing of iron rich deeper waters provided only 7% of the lateral dissolved iron flux. We found that similarly to other studies in iron-fertilized regions of the Southern Ocean, lateral fluxes overwhelm vertical inputs and vertical export from the water column and support significant phytoplankton blooms in the offshore regions of the Drake Passage.

Journal ArticleDOI
TL;DR: In this paper, transient sensitivity studies with the Biogeochemical Elemental Cycling (BEC) ocean model to increasing anthropogenic atmospheric inorganic nitrogen (N) and soluble iron (Fe) deposition over the industrial era are presented.
Abstract: [1] We present results from transient sensitivity studies with the Biogeochemical Elemental Cycling (BEC) ocean model to increasing anthropogenic atmospheric inorganic nitrogen (N) and soluble iron (Fe) deposition over the industrial era. Elevated N deposition results from fossil fuel combustion and agriculture, and elevated soluble Fe deposition results from increased atmospheric processing in the presence of anthropogenic pollutants and soluble Fe from combustion sources. Simulations with increasing Fe and increasing Fe and N inputs raised simulated marine nitrogen fixation, with the majority of the increase in the subtropical North and South Pacific, and raised primary production and export in the high-nutrient low-chlorophyll (HNLC) regions. Increasing N inputs alone elevated small phytoplankton and diatom production, resulting in increased phosphorus (P) and Fe limitation for diazotrophs, hence reducing nitrogen fixation (6%). Globally, the simulated primary production, sinking particulate organic carbon (POC) export. and atmospheric CO2 uptake were highest under combined increase in Fe and N inputs compared to preindustrial control. Our results suggest that increasing combustion iron sources and aerosol Fe solubility along with atmospheric anthropogenic nitrogen deposition are perturbing marine biogeochemical cycling and could partially explain the observed trend toward increased P limitation at station ALOHA in the subtropical North Pacific. Excess inorganic nitrogen ([NO3 ] + [NH4 ] 16[PO4 ]) distributions may offer useful insights for understanding changing ocean circulation and biogeochemistry.

Journal ArticleDOI
TL;DR: In this paper, a synthesis of dissolved organic nitrogen and phosphorus distributions over the Atlantic Ocean based upon field data from eight recent transects, six meridional between 50°N and 50°S and two zonal at 24° and 36°N.
Abstract: [1] A synthesis is provided of dissolved organic nitrogen (DON) and phosphorus (DOP) distributions over the Atlantic Ocean based upon field data from eight recent transects, six meridional between 50°N and 50°S and two zonal at 24° and 36°N. Over the entire tropical and subtropical Atlantic, DON and DOP provide the dominant contributions to total nitrogen and phosphorus pools for surface waters above the thermocline. Elevated DON and DOP concentrations (>5 and >0.2 μmol L−1, respectively) occur in surface waters on the eastern side of the North Atlantic subtropical gyre and equatorial sides of both the North and South Atlantic subtropical gyres, while particularly low concentrations of DOP (<0.05 μmol L−1) occur over the northern flank of the North Atlantic subtropical gyre along 36°N. This distribution is consistent with organic nutrients formed at the gyre margins supporting carbon export as they are redistributed via the gyre circulation. The effect of DON and DOP transport and cycling on export production is examined in an eddy-permitting, coupled physical and nutrient model integrated for 40 years: organic nutrients are produced in the upwelling zones off North Africa and transferred laterally into the gyre interior, facilitated in part by the mesoscale eddy circulation, as well as fluxed northward from the tropics as part of the overturning circulation. Inputs of semilabile DON and DOP to the tropical and subtropical Atlantic Ocean play an important role in sustaining up to typically 40 and 70% of the modeled particulate N and P export, particularly on the eastern and equatorward sides of the subtropical gyres.

Journal ArticleDOI
TL;DR: In this article, a cruise within the central Iceland Basin in the high-latitude (>55 degrees N) North Atlantic Ocean during late July to early September 2007 indicated that the concentration of dissolved iron (dFe) in surface waters was very low, with an average of 0.093 (<0.010-0.218, n = 43) nM, while nitrate concentrations ranged from 2 to 5 mu M and in situ chlorophyll concentrations ranging from 0.2 to 0.4 mg m(-3).
Abstract: Measurements performed on a cruise within the central Iceland Basin in the high-latitude (>55 degrees N) North Atlantic Ocean during late July to early September 2007 indicated that the concentration of dissolved iron (dFe) in surface waters was very low, with an average of 0.093 (<0.010-0.218, n = 43) nM, while nitrate concentrations ranged from 2 to 5 mu M and in situ chlorophyll concentrations ranged from 0.2 to 0.4 mg m(-3). In vitro iron addition experiments demonstrated increased photosynthetic efficiencies (F(v)/F(m)) and enhanced chlorophyll accumulation in treatments amended with iron when compared to controls. Enhanced net growth rates for a number of phytoplankton taxa including the coccolithophore Emiliania huxleyi were also observed following iron addition. These results provide strong evidence that iron limitation within the postspring bloom phytoplankton community contributes to the observed residual macronutrient pool during summer. Low atmospheric iron supply and suboptimal Fe:N ratios in winter overturned deep water are suggested to result in the formation of this seasonal high-nutrient, low-chlorophyll (HNLC) condition, representing an inefficiency of the biological (soft tissue) carbon pump in the region.

Journal ArticleDOI
TL;DR: In this paper, surface, airborne, and satellite measurements over the eastern Pacific Ocean off the coast of California during the period between 2005 and 2007 are used to explore the relationship between ocean chlorophyll, aerosol, and marine clouds.
Abstract: Surface, airborne, and satellite measurements over the eastern Pacific Ocean off the coast of California during the period between 2005 and 2007 are used to explore the relationship between ocean chlorophyll a, aerosol, and marine clouds. Periods of enhanced chlorophyll a and wind speed are coincident with increases in particulate diethylamine and methanesulfonate concentrations. The measurements indicate that amines are a source of secondary organic aerosol in the marine atmosphere. Subsaturated aerosol hygroscopic growth measurements indicate that the organic component during periods of high chlorophyll a and wind speed exhibit considerable water uptake ability. Increased average cloud condensation nucleus (CCN) activity during periods of increased chlorophyll a levels likely results from both size distribution and aerosol composition changes. The available data over the period of measurements indicate that the cloud microphysical response, as represented by either cloud droplet number concentration or cloud droplet effective radius, is likely influenced by a combination of atmospheric dynamics and aerosol perturbations during periods of high chlorophyll a concentrations.

Journal ArticleDOI
TL;DR: In this article, the authors used a network of cores from 77 peatland sites to determine controls on peat content and peat C accumulation over the last 2000 years (since 2 ka) across Russia's West Siberian Lowland (WSL), the world's largest wetland region.
Abstract: [1] We use a network of cores from 77 peatland sites to determine controls on peat C content and peat C accumulation over the last 2000 years (since 2 ka) across Russia's West Siberian Lowland (WSL), the world's largest wetland region Our results show a significant influence of fossil plant composition on peat C content, with peats dominated by Sphagnum having a lower C content Radiocarbon-derived C accumulation since 2 ka at 23 sites is highly variable from site to site, but displays a significant N–S trend of decreasing accumulation at higher latitudes Northern WSL peatlands show relatively small C accumulation of 7 to 35 kg C m−2 since 2 ka In contrast, peatlands south of 60°N show larger accumulation of 42 to 88 kg C m−2 Carbon accumulation since 2 ka varies significantly with modern mean annual air temperature, with maximum C accumulation found between −1 and 0°C Rates of apparent C accumulation since 2 ka show no significant relationship to long-term Holocene averages based on total C accumulation A GIS-based extrapolation of our site data suggests that a substantial amount (∼40%) of total WSL peat C has accumulated since 2 ka, with much of this accumulation south of 60°N The large peatlands in the southern WSL may be an important component of the Eurasian terrestrial C sink, and future warming could result in a shift northward in long-term WSL C sequestration

Journal ArticleDOI
TL;DR: In this paper, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen availability influences terrestrial carbon sinks and sources in response to changes over the 20th century in global environmental factors including atmospheric CO2 concentration, nitrogen inputs, temperature, precipitation and land use.
Abstract: [1] Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen availability influences terrestrial carbon sinks and sources in response to changes over the 20th century in global environmental factors including atmospheric CO2 concentration, nitrogen inputs, temperature, precipitation and land use. The two versions of ISAM vary in their treatment of nitrogen availability: ISAM-NC has a terrestrial carbon cycle model coupled to a fully dynamic nitrogen cycle while ISAM-C has an identical carbon cycle model but nitrogen availability is always in sufficient supply. Overall, the two versions of the model estimate approximately the same amount of global mean carbon uptake over the 20th century. However, comparisons of results of ISAM-NC relative to ISAM-C reveal that nitrogen dynamics: (1) reduced the 1990s carbon sink associated with increasing atmospheric CO2 by 0.53 PgC yr 1 (1 Pg = 10 15 g), (2) reduced the 1990s carbon source associated with changes in temperature and precipitation of 0.34 PgC yr 1 in the 1990s, (3) an enhanced sink associated with nitrogen inputs by 0.26 PgC yr 1 , and (4) enhanced the 1990s carbon source associated with changes in land use by 0.08 PgC yr 1 in the 1990s. These effects of nitrogen limitation influenced the spatial distribution of the estimated exchange of CO2 with greater sink activity in high latitudes associated with climate effects and a smaller sink of CO2 in the southeastern United States caused by N limitation associated with both CO2 fertilization and forest regrowth. These results indicate that the dynamics of nitrogen availability are important to consider in assessing the spatial distribution and temporal dynamics of terrestrial carbon sources and sinks.