scispace - formally typeset
Search or ask a question
JournalISSN: 0947-7411

Heat and Mass Transfer 

Springer Science+Business Media
About: Heat and Mass Transfer is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Heat transfer & Heat transfer coefficient. It has an ISSN identifier of 0947-7411. Over the lifetime, 4127 publications have been published receiving 71411 citations. The journal is also known as: Wärme- und Stoffübertragung & Wärme- und Stoffübertragung : 1995-.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an apparently paradoxical behaviour of heat transfer deterioration was observed in nano-fluid and its dependence on parameters such as particle concentration, material of the particles and geometry of the containing cavity have been investigated.
Abstract: Fluids with nano size solid particles suspended in them have been given the name nano-fluid which in recent studies have shown tremendous promise as heat transfer fluids. However, before suggesting such fluids for applications a thorough knowledge of physical mechanism of heat transfer in such fluids is wanted. The present study deals with one such aspect of natural convection of nano fluids inside horizontal cylinder heated from one end and cooled from the other. An apparently paradoxical behaviour of heat transfer deterioration was observed in the experimental study. Nature of this deterioration and its dependence on parameters such as particle concentration, material of the particles and geometry of the containing cavity have been investigated. The fluid shows characters distinct from that of common slurries.

906 citations

Journal ArticleDOI
TL;DR: In this article, the effect of radiation on the forced and free convection flow of an optically dense viscous incompressible fluid along a heated vertical flat plate with uniform free stream and uniform surface temperature with Rosseland diffusion approximation was investigated.
Abstract: This paper investigates the effect of radiation on the forced and free convection flow of an optically dense viscous incompressible fluid along a heated vertical flat plate with uniform free stream and uniform surface temperature with Rosseland diffusion approximation. With appropriate transformations, the boundary layer equations governing the flow are reduced to local nonsimilarity equations valid in the forced convection regime as well as in the free convection regime. A group of transformation is, also, introduced to reduce the boundary layer equations to a set of local nonsimilarity equations valid in both the forced and free convection regimes. Solutions of the governing equations are obtained by employing the implicit finite difference methods together with Keller box scheme and are expressed in terms of local shear stress and local rate of heat transfer for a range of values of the pertinent parameters.

574 citations

Journal ArticleDOI
TL;DR: In this paper, a two-dimensional stagnation point flow of an incompressible viscous fluid over a flat deformable sheet is investigated when the sheet is stretched in its own plane with a velocity proportional to the distance from the stagnation point, and it is shown that for a fluid of small kinematic viscosity, a boundary layer is formed when the stretching velocity is less than the free stream velocity.
Abstract: Steady two-dimensional stagnation-point flow of an incompressible viscous fluid over a flat deformable sheet is investigated when the sheet is stretched in its own plane with a velocity proportional to the distance from the stagnation-point. It is shown that for a fluid of small kinematic viscosity, a boundary layer is formed when the stretching velocity is less than the free stream velocity and an inverted boundary layer is formed when the stretching velocity exceeds the free stream velocity. Temperature distribution in the boundary layer is found when the surface is held at constant temperature and surface heat flux is determined.

574 citations

Journal Article
TL;DR: In this paper, the authors present a Web of Science Record created on 2005-07-06, modified on 2017-05-10 for a paper entitled "Reference LTCM-ARTICLE-2005-021:
Abstract: Reference LTCM-ARTICLE-2005-021View record in Web of Science Record created on 2005-07-06, modified on 2017-05-10

526 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarized and reviewed a great deal of information from the literature on dispersion in packed beds, and provided empirical correlations for the prediction of the dispersion coefficients (D T and D L) over the entire range of practical values of Sc and Pem.
Abstract: The phenomenon of dispersion (transverse and longitudinal) in packed beds is summarized and reviewed for a great deal of information from the literature. Dispersion plays an important part, for example, in contaminant transport in ground water flows, in miscible displacement of oil and gas and in reactant and product transport in packed bed reactors. There are several variables that must be considered, in the analysis of dispersion in packed beds, like the length of the packed column, viscosity and density of the fluid, ratio of column diameter to particle diameter, ratio of column length to particle diameter, particle size distribution, particle shape, effect of fluid velocity and effect of temperature (or Schmidt number). Empirical correlations are presented for the prediction of the dispersion coefficients (D T and D L) over the entire range of practical values of Sc and Pem, and works on transverse and longitudinal dispersion of non-Newtonian fluids in packed beds are also considered.

436 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20236
202211
2021222
2020243
2019275
2018303