Journal•ISSN: 0145-7632
Heat Transfer Engineering
About: Heat Transfer Engineering is an academic journal. The journal publishes majorly in the area(s): Heat transfer & Heat transfer coefficient. It has an ISSN identifier of 0145-7632. Over the lifetime, 2795 publication(s) have been published receiving 44697 citation(s).
Papers published on a yearly basis
Papers
More filters
TL;DR: In this paper, the authors present an exhaustive review of the literature in this area and suggest a direction for future developments, including heat transfer, material science, physics, chemical engineering and synthetic chemistry.
Abstract: Suspended nanoparticles in conventional fluids, called nanofluids, have been the subject of intensive study worldwide since pioneering researchers recently discovered the anomalous thermal behavior of these fluids. The enhanced thermal conductivity of these fluids with small-particle concentration was surprising and could not be explained by existing theories. Micrometer-sized particle-fluid suspensions exhibit no such dramatic enhancement. This difference has led to studies of other modes of heat transfer and efforts to develop a comprehensive theory. This article presents an exhaustive review of these studies and suggests a direction for future developments. The review and suggestions could be useful because the literature in this area is spread over a wide range of disciplines, including heat transfer, material science, physics, chemical engineering and synthetic chemistry.
906 citations
TL;DR: In this article, the authors provide a detailed literature review and an assessment of results of the research and development work forming the current status of nanofluid technology for heat transfer applications.
Abstract: This study provides a detailed literature review and an assessment of results of the research and development work forming the current status of nanofluid technology for heat transfer applications. Nanofluid technology is a relatively new field, and as such, the supporting studies are not extensive. Specifically, experimental results were reviewed in this study regarding the enhancement of the thermal conductivity and convective heat transfer of nanofluids relative to conventional heat transfer fluids, and assessments were made as to the state-of-the-art of verified parametric trends and magnitudes. Pertinent parameters of particle volume concentration, particle material, particle size, particle shape, base fluid material, temperature, additive, and acidity were considered individually, and experimental results from multiple research groups were used together when assessing results. To this end, published research results from many studies were recast using a common parameter to facilitate comparisons of data among research groups and to identify thermal property and heat transfer trends. The current state of knowledge is presented as well as areas where the data are presently inconclusive or conflicting. Heat transfer enhancement for available nanofluids is shown to be in the 15-40% range, with a few situations resulting in orders of magnitude enhancement.
899 citations
TL;DR: In this article, the authors provide a roadmap of development in the thermal and fabrication aspects of microchannels as applied in microelectronics and other high heat-flux cooling applications.
Abstract: This paper provides a roadmap of development in the thermal and fabrication aspects of microchannels as applied in microelectronics and other high heat-flux cooling applications. Microchannels are defined as flow passages that have hydraulic diameters in the range of 10 to 200 micrometers. The impetus for microchannel research was provided by the pioneering work of Tuckerman and Pease [1] at Stanford University in the early eighties. Since that time, this technology has received considerable attention in microelectronics and other major application areas, such as fuel cell systems and advanced heat sink designs. After reviewing the advancement in heat transfer technology from a historical perspective, the advantages of using microchannels in high heat flux cooling applications is discussed, and research done on various aspects of microchannel heat exchanger performance is reviewed. Single-phase performance for liquids is still expected to be describable by conventional equations; however, the gas flow may...
586 citations
TL;DR: In this paper, a literature review is presented to compare different cooling technologies currently in development in research laboratories that are competing to solve the challenge of cooling the next generation of high heat flux computer chips.
Abstract: The purpose of this literature review is to compare different cooling technologies currently in development in research laboratories that are competing to solve the challenge of cooling the next generation of high heat flux computer chips. Today, most development efforts are focused on three technologies: liquid cooling in copper or silicon micro-geometry heat dissipation elements, impingement of liquid jets directly on the silicon surface of the chip, and two-phase flow boiling in copper heat dissipation elements or plates with numerous microchannels. The principal challenge is to dissipate the high heat fluxes (current objective is 300 W/cm2) while maintaining the chip temperature below the targeted temperature of 85°C, while of second importance is how to predict the heat transfer coefficients and pressure drops of the cooling process. In this study, the state of the art of these three technologies from recent experimental articles (since 2003) is analyzed and a comparison of the respective merits and ...
441 citations
TL;DR: In this article, a new model, based on asymptotic addition of the two boiling components, is introduced It follows the established principles of flow boiling and converges correctly to the extremes of all parameters Tested on the University of Karlsruhe data bank containing over 13,000 data points in vertical flow boiling, results superior to previous correlations are demonstrated
Abstract: In flow boiling, the nucleate and convective components are superimposed by a very complex mechanism, which so far is not well understood Two models exist in present literature, one by Chen [3] (1963), using addition of the two components with a suppression factor; and one by Shah [8] (1976), using the “greater of” the two components with a Bo-number simplified correlation Neither model presents a satisfactory solution, as attested by the numerous methods published since then, mostly based only on regression analysis-derived correction factors In this article a new model, based on asymptotic addition of the two boiling components, is introduced It follows the established principles of flow boiling and converges correctly to the extremes of all parameters Tested on the University of Karlsruhe data bank containing over 13,000 data points in vertical flow boiling, results superior to previous correlations are demonstrated
374 citations