scispace - formally typeset
Search or ask a question

Showing papers in "Heredity in 2017"


Journal ArticleDOI
15 Mar 2017-Heredity
TL;DR: Results from simulation studies showed that pLARmEB was more powerful in QTN detection and more accurate in Q TN effect estimation, had less false positive rate and required less computing time than Bayesian hierarchical generalized linear model, efficient mixed model association (EMMA) and least angle regression plus empirical Bayes.
Abstract: Multilocus genome-wide association studies (GWAS) have become the state-of-the-art procedure to identify quantitative trait nucleotides (QTNs) associated with complex traits. However, implementation of multilocus model in GWAS is still difficult. In this study, we integrated least angle regression with empirical Bayes to perform multilocus GWAS under polygenic background control. We used an algorithm of model transformation that whitened the covariance matrix of the polygenic matrix K and environmental noise. Markers on one chromosome were included simultaneously in a multilocus model and least angle regression was used to select the most potentially associated single-nucleotide polymorphisms (SNPs), whereas the markers on the other chromosomes were used to calculate kinship matrix as polygenic background control. The selected SNPs in multilocus model were further detected for their association with the trait by empirical Bayes and likelihood ratio test. We herein refer to this method as the pLARmEB (polygenic-background-control-based least angle regression plus empirical Bayes). Results from simulation studies showed that pLARmEB was more powerful in QTN detection and more accurate in QTN effect estimation, had less false positive rate and required less computing time than Bayesian hierarchical generalized linear model, efficient mixed model association (EMMA) and least angle regression plus empirical Bayes. pLARmEB, multilocus random-SNP-effect mixed linear model and fast multilocus random-SNP-effect EMMA methods had almost equal power of QTN detection in simulation experiments. However, only pLARmEB identified 48 previously reported genes for 7 flowering time-related traits in Arabidopsis thaliana.

129 citations


Journal ArticleDOI
01 Jan 2017-Heredity
TL;DR: It is clear that studies aiming to predict ecological and evolutionary dynamics of symbiont–host interactions need to examine the interaction across a range of thermal environments, and how the dynamics of these interactions may more generally be altered by thermal environment.
Abstract: Heritable microbes represent an important component of the biology, ecology and evolution of many plants, animals and fungi, acting as both parasites and partners. In this review, we examine how heritable symbiont–host interactions may alter host thermal tolerance, and how the dynamics of these interactions may more generally be altered by thermal environment. Obligate symbionts, those required by their host, are considered to represent a thermally sensitive weak point for their host, associated with accumulation of deleterious mutations. As such, these symbionts may represent an important determinant of host thermal envelope and spatial distribution. We then examine the varied relationship between thermal environment and the frequency of facultative symbionts that provide ecologically contingent benefits or act as parasites. We note that some facultative symbionts directly alter host thermotolerance. We outline how thermal environment will alter the benefits/costs of infection more widely, and additionally modulate vertical transmission efficiency. Multiple patterns are observed, with symbionts being cold sensitive in some species and heat sensitive in others, with varying and non-coincident thresholds at which phenotype and transmission are ablated. Nevertheless, it is clear that studies aiming to predict ecological and evolutionary dynamics of symbiont–host interactions need to examine the interaction across a range of thermal environments. Finally, we discuss the importance of thermal sensitivity in predicting the success/failure of symbionts to spread into novel species following natural/engineered introduction.

128 citations



Journal ArticleDOI
20 Sep 2017-Heredity
TL;DR: Overall, this work identifies several large genomic regions—each containing hundreds of genes—likely involved in the maintenance of genomic divergence in Atlantic cod on both sides of the Atlantic Ocean and suggests that migratory behaviour is derived from more stationary, ancestral ecotypes.
Abstract: Chromosomal rearrangements such as inversions can play a crucial role in maintaining polymorphism underlying complex traits and contribute to the process of speciation. In Atlantic cod (Gadus morhua), inversions of several megabases have been identified that dominate genomic differentiation between migratory and nonmigratory ecotypes in the Northeast Atlantic. Here, we show that the same genomic regions display elevated divergence and contribute to ecotype divergence in the Northwest Atlantic as well. The occurrence of these inversions on both sides of the Atlantic Ocean reveals a common evolutionary origin, predating the >100 000-year-old trans-Atlantic separation of Atlantic cod. The long-term persistence of these inversions indicates that they are maintained by selection, possibly facilitated by coevolution of genes underlying complex traits. Our data suggest that migratory behaviour is derived from more stationary, ancestral ecotypes. Overall, we identify several large genomic regions-each containing hundreds of genes-likely involved in the maintenance of genomic divergence in Atlantic cod on both sides of the Atlantic Ocean.

102 citations


Journal ArticleDOI
01 Mar 2017-Heredity
TL;DR: Investigation of the predictive ability of genomic best linear unbiased prediction models for rice hybrids based on the North Carolina mating design II found the superiority of MV-ADV over an UV model, particularly in the MT scenario for a low-heritability target trait, with highly correlated auxiliary traits.
Abstract: Genomic selection (GS) is more efficient than traditional phenotype-based methods in hybrid breeding. The present study investigated the predictive ability of genomic best linear unbiased prediction models for rice hybrids based on the North Carolina mating design II, in which a total of 115 inbred rice lines were crossed with 5 male sterile lines. Using 8 traits of the 575 (115 × 5) hybrids from two environments, both univariate (UV) and multivariate (MV) prediction analyses, including additive and dominance effects, were performed. Using UV models, the prediction results of cross-validation indicated that including dominance effects could improve the predictive ability for some traits in rice hybrids. Additionally, we could take advantage of GS even for a low-heritability trait, such as grain yield per plant (GY), because a modest increase in the number of top selection could generate a higher, more stable mean phenotypic value for rice hybrids. Thus this strategy was used to select superior potential crosses between the 115 inbred lines and those between the 5 male sterile lines and other genotyped varieties. In our MV research, an MV model (MV-ADV) was developed utilizing a MV relationship matrix constructed with auxiliary variates. Based on joint analysis with multi-trait (MT) or with multi-environment, the prediction results confirmed the superiority of MV-ADV over an UV model, particularly in the MT scenario for a low-heritability target trait (such as GY), with highly correlated auxiliary traits. For a high-heritability trait (such as thousand-grain weight), MT prediction is unnecessary, and UV prediction is sufficient.

87 citations


Journal ArticleDOI
01 Jan 2017-Heredity
TL;DR: The astonishing changes and progress that have occurred in the field of population genetics over the past 50 years are described, slightly longer than the time since the first Population Genetics Group (PGG) meeting in January 1968.
Abstract: We describe the astonishing changes and progress that have occurred in the field of population genetics over the past 50 years, slightly longer than the time since the first Population Genetics Group (PGG) meeting in January 1968. We review the major questions and controversies that have preoccupied population geneticists during this time (and were often hotly debated at PGG meetings). We show how theoretical and empirical work has combined to generate a highly productive interaction involving successive developments in the ability to characterise variability at the molecular level, to apply mathematical models to the interpretation of the data and to use the results to answer biologically important questions, even in nonmodel organisms. We also describe the changes from a field that was largely dominated by UK and North American biologists to a much more international one (with the PGG meetings having made important contributions to the increased number of population geneticists in several European countries). Although we concentrate on the earlier history of the field, because developments in recent years are more familiar to most contemporary researchers, we end with a brief outline of topics in which new understanding is still actively developing.

79 citations


Journal ArticleDOI
30 Aug 2017-Heredity
TL;DR: This study modifies two estimators to suit small samples and shows that the two modified estimators are much less biased, more precise and more accurate than the original estimators.
Abstract: The genetic relatedness between individuals because of their recent common ancestry is now routinely estimated from marker genotype data in molecular ecology, evolutionary biology and conservation studies. The estimators developed for this purpose assume that marker allele freque218 in a population are known without errors. Unfortunately, however, these frequencies, upon which both the definition and the estimation of relatedness are based, are rarely known in reality. Frequently, the only data available in a relatedness analysis are a sample of multilocus genotypes from which both allele frequencies and relatedness must be deduced. Furthermore, because of various constraints, sample sizes of individuals can be quite small (say <50 individuals) in practice. This study shows, for the first time, that the widely used relatedness estimators become severely biased when they use allele frequencies calculated from an extremely small sample (say <10 individuals). The extent of bias depends on the sample size, the (unknown) population allele frequencies, the actual relatedness and the estimators. It also shows that relatedness estimators become even more biased when they use allele frequencies calculated from a sample by omitting a focal pair of individuals whose relatedness is being estimated. This study modifies two estimators to suit small samples and shows, both analytically and by analysing simulated and empirical data, that the two modified estimators are much less biased, more precise and more accurate than the original estimators. These performance advantages of the modified estimators are shown to increase with a decreasing sample size of individuals and with an increasing value of actual relatedness.

78 citations


Journal ArticleDOI
07 Jun 2017-Heredity
TL;DR: This work used data available from maize as a model to compare the predictive abilities of three different omic data sources using eight representative methods for six traits, and found that the best linear unbiased prediction overall performs better than other methods across different traits and differentOmic data.
Abstract: Genomic selection holds a great promise to accelerate plant breeding via early selection before phenotypes are measured, and it offers major advantages over marker-assisted selection for highly polygenic traits. In addition to genomic data, metabolome and transcriptome are increasingly receiving attention as new data sources for phenotype prediction. We used data available from maize as a model to compare the predictive abilities of three different omic data sources using eight representative methods for six traits. We found that the best linear unbiased prediction overall performs better than other methods across different traits and different omic data, and genomic prediction performs better than transcriptomic and metabolomic predictions. For the same maize data, we also conducted genome-wide association study, transcriptome-wide association studies and metabolome-wide association studies for the six agronomic traits using both the genome-wide efficient mixed model association (GEMMA) method and a modified least absolute shrinkage and selection operator (LASSO) method. The new LASSO method has the ability to perform statistical tests. Simulation studies show that the modified LASSO performs better than GEMMA in terms of high power and low Type 1 error.

77 citations


Journal ArticleDOI
01 Feb 2017-Heredity
TL;DR: It is concluded that in addition to factors such as ancient human migrations, isolation by distance and cross-breeding, gene flow between domestic and wild-cattle populations also has shaped genomic composition of European cattle populations.
Abstract: The domestication of taurine cattle initiated ~10 000 years ago in the Near East from a wild aurochs (Bos primigenius) population followed by their dispersal through migration of agriculturalists to Europe. Although gene flow from wild aurochs still present at the time of this early dispersion is still debated, some of the extant primitive cattle populations are believed to possess the aurochs-like primitive features. In this study, we use genome-wide single nucleotide polymorphisms to assess relationship, admixture patterns and demographic history of an ancient aurochs sample and European cattle populations, several of which have primitive features and are suitable for extensive management. The principal component analysis, the model-based clustering and a distance-based network analysis support previous works suggesting different histories for north-western and southern European cattle. Population admixture analysis indicates a zebu gene flow in the Balkan and Italian Podolic cattle populations. Our analysis supports the previous report of gene flow between British and Irish primitive cattle populations and local aurochs. In addition, we show evidence of aurochs gene flow in the Iberian cattle populations indicating wide geographical distribution of the aurochs. Runs of homozygosity (ROH) reveal that demographic processes like genetic isolation and breed formation have contributed to genomic variations of European cattle populations. The ROH also indicate recent inbreeding in southern European cattle populations. We conclude that in addition to factors such as ancient human migrations, isolation by distance and cross-breeding, gene flow between domestic and wild-cattle populations also has shaped genomic composition of European cattle populations.

77 citations


Journal ArticleDOI
05 Jul 2017-Heredity
TL;DR: Responses to genomic selection on a per year basis was ~100% more efficient than by phenotypic selection and more so with higher selection intensities, contributing further experimental data supporting the positive prospects of GS in forest trees.
Abstract: We report a genomic selection (GS) study of growth and wood quality traits in an outbred F2 hybrid Eucalyptus population (n=768) using high-density single-nucleotide polymorphism (SNP) genotyping. Going beyond previous reports in forest trees, models were developed for different selection targets, namely, families, individuals within families and individuals across the entire population using a genomic model including dominance. To provide a more breeder-intelligible assessment of the performance of GS we calculated the expected response as the percentage gain over the population average expected genetic value (EGV) for different proportions of genomically selected individuals, using a rigorous cross-validation (CV) scheme that removed relatedness between training and validation sets. Predictive abilities (PAs) were 0.40–0.57 for individual selection and 0.56–0.75 for family selection. PAs under an additive+dominance model improved predictions by 5 to 14% for growth depending on the selection target, but no improvement was seen for wood traits. The good performance of GS with no relatedness in CV suggested that our average SNP density (~25 kb) captured some short-range linkage disequilibrium. Truncation GS successfully selected individuals with an average EGV significantly higher than the population average. Response to GS on a per year basis was ~100% more efficient than by phenotypic selection and more so with higher selection intensities. These results contribute further experimental data supporting the positive prospects of GS in forest trees. Because generation times are long, traits are complex and costs of DNA genotyping are plummeting, genomic prediction has good perspectives of adoption in tree breeding practice.

75 citations


Journal ArticleDOI
01 Feb 2017-Heredity
TL;DR: It is found that the minimum effective population size to avoid severe inbreeding depression in the short term is of the order of Ne≈70 for a wide range of species’ reproductive rates.
Abstract: Using computer simulations, we evaluate the effects of genetic purging of inbreeding load in small populations, assuming genetic models of deleterious mutations which account for the typical amount of load empirically observed. Our results show that genetic purging efficiently removes the inbreeding load of both lethal and non-lethal mutations, reducing the amount of inbreeding depression relative to that expected without selection. We find that the minimum effective population size to avoid severe inbreeding depression in the short term is of the order of Ne≈70 for a wide range of species’ reproductive rates. We also carried out simulations of captive breeding populations where two contrasting management methods are performed, one avoiding inbreeding (equalisation of parental contributions (EC)) and the other forcing it (circular sib mating (CM)). We show that, for the inbreeding loads considered, CM leads to unacceptably high extinction risks and, as a result, to lower genetic diversity than EC. Thus we conclude that methods aimed at enhancing purging by intentional inbreeding should not be generally advised in captive breeding conservation programmes.

Journal ArticleDOI
01 Feb 2017-Heredity
TL;DR: Several commonly used methods for generating and processing next-generation resequencing data are reviewed, the influence of errors and biases are discussed together with their resulting implications for downstream analyses and general guidelines and recommendations for producing high-quality single-nucleotide polymorphism data sets from raw reads are provided.
Abstract: Sequencing has revolutionized biology by permitting the analysis of genomic variation at an unprecedented resolution. High-throughput sequencing is fast and inexpensive, making it accessible for a wide range of research topics. However, the produced data contain subtle but complex types of errors, biases and uncertainties that impose several statistical and computational challenges to the reliable detection of variants. To tap the full potential of high-throughput sequencing, a thorough understanding of the data produced as well as the available methodologies is required. Here, I review several commonly used methods for generating and processing next-generation resequencing data, discuss the influence of errors and biases together with their resulting implications for downstream analyses and provide general guidelines and recommendations for producing high-quality single-nucleotide polymorphism data sets from raw reads by highlighting several sophisticated reference-based methods representing the current state of the art.

Journal ArticleDOI
01 Mar 2017-Heredity
TL;DR: It is suggested that secondary introgression, rather than ILS, explains most of the shared nuclear genomic variation between these two species and demonstrates the complementarity of population genetics and ecological niche modeling in understanding gene flow history.
Abstract: Genetic variation shared between closely related species may be due to retention of ancestral polymorphisms because of incomplete lineage sorting (ILS) and/or introgression following secondary contact. It is challenging to distinguish ILS and introgression because they generate similar patterns of shared genetic diversity, but this is nonetheless essential for inferring accurately the history of species with overlapping distributions. To address this issue, we sequenced 33 independent intron loci across the genome of two closely related pine species (Pinus massoniana Lamb. and Pinus hwangshanensis Hisa) from Southeast China. Population structure analyses revealed that the species showed slightly more admixture in parapatric populations than in allopatric populations. Levels of interspecific differentiation were lower in parapatry than in allopatry. Approximate Bayesian computation suggested that the most likely speciation scenario explaining this pattern was a long period of isolation followed by a secondary contact. Ecological niche modeling suggested that a gradual range expansion of P. hwangshanensis during the Pleistocene climatic oscillations could have been the cause of the overlap. Our study therefore suggests that secondary introgression, rather than ILS, explains most of the shared nuclear genomic variation between these two species and demonstrates the complementarity of population genetics and ecological niche modeling in understanding gene flow history. Finally, we discuss the importance of contrasting results from markers with different dynamics of migration, namely nuclear, chloroplast and mitochondrial DNA.

Journal ArticleDOI
15 Feb 2017-Heredity
TL;DR: The approach provides a new integrative modeling approach for both reliable gene discovery and robust GP that includes the fixed effects of the most significantly associated SNPs along with the polygenic background for moderately complex but not highly polygenic traits measured in the maize nested association mapping population.
Abstract: Genome-wide association mapping using dense marker sets has identified some nucleotide variants affecting complex traits that have been validated with fine-mapping and functional analysis. However, many sequence variants associated with complex traits in maize have small effects and low repeatability. In contrast to genome-wide association study (GWAS), genomic prediction (GP) is typically based on models incorporating information from all available markers, rather than modeling effects of individual loci. We considered methods to integrate results of GWASs into GP models in the context of multiple interconnected families. We compared association tests based on a biallelic additive model constraining the effect of a single-nucleotide polymorphism (SNP) to be equal across all families in which it segregates to a model in which the effect of a SNP can vary across families. Association SNPs were then included as fixed effects into a GP model that also included the random effects of the whole genome background. Simulation studies revealed that the effectiveness of this joint approach depends on the extent of polygenicity of the traits. Congruent with this finding, cross-validation studies indicated that GP including the fixed effects of the most significantly associated SNPs along with the polygenic background was more accurate than the polygenic background model alone for moderately complex but not highly polygenic traits measured in the maize nested association mapping population. Individual SNPs with strong and robust association signals can effectively improve GP. Our approach provides a new integrative modeling approach for both reliable gene discovery and robust GP.

Journal ArticleDOI
01 Jan 2017-Heredity
TL;DR: A review of evidence on selection strength suggests that although most variance in fitness may be because of alleles with large Nes, substantial amounts of adaptation may be due to alleles in the infinitesimal regime, in which epistasis has modest effects.
Abstract: Much of quantitative genetics is based on the 'infinitesimal model', under which selection has a negligible effect on the genetic variance. This is typically justified by assuming a very large number of loci with additive effects. However, it applies even when genes interact, provided that the number of loci is large enough that selection on each of them is weak relative to random drift. In the long term, directional selection will change allele frequencies, but even then, the effects of epistasis on the ultimate change in trait mean due to selection may be modest. Stabilising selection can maintain many traits close to their optima, even when the underlying alleles are weakly selected. However, the number of traits that can be optimised is apparently limited to ~4Ne by the 'drift load', and this is hard to reconcile with the apparent complexity of many organisms. Just as for the mutation load, this limit can be evaded by a particular form of negative epistasis. A more robust limit is set by the variance in reproductive success. This suggests that selection accumulates information most efficiently in the infinitesimal regime, when selection on individual alleles is weak, and comparable with random drift. A review of evidence on selection strength suggests that although most variance in fitness may be because of alleles with large Nes, substantial amounts of adaptation may be because of alleles in the infinitesimal regime, in which epistasis has modest effects.

Journal ArticleDOI
19 Apr 2017-Heredity
TL;DR: A pattern of heterogeneous genomic differentiation, suggestive of local adaptation, has implications for the conservation of grey reef sharks and highlights that marine species showing little genetic differentiation at neutral loci may exhibit patterns of cryptic genetic structure driven by local selection.
Abstract: With overfishing reducing the abundance of marine predators in multiple marine ecosystems, knowledge of genetic structure and local adaptation may provide valuable information to assist sustainable management. Despite recent technological advances, most studies on sharks have used small sets of neutral markers to describe their genetic structure. We used 5517 nuclear single-nucleotide polymorphisms (SNPs) and a mitochondrial DNA (mtDNA) gene to characterize patterns of genetic structure and detect signatures of selection in grey reef sharks (Carcharhinus amblyrhynchos). Using samples from Australia, Indonesia and oceanic reefs in the Indian Ocean, we established that large oceanic distances represent barriers to gene flow, whereas genetic differentiation on continental shelves follows an isolation by distance model. In Australia and Indonesia differentiation at nuclear SNPs was weak, with coral reefs acting as stepping stones maintaining connectivity across large distances. Differentiation of mtDNA was stronger, and more pronounced in females, suggesting sex-biased dispersal. Four independent tests identified a set of loci putatively under selection, indicating that grey reef sharks in eastern Australia are likely under different selective pressures to those in western Australia and Indonesia. Genetic distances averaged across all loci were uncorrelated with genetic distances calculated from outlier loci, supporting the conclusion that different processes underpin genetic divergence in these two data sets. This pattern of heterogeneous genomic differentiation, suggestive of local adaptation, has implications for the conservation of grey reef sharks; furthermore, it highlights that marine species showing little genetic differentiation at neutral loci may exhibit patterns of cryptic genetic structure driven by local selection.

Journal ArticleDOI
16 Aug 2017-Heredity
TL;DR: Both marker types were suitable for detecting the weak genetic structure of the two A. cepistipes populations investigated, and the multi-allelic SSR markers seemed to be best suited for detecting genetic structure in indigenous fungal populations at a rather small spatial scale.
Abstract: During the last years, simple sequence repeats (SSRs, also known as microsatellites) and single-nucleotide polymorphisms (SNPs) have become the most popular molecular markers for describing neutral genetic variation in populations of a wide range of organisms. However, only a limited number of studies has focused on comparing the performance of these two types of markers for describing the underlying genetic structure of wild populations. Moreover, none of these studies targeted fungi, the group of organisms with one of the most complex reproductive strategies. We evaluated the utility of SSRs and SNPs for inferring the neutral genetic structure of Armillaria cepistipes (basidiomycetes) at different spatial scales. For that, 407 samples were collected across a small (150 km2) area in the Ukrainian Carpathians and a large (41 000 km2) area in the Swiss Alps. All isolates were analyzed at 17 SSR loci distributed throughout the whole genome and at 24 SNP loci located in different single-copy conserved genes. The two markers showed different patterns of structure within the two spatial scales studied. The multi-allelic SSR markers seemed to be best suited for detecting genetic structure in indigenous fungal populations at a rather small spatial scale (radius of ~50–100 km). The pattern observed at SNP markers rather reflected ancient divergence of distant (~1000 km) populations that in addition are separated by mountain ranges. Despite these differences, both marker types were suitable for detecting the weak genetic structure of the two A. cepistipes populations investigated.

Journal ArticleDOI
01 Feb 2017-Heredity
TL;DR: The results suggest that selection pressures in highly heterogeneous alpine environments vary locally and signatures of selection are likely to be population-specific, which might represent a problem when testing for adaptation at specific loci.
Abstract: Numerous landscape genomic studies have identified single-nucleotide polymorphisms (SNPs) and genes potentially involved in local adaptation. Rarely, it has been explicitly evaluated whether these environmental associations also hold true beyond the populations studied. We tested whether putatively adaptive SNPs in Arabidopsis halleri (Brassicaceae), characterized in a previous study investigating local adaptation to a highly heterogeneous environment, show the same environmental associations in an independent, geographically enlarged set of 18 populations. We analysed new SNP data of 444 plants with the same methodology (partial Mantel tests, PMTs) as in the original study and additionally with a latent factor mixed model (LFMM) approach. Of the 74 candidate SNPs, 41% (PMTs) and 51% (LFMM) were associated with environmental factors in the independent data set. However, only 5% (PMTs) and 15% (LFMM) of the associations showed the same environment-allele relationships as in the original study. In total, we found 11 genes (31%) containing the same association in the original and independent data set. These can be considered prime candidate genes for environmental adaptation at a broader geographical scale. Our results suggest that selection pressures in highly heterogeneous alpine environments vary locally and signatures of selection are likely to be population-specific. Thus, genotype-by-environment interactions underlying adaptation are more heterogeneous and complex than is often assumed, which might represent a problem when testing for adaptation at specific loci.

Journal ArticleDOI
26 Jul 2017-Heredity
TL;DR: By deriving models of population differentiation for three different life cycles, the effect of a species’ ecology on evolution in structured populations is described and plasticity decouples genetic from phenotypic differences between populations, and blurs the correlation between phenotypesic divergence and local adaptation.
Abstract: Several evolutionary processes shape the genetic and phenotypic differentiation of populations. Among them, the joint effects of gene flow, selection and phenotypic plasticity are poorly known, especially when trying to understand how maladaptive plasticity affects population divergence. We extended a quantitative genetic model of Hendry et al. (2001) to describe these joint effects on phenotypic and additive genetic divergence between two populations, and their phenotypic and genetic differentiation (PST and QST). With individual-based simulations, we tested our model predictions and further modeled allelic differentiation at neutral (FST) and adaptive (FSTQ) loci. While adaptive phenotypic plasticity allows for large phenotypic divergence and differentiation despite high gene flow, maladaptive plasticity promotes genetic divergence and generates countergradient variation, under extensive migration with phenotypic differences sometimes opposed to genetic differences. Maladaptive plasticity can also promote adaptive phenotypic divergence by reducing the effective gene flow. Overall, plasticity decouples genetic from phenotypic differences between populations, and blurs the correlation between phenotypic divergence and local adaptation. By deriving models of population differentiation for three different life cycles, we further describe the effect of a species' ecology on evolution in structured populations.

Journal ArticleDOI
24 May 2017-Heredity
TL;DR: This simulation study analyzes the behavior of different genetic distances in Island and stepping stone models displaying varying neighborhood sizes and shows that the proportion of null allelic states interact with the slope of the regression of FST/(1−FST) as a function of geographic distance.
Abstract: Studying isolation by distance can provide useful demographic information. To analyze isolation by distance from molecular data, one can use some kind of genetic distance or coalescent simulations. Molecular markers can often display technical caveats, such as PCR-based amplification failures (null alleles, allelic dropouts). These problems can alter population parameter inferences that can be extracted from molecular data. In this simulation study, we analyze the behavior of different genetic distances in Island (null hypothesis) and stepping stone models displaying varying neighborhood sizes. Impact of null alleles of increasing frequency is also studied. In stepping stone models without null alleles, the best statistic to detect isolation by distance in most situations is the chord distance DCSE. Nevertheless, for markers with genetic diversities HS<0.4-0.5, all statistics tend to display the same statistical power. Marginal sub-populations behave as smaller neighborhoods. Metapopulations composed of small sub-population numbers thus display smaller neighborhood sizes. When null alleles are introduced, the power of detection of isolation by distance is significantly reduced and DCSE remains the most powerful genetic distance. We also show that the proportion of null allelic states interact with the slope of the regression of FST/(1-FST) as a function of geographic distance. This can have important consequences on inferences that can be made from such data. Nevertheless, Chapuis and Estoup's FreeNA correction for null alleles provides very good results in most situations. We finally use our conclusions for reanalyzing and reinterpreting some published data sets.

Journal ArticleDOI
02 Aug 2017-Heredity
TL;DR: This work characterizes genetic structure in a freshwater fish species from a system of basins along the Atlantic coast of Brazil and demonstrates that genetic structure between populations is not just highly concordant with paleodrainages, but that differences in the genetic diversity among paledrainages correspond to the joint effect of Differences in the area encompassed by, and the number of rivers, within a Paleodrainage.
Abstract: Past shifts in connectivity in riverine environments (for example, sea-level changes) and the properties of current drainages can act as drivers of genetic structure and demographic processes in riverine population of fishes. However, it is unclear whether the same river properties that structure variation on recent timescales will also leave similar genomic signatures that reflect paleodrainage properties. By characterizing genetic structure in a freshwater fish species (Hollandichthys multifasciatus) from a system of basins along the Atlantic coast of Brazil we test for the effects of paleodrainages caused by sea-level changes during the Pleistocene. Given that the paleodrainage properties differ along the Brazilian coast, we also evaluate whether estimated genetic diversity within paleodrainages can be explained by past riverine properties (i.e., area and number of rivers in a paleodrainage). Our results demonstrate that genetic structure between populations is not just highly concordant with paleodrainages, but that differences in the genetic diversity among paleodrainages correspond to the joint effect of differences in the area encompassed by, and the number of rivers, within a paleodrainage. Our findings extend the influence of current riverine properties on genetic diversity to those associated with past paleodrainage properties. We discuss how these findings may explain the inconsistent support for paleodrainages in structuring divergence from different global regions and the importance of taking into account past conditions for understanding the high species diversity of freshwater fish that we currently observe in the world, and especially in the Neotropics.

Journal ArticleDOI
14 Jun 2017-Heredity
TL;DR: The results indicate a polygenic basis for morphological traits in house sparrows and collared flycatchers, and two genome-wide significant associations with very small-effect sizes are found.
Abstract: Knowledge about the underlying genetic architecture of phenotypic traits is needed to understand and predict evolutionary dynamics. The number of causal loci, magnitude of the effects and location in the genome are, however, still largely unknown. Here, we use genome-wide single-nucleotide polymorphism (SNP) data from two large-scale data sets on house sparrows and collared flycatchers to examine the genetic architecture of different morphological traits (tarsus length, wing length, body mass, bill depth, bill length, total and visible badge size and white wing patches). Genomic heritabilities were estimated using relatedness calculated from SNPs. The proportion of variance captured by the SNPs (SNP-based heritability) was lower in house sparrows compared with collared flycatchers, as expected given marker density (6348 SNPs in house sparrows versus 38 689 SNPs in collared flycatchers). Indeed, after downsampling to similar SNP density and sample size, this estimate was no longer markedly different between species. Chromosome-partitioning analyses demonstrated that the proportion of variance explained by each chromosome was significantly positively related to the chromosome size for some traits and, generally, that larger chromosomes tended to explain proportionally more variation than smaller chromosomes. Finally, we found two genome-wide significant associations with very small-effect sizes. One SNP on chromosome 20 was associated with bill length in house sparrows and explained 1.2% of phenotypic variation (VP), and one SNP on chromosome 4 was associated with tarsus length in collared flycatchers (3% of VP). Although we cannot exclude the possibility of undetected large-effect loci, our results indicate a polygenic basis for morphological traits.

Journal ArticleDOI
10 May 2017-Heredity
TL;DR: The results demonstrate differentiation over small spatial scales along an elevation gradient, and highlight the importance of preserving genetic diversity in more isolated high-elevation populations.
Abstract: Montane environments around the globe are biodiversity ‘hotspots’ and important reservoirs of genetic diversity. Montane species are also typically more vulnerable to environmental change than their low-elevation counterparts due to restricted ranges and dispersal limitations. Here we focus on two abundant congeneric mayflies (Baetis bicaudatus and B. tricaudatus) from montane streams over an elevation gradient spanning 1400 m. Using single-nucleotide polymorphism genotypes, we measured population diversity and vulnerability in these two species by: (i) describing genetic diversity and population structure across elevation gradients to identify mechanisms underlying diversification; (ii) performing spatially explicit landscape analyses to identify environmental drivers of differentiation; and (iii) identifying outlier loci hypothesized to underlie adaptive divergence. Differences in the extent of population structure in these species were evident depending upon their position along the elevation gradient. Heterozygosity, effective population sizes and gene flow all declined with increasing elevation, resulting in substantial population structure in the higher elevation species (B. bicaudatus). At lower elevations, populations of both species are more genetically similar, indicating ongoing gene flow. Isolation by distance was detected at lower elevations only, whereas landscape barriers better predicted genetic distance at higher elevations. At higher elevations, dispersal was restricted due to landscape effects, resulting in greater population isolation. Our results demonstrate differentiation over small spatial scales along an elevation gradient, and highlight the importance of preserving genetic diversity in more isolated high-elevation populations.

Journal ArticleDOI
01 Jan 2017-Heredity
TL;DR: Simulating replicated time series data from experimental evolution studies provide a promising framework to study polygenic adaptation from whole-genome population genetics data and shows that over a broad range of parameters the trajectories of selected alleles display a pattern across replicates which differs both from neutrality and directional selection.
Abstract: The genetic architecture of adaptation in natural populations has not yet been resolved: it is not clear to what extent the spread of beneficial mutations (selective sweeps) or the response of many quantitative trait loci drive adaptation to environmental changes. Although much attention has been given to the genomic footprint of selective sweeps, the importance of selection on quantitative traits is still not well studied, as the associated genomic signature is extremely difficult to detect. We propose 'Evolve and Resequence' as a promising tool, to study polygenic adaptation of quantitative traits in evolving populations. Simulating replicated time series data we show that adaptation to a new intermediate trait optimum has three characteristic phases that are reflected on the genomic level: (1) directional frequency changes towards the new trait optimum, (2) plateauing of allele frequencies when the new trait optimum has been reached and (3) subsequent divergence between replicated trajectories ultimately leading to the loss or fixation of alleles while the trait value does not change. We explore these 3 phase characteristics for relevant population genetic parameters to provide expectations for various experimental evolution designs. Remarkably, over a broad range of parameters the trajectories of selected alleles display a pattern across replicates, which differs both from neutrality and directional selection. We conclude that replicated time series data from experimental evolution studies provide a promising framework to study polygenic adaptation from whole-genome population genetics data.

Journal ArticleDOI
01 Mar 2017-Heredity
TL;DR: Experimental repeatabilities, numbers of QTLs and proportion of explained variation were higher for traits related to plant development such as tillering, leaf number and flowering time, than for traits affected by growth such as yield components, which suggests a simpler genetic determinism with larger individual QTL effects for the first category.
Abstract: Plant architecture, phenology and yield components of cultivated plants have repeatedly been shaped by selection to meet human needs and adaptation to different environments. Here we assessed the genetic architecture of 24 correlated maize traits that interact during plant cycle. Overall, 336 lines were phenotyped in a network of 9 trials and genotyped with 50K single-nucleotide polymorphisms. Phenology was the main factor of differentiation between genetic groups. Then yield components distinguished dents from lower yielding genetic groups. However, most of trait variation occurred within group and we observed similar overall and within group correlations, suggesting a major effect of pleiotropy and/or linkage. We found 34 quantitative trait loci (QTLs) for individual traits and six for trait combinations corresponding to PCA coordinates. Among them, only five were pleiotropic. We found a cluster of QTLs in a 5 Mb region around Tb1 associated with tiller number, ear row number and the first PCA axis, the latter being positively correlated to flowering time and negatively correlated to yield. Kn1 and ZmNIP1 were candidate genes for tillering, ZCN8 for leaf number and Rubisco Activase 1 for kernel weight. Experimental repeatabilities, numbers of QTLs and proportion of explained variation were higher for traits related to plant development such as tillering, leaf number and flowering time, than for traits affected by growth such as yield components. This suggests a simpler genetic determinism with larger individual QTL effects for the first category.

Journal ArticleDOI
01 Mar 2017-Heredity
TL;DR: The study revealed that the ZW sex chromosome system had a common origin, showing highly conserved Z chromosomes and remarkably divergent W chromosomes.
Abstract: The main objectives of this study were to test: (1) whether the W-chromosome differentiation matches to species' evolutionary divergence (phylogenetic concordance) and (2) whether sex chromosomes share a common ancestor within a congeneric group. The monophyletic genus Triportheus (Characiformes, Triportheidae) was the model group for this study. All species in this genus so far analyzed have ZW sex chromosome system, where the Z is always the largest chromosome of the karyotype, whereas the W chromosome is highly variable ranging from almost homomorphic to highly heteromorphic. We applied conventional and molecular cytogenetic approaches including C-banding, ribosomal DNA mapping, comparative genomic hybridization (CGH) and cross-species whole chromosome painting (WCP) to test our questions. We developed Z- and W-chromosome paints from T. auritus for cross-species WCP and performed CGH in a representative species (T. signatus) to decipher level of homologies and rates of differentiation of W chromosomes. Our study revealed that the ZW sex chromosome system had a common origin, showing highly conserved Z chromosomes and remarkably divergent W chromosomes. Notably, the W chromosomes have evolved to different shapes and sequence contents within ~15-25 Myr of divergence time. Such differentiation highlights a dynamic process of W-chromosome evolution within congeneric species of Triportheus.

Journal ArticleDOI
01 Jan 2017-Heredity
TL;DR: This work investigates evidence for inbreeding depression by environment interactions in nine traits in the individually monitored Soay sheep population of St Kilda, using genomic inbreeding coefficients based on 37 037 single-nucleotide polymorphism loci, and population density as an axis of environmental variation.
Abstract: Experimental studies often find that inbreeding depression is more severe in harsh environments, but the few studies of in situ wild populations available to date rarely find strong support for this effect. We investigated evidence for inbreeding depression by environment interactions in nine traits in the individually monitored Soay sheep population of St Kilda, using genomic inbreeding coefficients based on 37 037 single-nucleotide polymorphism loci, and population density as an axis of environmental variation. All traits showed variation with population density and all traits showed some evidence for depression because of either an individual’s own inbreeding or maternal inbreeding. However, only six traits showed evidence for an interaction in the expected direction, and only two interactions were statistically significant. We identify three possible reasons why wild population studies may generally fail to find strong support for interactions between inbreeding depression and environmental variation compared with experimental studies. First, for species with biparental inbreeding only, the amount of observed inbreeding in natural populations is generally low compared with that used in experimental studies. Second, it is possible that experimental studies sometimes actually impose higher levels of stress than organisms experience in the wild. Third, some purging of the deleterious recessive alleles that underpin interaction effects may occur in the wild.

Journal ArticleDOI
01 Jan 2017-Heredity
TL;DR: In this paper, the authors study an intraspecific breakdown of self-incompatibility and its consequences in North American Arabidopsis lyrata to test whether particular S-locus haplotypes are associated with the loss of SI and/or the shift to inbreeding.
Abstract: The genetic breakdown of self-incompatibility (SI) and subsequent mating system shifts to inbreeding has intrigued evolutionary geneticists for decades. Most of our knowledge is derived from interspecific comparisons between inbreeding species and their outcrossing relatives, where inferences may be confounded by secondary mutations that arose after the initial loss of SI. Here, we study an intraspecific breakdown of SI and its consequences in North American Arabidopsis lyrata to test whether: (1) particular S-locus haplotypes are associated with the loss of SI and/or the shift to inbreeding; (2) a population bottleneck may have played a role in driving the transition to inbreeding; and (3) the mutation(s) underlying the loss of SI are likely to have occurred at the S-locus. Combining multiple approaches for genotyping, we found that outcrossing populations on average harbour 5 to 9 S-locus receptor kinase (SRK) alleles, but only two, S1 and S19, are shared by most inbreeding populations. Self-compatibility (SC) behaved genetically as a recessive trait, as expected from a loss-of-function mutation. Bulked segregant analysis in SC × SI F2 individuals using deep sequencing confirmed that all SC plants were S1 homozygotes but not all S1 homozygotes were SC. This was also revealed in population surveys, where only a few S1 homozygotes were SC. Together with crossing data, this suggests that there is a recessive factor that causes SC that is physically unlinked to the S-locus. Overall, our results emphasise the value of combining classical genetics with advanced sequencing approaches to resolve long outstanding questions in evolutionary biology.

Journal ArticleDOI
01 Apr 2017-Heredity
TL;DR: It is argued that surveys of eelgrass genetic structure and diversity at decadal scales can provide accurate depictions of populations, increasing the utility of published genetic data for restoration and designing networks of reserves.
Abstract: Genetic diversity and population structure reflect complex interactions among a diverse set of processes that may vary temporally, limiting their potential to predict ecological and evolutionary outcomes. Yet, the stability of these patterns is rarely tested. We resampled eelgrass (Zostera marina) meadows from published studies to determine variability in genetic diversity and structure within and between meadows over 5-12 years. The meadows sampled (San Francisco, Tomales and Bodega Bays in California and the Virginia coastal bays) represent a range of life histories (annual vs perennial), age (well-established vs restored) and environments (rural vs urbanized). In all of these systems, neither diversity nor differentiation (FST) changed over time. Differences among tidal heights within Bodega Bay were also remarkably consistent, with the high intertidal being more diverse than the subtidal, and tidal height differentiation being modest but significant at both time points. Historical studies used only a few microsatellite loci; therefore, our temporal comparisons were based on 4-5 loci. However, analysis of the current data using a set of 12 loci show that 4-5 loci are sufficient to describe diversity and differentiation patterns in this system. This temporal consistency was not because of the resampling of large clones, underscoring the feasibility and relevance of understanding drivers of the differences. Because seagrasses are declining at rapid rates, restoration and conservation are increasingly a coastal management priority. Our results argue that surveys of eelgrass genetic structure and diversity at decadal scales can provide accurate depictions of populations, increasing the utility of published genetic data for restoration and designing networks of reserves.

Journal ArticleDOI
29 Mar 2017-Heredity
TL;DR: Overall, the marked microsatellite genetic structure observed in Senegal revealed a complex interplay of different demographic processes occurring during house mouse spatial expansion, including sequential founder effects and stratified dispersal due to human transport along major roads.
Abstract: Knowledge of the genetic make-up and demographic history of invasive populations is critical to understand invasion mechanisms. Commensal rodents are ideal models to study whether complex invasion histories are typical of introductions involving human activities. The house mouse Mus musculus domesticus is a major invasive synanthropic rodent originating from South-West Asia. It has been largely studied in Europe and on several remote islands, but the genetic structure and invasion history of this taxon have been little investigated in several continental areas, including West Africa. In this study, we focussed on invasive populations of M. m. domesticus in Senegal. In this focal area for European settlers, the distribution area and invasion spread of the house mouse is documented by decades of data on commensal rodent communities. Genetic variation at one mitochondrial locus and 16 nuclear microsatellite markers was analysed from individuals sampled in 36 sites distributed across the country. A combination of phylogeographic and population genetics methods showed that there was a single introduction event on the northern coast of Senegal, from an exogenous (probably West European) source, followed by a secondary introduction from northern Senegal into a coastal site further south. The geographic locations of these introduction sites were consistent with the colonial history of Senegal. Overall, the marked microsatellite genetic structure observed in Senegal, even between sites located close together, revealed a complex interplay of different demographic processes occurring during house mouse spatial expansion, including sequential founder effects and stratified dispersal due to human transport along major roads.