scispace - formally typeset
Search or ask a question

Showing papers in "Histochemistry and Cell Biology in 2017"


Journal ArticleDOI
TL;DR: Targeting CTLs, key players in pathogen recognition and innate immunity, may be a promising strategy for cell-specific delivery of drugs or vaccine antigens and to modulate immune responses.
Abstract: C-type lectins (CTLs) represent the most complex family of animal/human lectins that comprises 17 different groups. During evolution, CTLs have developed by diversification to cover a broad range of glycan ligands. However, ligand binding by CTLs is not necessarily restricted to glycans as some CTLs also bind to proteins, lipids, inorganic molecules, or ice crystals. CTLs share a common fold that harbors a Ca2+ for contact to the sugar and about 18 invariant residues in a phylogenetically conserved pattern. In vertebrates, CTLs have numerous functions, including serum glycoprotein homeostasis, pathogen sensing, and the initiation of immune responses. Myeloid CTLs in innate immunity are mainly expressed by antigen-presenting cells and play a prominent role in the recognition of a variety of pathogens such as fungi, bacteria, viruses, and parasites. However, myeloid CTLs such as the macrophage inducible CTL (Mincle) or Clec-9a may also bind to self-antigens and thus contribute to immune homeostasis. While some CTLs induce pro-inflammatory responses and thereby lead to activation of adaptive immune responses, other CTLs act as inhibitory receptors and dampen cellular functions. Since CTLs are key players in pathogen recognition and innate immunity, targeting CTLs may be a promising strategy for cell-specific delivery of drugs or vaccine antigens and to modulate immune responses.

155 citations


Journal ArticleDOI
TL;DR: This review approaches the sialylation of N-glycans from three perspectives, commenting on the role of sialic acid-binding proteins including viral hemagglutinins, Siglecs and selectins and the roles of β1-integrin and Fas receptor N- Glycans in cancer cell survival and drug resistance.
Abstract: Sialylated N-glycans play essential roles in the immune system, pathogen recognition and cancer. This review approaches the sialylation of N-glycans from three perspectives. The first section focuses on the sialyltransferases that add sialic acid to N-glycans. Included in the discussion is a description of these enzymes' glycan acceptors, conserved domain organization and sequences, molecular structure and catalytic mechanism. In addition, we discuss the protein interactions underlying the polysialylation of a select group of adhesion and signaling molecules. In the second section, the biosynthesis of sialic acid, CMP-sialic acid and sialylated N-glycans is discussed, with a special emphasis on the compartmentalization of these processes in the mammalian cell. The sequences and mechanisms maintaining the sialyltransferases and other glycosylation enzymes in the Golgi are also reviewed. In the final section, we have chosen to discuss processes in which sialylated glycans, both N- and O-linked, play a role. The first part of this section focuses on sialic acid-binding proteins including viral hemagglutinins, Siglecs and selectins. In the second half of this section, we comment on the role of sialylated N-glycans in cancer, including the roles of β1-integrin and Fas receptor N-glycan sialylation in cancer cell survival and drug resistance, and the role of these sialylated proteins and polysialic acid in cancer metastasis.

151 citations


Journal ArticleDOI
TL;DR: Following this educational survey, examples where known biological function is related to the glycan structures carried by proteins are given and mucins and their glycosylation patterns are considered as instructive proof-of-principle case.
Abstract: Proteins undergo co- and posttranslational modifications, and their glycosylation is the most frequent and structurally variegated type. Histochemically, the detection of glycan presence has first been performed by stains. The availability of carbohydrate-specific tools (lectins, monoclonal antibodies) has revolutionized glycophenotyping, allowing monitoring of distinct structures. The different types of protein glycosylation in Eukaryotes are described. Following this educational survey, examples where known biological function is related to the glycan structures carried by proteins are given. In particular, mucins and their glycosylation patterns are considered as instructive proof-of-principle case. The tissue and cellular location of glycoprotein biosynthesis and metabolism is reviewed, with attention to new findings in goblet cells. Finally, protein glycosylation in disease is documented, with selected examples, where aberrant glycan expression impacts on normal function to let disease pathology become manifest. The histological applications adopted in these studies are emphasized throughout the text.

108 citations


Journal ArticleDOI
TL;DR: To delineate the factors that underlie the specificity of a galectin for its counterreceptor(s) in the cellular context and the details of structure–activity relationships by comparatively analyzing natural and rationally engineered proteins is the main challenge for ongoing research.
Abstract: One route of realizing the information of glycans involves endogenous receptors (lectins). Occurrence at branch ends renders galactosides particularly accessible. Thus, they are suited for such a recognition process. Fittingly, these epitopes serve as physiological ligands. The ga(lactoside-binding) lectins share the β-sandwich fold with a sequence signature around a central tryptophan residue besides this specificity. Three modes of presentation of the carbohydrate recognition domain are known for galectins, and genome monitoring from fungi to mammals discloses that galectins form a network. The extent of its complexity varies considerably between organisms, for chicken reaching seven proteins, more for mammals. The current status of network analysis reveals overlapping and distinct expression profiles. Matching intra- and extracellular galectin presence, they have a broad range of functions at each site depending on their specific counterreceptor(s), with the possibility even for functional antagonism between family members. Orchestration of expression of galectin, the cognate glycan, its scaffold (protein or sphingolipid) and spatial aspects of glycoconjugate presentation has been detected to lead to growth regulation of immune and tumor cells. To delineate the factors that underlie the specificity of a galectin for its counterreceptor(s) in the cellular context and the details of structure-activity relationships by comparatively analyzing natural and rationally engineered proteins is the main challenge for ongoing research.

108 citations


Journal ArticleDOI
TL;DR: The functional pairing with physiological counterreceptors is involved in a wide range of cellular activities from cell adhesion, glycoconjugate trafficking to growth regulation and lets lectins act as sensors/effectors in host defense.
Abstract: An experimental observation on selecting binding partners underlies the introduction of the term 'lectin'. Agglutination of erythrocytes depending on their blood-group status revealed the presence of activities in plant extracts that act in an epitope-specific manner like antibodies. As it turned out, their binding partners on the cell surface are carbohydrates of glycoconjugates. By definition, lectins are glycan-specific (mono- or oligosaccharides presented by glycoconjugates or polysaccharides) receptors, distinguished from antibodies, from enzymes using carbohydrates as substrates and from transporters of free saccharides. They are ubiquitous in Nature and structurally widely diversified. More than a dozen types of folding pattern have evolved for proteins that bind glycans. Used as tool, this capacity facilitates versatile mapping of glycan presence so that plant/fungal and also animal/human lectins have found a broad spectrum of biomedical applications. The functional pairing with physiological counterreceptors is involved in a wide range of cellular activities from cell adhesion, glycoconjugate trafficking to growth regulation and lets lectins act as sensors/effectors in host defense.

105 citations


Journal ArticleDOI
TL;DR: This journal’s special issue covers central aspects of the concept of the sugar code and the often limited intramolecular flexibility of oligosaccharides along with an abundance of contact points for intermolecular interactions is ideal for binding processes.
Abstract: Carbohydrates have physiological importance far beyond their roles as source of energy (glycolysis) and activated hydrogen for synthesis (pentosephosphate pathway) or as constituent of the backbone of nucleic acids and of cell wall polysaccharides. The extent of compositional and structural variability of their oligomers (glycans) is unsurpassed in Nature due to the unique property of independently combining the following parameters with sequence: anomeric status, linkage positions, ring size, addition of branches and site-specific introduction of substitutions. The monosaccharides (letters of the third alphabet of life) thus generate 'words' (signals) of high-density coding capacity. These 'words' are part of the glycans on proteins and lipids, and the glycome represented by these 'words' in their entirety has cell type-dependent features. The often limited intramolecular flexibility of oligosaccharides along with an abundance of contact points for intermolecular interactions is ideal for binding processes. Glycan-based 'words' can thus be 'read,' and their message translated into cellular effects by receptors called lectins. This journal's special issue covers central aspects of the concept of the sugar code.

102 citations


Journal ArticleDOI
TL;DR: It is suggested that invasion of EVTs into uterine veins is responsible the draining of waste and blood plasma from the intervillous space during the first trimester of pregnancy.
Abstract: During the first trimester of pregnancy, extravillous trophoblasts (EVTs) invade into the decidual interstitium to the first third of the myometrium, thereby anchoring the placenta to the uterus. They also follow the endovascular and endoglandular route of invasion; plug, line and remodel spiral arteries, thus being responsible for the establishment of hemotrophic nutrition with the beginning of the second trimester and invade and open uterine glands toward the intervillous space for a histiotrophic nutrition during the first trimester. The aim of this study was to provide proof that uterine veins are invaded by EVTs similar to uterine arteries and glands in first trimester of pregnancy. Therefore, serial sections from in situ first trimester placenta were immuno-single- and immuno-double-stained to distinguish in a first step between arteries and veins and secondly between invaded and non-invaded vessels. Subsequently, invasion of EVTs into uterine vessels was quantified. Our data show that uterine veins are significantly more invaded by EVTs than uterine arteries (29.2 ± 15.7 %) during early pregnancy. Counted vessel cross sections revealed significantly higher EVT invasion into veins (59.5 ± 7.9 %) compared to arteries (29.2 ± 15.7 %). In the lumen of veins, single EVTs were repeatedly found, beside detached glandular epithelial cells or syncytial fragments. This study allows the expansion of our hitherto postulated concept of EVT invasion during first trimester of pregnancy. We suggest that invasion of EVTs into uterine veins is responsible the draining of waste and blood plasma from the intervillous space during the first trimester of pregnancy.

81 citations


Journal ArticleDOI
TL;DR: This review provides an introduction to GSL structures, their nomenclature and metabolism, and normal and pathological functions of GSL will be surveyed.
Abstract: Glycolipids are glycoconjugates that are predominantly found on the extracellular surface of cells ranging from bacteria to men. In bacteria and plants, glycoglycerolipids represent the main glycolipid species. Ceramides as carrier for glycans, termed glycosphingolipids (GSLs), are characteristic for vertebrates and insects. The glycan part is involved in a variety of biological activities including cell adhesion and initiation of signaling. Most of these functions rest on two basic principles: (1) GSLs spontaneously contribute to organize lipid rafts in biological membranes, thereby forming functional complexes ('glycosynapses') with receptor proteins and ion channels and (2) their glycans are bound by receptors like galectins (protein-glycan recognition) or cognate glycans (glycan-glycan recognition). This interaction modulates cell adhesion, differentiation and growth processes. Besides their contribution to normal cell behavior, GSL expression patterns also influence disease processes by inducing cellular malfunctions when aberrant, as highlighted by inherited disorders of GSL metabolism like sphingolipidoses. Altered GSL patterns are also associated with common neurological diseases, autoimmune diseases and cancer. With respect to infections, various GSL-presented glycans are attachment sites for bacteria and viruses as well as primary targets for bacterial toxins. This review provides an introduction to GSL structures, their nomenclature and metabolism. Building on this, normal and pathological functions of GSL will be surveyed.

69 citations


Journal ArticleDOI
TL;DR: This review summarizes current knowledge concerning the role played by glucosidases I and II, in concert with the bifunctional glucosyltransferase and calnexin/calreticulin in glycoprotein folding, the role of conventional ER mannosidase I inconcert with the mannosidsase EDEM1 in handling and routing of misfolded glycoproteins, and how the b ifunctional OS-9 provides a link to the ER dislocon
Abstract: Protein N-glycosylation and quality control of protein folding as well as the connected ER-associated degradation of misfolded glycoproteins (ERAD) are not only evolutionary highly conserved but also functionally linked. It is now established that particular N-glycan structures which result from processing reactions by exo-glycosidases in the ER are of importance for glycoprotein folding and for ERAD. Thus, mono-glucosylated N-glycan intermediates harbor structural information which is important for promoting glycoprotein folding. On the other hand, specific mannose-trimmed N-glycans harbor structural information for routing misfolded glycoproteins to ERAD. In this review, we summarize current knowledge concerning the role played by glucosidases I and II, in concert with the bifunctional glucosyltransferase and calnexin/calreticulin in glycoprotein folding, the role of conventional ER mannosidase I in concert with the mannosidase EDEM1 in handling and routing of misfolded glycoproteins, and how the bifunctional OS-9 provides a link to the ER dislocon for degradation.

67 citations


Journal ArticleDOI
TL;DR: Three tissue-inspired 3D environments combining multicellularglioma spheroids and reconstituted microanatomic features of vascular and interstitial brain structures enable a range of invasion modes used by glioma cells and will be applicable for mechanistic analysis and targeting of gliomas cell dissemination.
Abstract: Diffuse invasion of glioma cells into the brain parenchyma leads to nonresectable brain tumors and poor prognosis of glioma disease. In vivo, glioma cells can adopt a range of invasion strategies and routes, by moving as single cells, collective strands and multicellular networks along perivascular, perineuronal and interstitial guidance cues. Current in vitro assays to probe glioma cell invasion, however, are limited in recapitulating the modes and adaptability of glioma invasion observed in brain parenchyma, including collective behaviours. To mimic in vivo-like glioma cell invasion in vitro, we here applied three tissue-inspired 3D environments combining multicellular glioma spheroids and reconstituted microanatomic features of vascular and interstitial brain structures. Radial migration from multicellular glioma spheroids of human cell lines and patient-derived xenograft cells was monitored using (1) reconstituted basement membrane/hyaluronan interfaces representing the space along brain vessels; (2) 3D scaffolds generated by multi-layered mouse astrocytes to reflect brain interstitium; and (3) freshly isolated mouse brain slice culture ex vivo. The invasion patterns in vitro were validated using histological analysis of brain sections from glioblastoma patients and glioma xenografts infiltrating the mouse brain. Each 3D assay recapitulated distinct aspects of major glioma invasion patterns identified in mouse xenografts and patient brain samples, including individually migrating cells, collective strands extending along blood vessels, and multicellular networks of interconnected glioma cells infiltrating the neuropil. In conjunction, these organotypic assays enable a range of invasion modes used by glioma cells and will be applicable for mechanistic analysis and targeting of glioma cell dissemination.

65 citations


Journal ArticleDOI
TL;DR: In this article, the authors compared Caco-2 and T84 epithelial cells and found that T84 cells exhibited a dose-responsive improvement of barrier function towards butyrate.
Abstract: Colonic adenocarcinoma-derived Caco-2 and T84 epithelial cell lines are frequently used as in vitro model systems of functional epithelial barriers. Both are utilised interchangeably despite evidence that differentiated Caco-2 cells are more reminiscent of small intestinal enterocytes than of colonocytes, whereas differentiated T84 cells are less well characterised. The aim of this study was, therefore, to further characterise and compare differentiated Caco-2 and T84 cells. The objectives were to (1) compare the brush border morphology, (2) measure the expression of enterocyte- and colonocyte-specific genes and (3) compare their response to butyrate, which is dependent on the monocarboxylate transporter 1 (MCT1), an apical protein expressed primarily in colonocytes. T84 microvilli were significantly shorter than those of Caco-2 cells, which is a characteristic difference between small intestinal enterocytes and colonocytes. Also, enterocyte-associated brush border enzymes expressed in differentiated Caco-2 cells were not increased during T84 maturation, whereas colonic markers such as MCT1 were more abundant in differentiated T84 cells compared to differentiated Caco-2 cells. Consequently, T84 cells displayed a dose-responsive improvement of barrier function towards butyrate, which was absent in Caco-2 cells. On the other hand, differences in epithelial toll-like receptor expression between Caco-2 and T84 monolayers did not result in a corresponding differential functional response. We conclude that differentiated Caco-2 and T84 cells have distinct morphological, biochemical and functional characteristics, suggesting that T84 cells do not acquire the biochemical signature of mature small intestinal enterocytes like Caco-2 cells, but retain much of their original colonic characteristics throughout differentiation. These findings can help investigators select the appropriate intestinal epithelial cell line for specific in vitro research purposes.

Journal ArticleDOI
TL;DR: The results reveal that ENaC is expressed strongly in all epidermal layers except stratum corneum, and also in the sebaceous glands, eccrine glands, arrector pili smooth muscle cells, and intra-dermal adipocytes, and co-localized with F-actin.
Abstract: A major function of the skin is the regulation of body temperature by sweat secretions. Sweat glands secrete water and salt, especially NaCl. Excreted water evaporates, cooling the skin surface, and Na+ ions are reabsorbed by the epithelial sodium channels (ENaC). Mutations in ENaC subunit genes lead to a severe multi-system (systemic) form of pseudohypoaldosteronism (PHA) type I, characterized by salt loss from aldosterone target organs, including sweat glands in the skin. In this study, we mapped the sites of localization of ENaC in the human skin by confocal microscopy using polyclonal antibodies generated against human αENaC. Our results reveal that ENaC is expressed strongly in all epidermal layers except stratum corneum, and also in the sebaceous glands, eccrine glands, arrector pili smooth muscle cells, and intra-dermal adipocytes. In smooth muscle cells and adipocytes, ENaC is co-localized with F-actin. No expression of ENaC was detected in the dermis. CFTR is strongly expressed in sebaceous glands. In epidermal appendages noted, except the eccrine sweat glands, ENaC is mainly located in the cytoplasm. In the eccrine glands and ducts, ENaC and CFTR are located on the apical side of the membrane. This localization of ENaC is compatible with ENaC's role in salt reabsorption. PHA patients may develop folliculitis, miliaria rubra, and atopic dermatitis-like skin lesions, due to sweat gland duct occlusion and inflammation of eccrine glands as a result of salt accumulation.

Journal ArticleDOI
TL;DR: NFAH can be used to generate biodegradable and biologically active constructs for cartilage tissue engineering applications, however, further cell differentiation, biomechanical and in vivo studies are still needed.
Abstract: The generation of elastic cartilage substitutes for clinical use is still a challenge. In this study, we investigated the possibility of encapsulating human elastic cartilage-derived chondrocytes (HECDC) in biodegradable nanostructured fibrin-agarose hydrogels (NFAH). Viable HECDC from passage 2 were encapsulated in NFAH and maintained in culture conditions. Constructs were harvested for histochemical and immunohistochemical analyses after 1, 2, 3, 4 and 5 weeks of development ex vivo. Histological results demonstrated that it is possible to encapsulate HECDC in NFAH, and that HECDC were able to proliferate and form cells clusters expressing S-100 and vimentin. Additionally, histochemical and immunohistochemical analyses of the extracellular matrix (ECM) showed that HECDC synthetized different ECM molecules (type I and II collagen, elastic fibers and proteoglycans) in the NFAH ex vivo. In conclusion, this study suggests that NFAH can be used to generate biodegradable and biologically active constructs for cartilage tissue engineering applications. However, further cell differentiation, biomechanical and in vivo studies are still needed.

Journal ArticleDOI
TL;DR: A proof-of-principle manner work with sections of paraffin-embedded tissue and labeled adhesion/growth-regulatory galectins, harboring one or two types of lectin domain shows that this assay enables comprehensive analysis of the galectin network in serial tissue sections to determine overlaps and regional differences in inhibitory profiles.
Abstract: R.R. thanks the Natural Sciences and Engineering Research Council of Canada (NSERC) for a Canadian Research Chair for financial support. P.V.M. thanks Science Foundation Ireland for financial support (08/SRC/B1393 and 12/IA/1398), the latter being co-funded under the European Regional Development Fund under Grant No. 14/SP/2710. H.-J.G. thanks the excellence program of the Ludwig-Maximilians-University Munich, the Verein zur Forderung des biologisch-technologischen Fortschritts in der Medizin e.V. (Heidelberg, Germany) and the EC (for ITN network funding; GLYCOPHARM) for generous support and also Drs. B. Friday, G. Ippans and A. Leddoz for inspiring discussions.

Journal ArticleDOI
TL;DR: This study is the first to demonstrate the early presence of CD24 in the placenta cytotrophoblast layers, placental bed and maternal uterine glands, suggesting a possible role in mediating immune tolerance at the fetal–maternal interface.
Abstract: During pregnancy, the fetal–maternal interface establishes immune tolerance between the fetus and the mother. CD24, a mucin-like glycoprotein expressed at the surface of hematopoietic cells and diverse tumor cells, is known to interact with the sialic acid-binding immunoglobulin-type lectins (Siglecs). This interaction was assessed as a candidate complex for the immune suppression response in the placenta. CD24 was affinity purified from term placenta and characterized by SDS-PAGE, Western blot and ELISA. Binding of recombinant Siglecs to placental CD24 was evaluated by ELISA. The expression of CD24 and Siglec-10 in first trimester placental tissues was investigated by immunohistochemistry and immunofluorescence. Placental CD24 had an apparent molecular weight of 30–70 kDa consistent with its high degree of N- and O-linked glycosylation. EDTA-sensitive CD24–Siglec-10 interaction via the terminal sialic acid glycan residues of CD24 was observed. CD24 did not interact with Siglec-3 or Siglec-5. During the first trimester, and already in gestational week (GA) 8, CD24 showed high expression in villous and extravillous cytotrophoblasts. There was also a mild expression in stromal cells, while syncytiotrophoblasts were negative. Co-localization of CD24 with Siglec-10 was observed in endometrial glands and in first trimester decidual cells in close vicinity to extracellular trophoblasts. This study is the first to demonstrate the early presence of CD24 in the placenta cytotrophoblast layers, placental bed and maternal uterine glands. The presence of the CD24–Siglec-10 in these regions of fetal–maternal interactions suggests a possible role in mediating immune tolerance at the fetal–maternal interface.

Journal ArticleDOI
TL;DR: This study compared standard metachromatic method for mast cells with enzyme histochemical detection of chloroacetyl esterase and with immunohistochemical Detection of tryptase and chymase in human and rodent tissues to characterize different mast cell populations using the up-to-date methods of their identification.
Abstract: Mast cells are ubiquitous throughout the human tissues and play an essential role in physiology and pathology. For evaluation of patients with pathological conditions, mast cells were primarily detected using metachromatic staining with toluidine blue. In the last decades, the staining arsenal of pathologists was enriched with enzyme histochemical and immunohistochemical methods, and it was established that depending on species and tissue localization mast cells are not similar both in appearance and function. The aim of this study was to characterize different mast cell populations using the up-to-date methods of their identification. We compared standard metachromatic method for mast cells with enzyme histochemical detection of chloroacetyl esterase and with immunohistochemical detection of tryptase and chymase in human and rodent tissues. Combination of these methods allowed us to assay quantitatively mast cell populations in different organs of humans and rodents. Furthermore, we assessed the appropriate implementation of each of these methods for mast cell identification in diagnostic labs.

Journal ArticleDOI
TL;DR: The data indicate that cytoglobin and adipophilin are markers of qPSCs in the normal human pancreas, however, the use of adipophILin as a qPSC marker may be limited due to its high dependence on optimal PATI.
Abstract: Pancreatic stellate cells (PSCs) play a central role as source of fibrogenic cells in pancreatic cancer and chronic pancreatitis. In contrast to quiescent hepatic stellate cells (qHSCs), a specific marker for quiescent PSCs (qPSCs) that can be used in formalin-fixed and paraffin embedded (FFPE) normal human pancreatic tissue has not been identified. The aim of this study was to identify a marker enabling the identification of qPSCs in normal human FFPE pancreatic tissue. Immunohistochemical (IHC), double-IHC, immunofluorescence (IF) and double-IF analyses were carried out using a tissue microarray consisting of cores with normal human pancreatic tissue. Cores with normal human liver served as control. Antibodies directed against adipophilin, α-SMA, CD146, CRBP-1, cytoglobin, desmin, GFAP, nestin, S100A4 and vinculin were examined, with special emphasis on their expression in periacinar cells in the normal human pancreas and perisinusoidal cells in the normal human liver. The immunolabelling capacity was evaluated according to a semiquantitative scoring system. Double-IF of the markers of interest together with markers for other periacinar cells was performed. Moreover, the utility of histochemical stains for the identification of human qPSCs was examined, and their ultrastructure was revisited by electron microscopy. Adipophilin, CRBP-1, cytoglobin and vinculin were expressed in qHSCs in the liver, whereas cytoglobin and adipophilin were expressed in qPSCs in the pancreas. Adipophilin immunohistochemistry was highly dependent on the preanalytical time interval (PATI) from removal of the tissue to formalin fixation. Cytoglobin, S100A4 and vinculin were expressed in periacinar fibroblasts (FBs). The other examined markers were negative in human qPSCs. Our data indicate that cytoglobin and adipophilin are markers of qPSCs in the normal human pancreas. However, the use of adipophilin as a qPSC marker may be limited due to its high dependence on optimal PATI. Cytoglobin, on the other hand, is a sensitive marker for qPSCs but is expressed in FBs as well.

Journal ArticleDOI
TL;DR: Topically applied TPA was applied onto the dorsal skin of 2-month-old C57BL/6 female mice to examine the activity of hair follicle stem cells and alteration of signaling pathways during hair regeneration and indicated that TPA-induced hair follicles regeneration is associated with activation of Akt and Wnt/β-catenin signaling.
Abstract: Regeneration of hair follicles relies on activation of hair follicle stem cells during telogen to anagen transition process in hair cycle. This process is rigorously controlled by intrinsic and environmental factors. 12-o-tetradecanoylphorbol-13-acetate (TPA), a tumor promoter, accelerates reentry of hair follicles into anagen phase. However, it is unclear that how TPA promotes the hair regeneration. In the present study, we topically applied TPA onto the dorsal skin of 2-month-old C57BL/6 female mice to examine the activity of hair follicle stem cells and alteration of signaling pathways during hair regeneration. We found that refractory telogen hair follicles entered anagen prematurely after TPA treatment, with the enhanced proliferation of CD34-positive hair follicle stem cells. Meanwhile, we observed Akt signaling was activated in epidermis, hair infundibulum, bulge and hair bulb, and Wnt signaling was also activated after hair follicle stem cells proliferation. Importantly, after overexpression of DKK1, a specific Wnt signaling inhibitor, the accelerated reentry of hair follicles into anagen induced by TPA was abolished. Our data indicated that TPA-induced hair follicle regeneration is associated with activation of Akt and Wnt/β-catenin signaling.

Journal ArticleDOI
TL;DR: The roles of glycans in neuroscience are far from being completely understood, though the cases presented here underscore the importance and potential of carbohydrates to establish with precision key molecular mechanisms of the physiology of the nervous system.
Abstract: Carbohydrate-related interactions are necessary for the correct development and function of the nervous system. As we illustrate with several examples, those interactions are controlled by carbohydrate-modifying enzymes and by carbohydrate-binding proteins that regulate a plethora of complex axonal processes. Among others, glycan-related proteins as sialidase Neu3 or galectins-1, -3, and -4 play central roles in the determination of axonal fate, axon growth, guidance and regeneration, as well as in polarized axonal glycoprotein transport. In addition, myelination is also highly dependent on glycans, and the stabilization of myelin architecture requires the interaction of the myelin-associated glycoprotein (siglec-4) with gangliosides in the axonal membrane. The roles of glycans in neuroscience are far from being completely understood, though the cases presented here underscore the importance and potential of carbohydrates to establish with precision key molecular mechanisms of the physiology of the nervous system. New specific applications in diagnosis as well as the definition of new molecular targets to treat neurological diseases related to lectins and/or glycans are envisioned in the future.

Journal ArticleDOI
TL;DR: Spectral confocal microscopy allows for the subcellular structural analysis of proteins in highly autofluorescent human lung tissue and gives a structural explanation for alveolar barrier disruption in severe pneumococcal pneumonia.
Abstract: Loss of alveolar barrier function with subsequent respiratory failure is a hallmark of severe pneumonia. Although junctions between endo- and epithelial cells regulate paracellular fluid flux, little is known about their composition and regulation in the human alveolar compartment. High autofluorescence of human lung tissue in particular complicates the determination of subcellular protein localization. By comparing conventional channel mode confocal imaging with spectral imaging and linear unmixing, we demonstrate that background fluorescent spectra and fluorophore signals could be rigorously separated resulting in complete recovery of the specific signal at a high signal-to-noise ratio. Using this technique and Western blotting, we show the expression patterns of tight junction proteins occludin, ZO-1 as well as claudin-3, -4, -5 and -18 and adherence junction protein VE-cadherin in naive or Streptococcus pneumoniae-infected human lung tissue. In uninfected tissues, occludin and ZO-1 formed band-like structures in alveolar epithelial cells type I (AEC I), alveolar epithelial cells type II (AEC II) and lung capillaries, whereas claudin-3, -4 and -18 were visualised in AEC II. Claudin-5 was detected in the endothelium only. Claudin-3, -5, -18 displayed continuous band-like structures, while claudin-4 showed a dot-like expression. Pneumococcal infection reduced alveolar occludin, ZO-1, claudin-5 and VE-cadherin but did not change the presence of claudin-3, -4 and -18. Spectral confocal microscopy allows for the subcellular structural analysis of proteins in highly autofluorescent human lung tissue. The thereby observed deterioration of lung alveolar junctional organisation gives a structural explanation for alveolar barrier disruption in severe pneumococcal pneumonia.

Journal ArticleDOI
TL;DR: The results demonstrate for the first time the presence of extrinsic apoptotic components in mouse limb development and indicate novel candidates in the molecular network accompanying the regression of interdigital tissue during digitalisation.
Abstract: Elimination of the interdigital web is considered to be the classical model for assessing apoptosis. So far, most of the molecules described in the process have been connected to the intrinsic (mitochondrial) pathway. The extrinsic (receptor mediated) apoptotic pathway has been rather neglected, although it is important in development, immunomodulation and cancer therapy. This work aimed to investigate factors of the extrinsic apoptotic machinery during interdigital regression with a focus on three crucial initiators: Fas, Fas ligand and caspase-8. Immunofluorescent analysis of mouse forelimb histological sections revealed abundant expression of these molecules prior to digit separation. Subsequent PCR Array analyses indicated the expression of several markers engaged in the extrinsic pathway. Between embryonic days 11 and 13, statistically significant increases in the expression of Fas and caspase-8 were observed, along with other molecules involved in the extrinsic apoptotic pathway such as Dapk1, Traf3, Tnsf12, Tnfrsf1A and Ripk1. These results demonstrate for the first time the presence of extrinsic apoptotic components in mouse limb development and indicate novel candidates in the molecular network accompanying the regression of interdigital tissue during digitalisation.

Journal ArticleDOI
TL;DR: Results suggest that C-terminal Dmp1 is phosphorylated within osteocytes and then secreted into the pericanalicular matrix of mineralized bone, which may play an important role in bone mineralization by recruiting calcium ions.
Abstract: Dmp1 is an acidic phosphoprotein that is specifically expressed in osteocytes. During the secretory process, the full-length, precursor Dmp1 is cleaved into N- and C-terminal fragments. C-terminal Dmp1 is phosphorylated, becoming a highly negatively charged domain that may assist in bone mineralization by recruiting calcium ions and influencing subsequent mineral deposition. It has been recently reported that the Golgi-localized protein kinase Fam20C phosphorylates Dmp1 in vitro. To investigate this phosphorylation in situ, we determined the locations of phosphorylated Dmp1 and Fam20C in rat bones using immunohistochemistry. During osteocytogenesis, osteoblastic, osteoid, and young osteocytes (but not old osteocytes) express Dmp1 mRNA and contain Dmp1 protein in the Golgi apparatus. These Dmp1-producing cells were distributed across the surface layer of cortical bone. Using immunofluorescence, we found that N- and C-terminal Dmp1 fragments were predominantly distributed along the lacunar walls and canaliculi of mineralized bone, respectively, but were not present in the osteoid matrix. We also found that Fam20C and its substrate, C-terminal Dmp1, colocalized in the Golgi of osteoblastic, osteoid, and young osteocytes. Furthermore, phosphorylated C-terminal Dmp1 was present in the Golgi of young osteocytes. Double-labeling immunoelectron microscopy revealed that phosphorylated C-terminal Dmp1 localized to the canalicular wall in mineralized bone. These findings suggest that C-terminal Dmp1 is phosphorylated within osteocytes and then secreted into the pericanalicular matrix of mineralized bone. Phosphorylated, negatively charged C-terminal Dmp1 in the pericanalicular matrix may play an important role in bone mineralization by recruiting calcium ions.

Journal ArticleDOI
TL;DR: It is proposed that developmental stage-specific Grhl3 plays a significant role in CVP morphogenesis not by just disruption of epithelial integrity but by regulating epithelial cell proliferation, apoptosis, and migration via Shh, Wnt, and apoptosis signaling during mouse embryogenesis.
Abstract: Grainyhead-like 3 (Grhl3) is a transcription factor involved in epithelial morphogenesis. In the present study, we evaluated the developmental role of Grhl3 in structural formation of the circumvallate papilla (CVP), which undergoes dynamic morphological changes during organogenesis. The specific expression pattern of Grhl3 was examined in the CVP-forming region, specifically in the apex and epithelial stalk from E13.5 to E15.5 using in situ hybridization. To determine the role of Grhl3 in epithelial morphogenesis of the CVP, we employed an in vitro tongue culture method, wherein E13.5 tongue were isolated and cultured for 2 days after knocking down of Grhl3. Knockdown of Grhl3 resulted in significant changes to the epithelial structure of the CVP, such that the apical region of the CVP was smaller in size, and the epithelial stalks were more deeply invaginated. To define the mechanisms underlying these morphological alterations, we examined cell migration, proliferation, and apoptosis using phalloidin staining, immunohistochemistry against Ki67, ROCK1, and E-cadherin, and a TUNEL assay, respectively. These results revealed an increase in proliferation, a reduction in apoptosis, and an altered pattern of cytoskeletal formation in the CVP-forming epithelium, following Grhl3 knockdown. In addition, there were changes in the specific expression patterns of signaling and apoptosis-related molecules such as Axin2, Bak1, Bcl2, Casp3, Casp8, Ctnnb1, Cnnd1, Gli3, Lef1, Ptch1, Rock1, Shh, and Wnt11, which could explain the altered cellular and morphological events. Based on these results, we propose that developmental stage-specific Grhl3 plays a significant role in CVP morphogenesis not by just disruption of epithelial integrity but by regulating epithelial cell proliferation, apoptosis, and migration via Shh, Wnt, and apoptosis signaling during mouse embryogenesis.

Journal ArticleDOI
TL;DR: There is an inverse relationship between myocardial expression of Cx43, including its functional phosphorylated forms, and susceptibility of male rat hearts to VF in condition of altered thyroid status, which partly ameliorated adverse changes caused by excess of thyroid hormones.
Abstract: We aimed to study the impact of altered thyroid status on myocardial expression of electrical coupling protein connexin-43 (Cx43), the susceptibility of rats to ventricular fibrillation (VF) and the effects of antioxidant-rich red palm oil (RPO). Adult male and female euthyroid, hyperthyroid (treated with T3/T4), hypothyroid (treated with methimazole) Wistar rats supplemented or not with RPO for 6 weeks were used. Function of isolated perfused heart and VF threshold were determined. Left ventricular tissue was used for assessment of mRNA and protein levels of Cx43, its phosphorylated forms and topology. Protein kinase C signaling (PKC) and gene transcripts of some proteins related to cardiac arrhythmias were assessed. Hyperthyroid state resulted in decrease of total and phosphorylated forms of Cx43 and suppression of PKC-e expression in males and females, decrease of Cx43 mRNA in females, decrease of VF threshold and increase of functional parameters in male rat hearts. In contrast, hypothyroid status resulted in the increase of total and phosphorylated forms of Cx43, enhancement PKC-e expression in males and females, increase of Cx43 mRNA in females, increase of VF threshold and decrease of functional parameters in male rat hearts. Function of the heart was partially normalized by RPO intake, which also enhanced myocardial Cx43 and PKC-e expression as well as increased VF threshold in hyperthyroid male rats. We conclude that there is an inverse relationship between myocardial expression of Cx43, including its functional phosphorylated forms, and susceptibility of male rat hearts to VF in condition of altered thyroid status. RPO intake partly ameliorated adverse changes caused by excess of thyroid hormones.

Journal ArticleDOI
TL;DR: It is shown that HA is able to enhance the expression of extravillous trophoblast markers and also to induce migration of JEG-3 cells, the latter mediated by RHAMM as well as PI3K and MAPK pathways, which indicate a novel regulatory mechanism for CC cell biology.
Abstract: Hyaluronan (HA) is the major glycosaminoglycan present in the extracellular matrix. It is produced by some tumours and promotes proliferation, differentiation and migration among others cellular processes. Gestational trophoblastic disease (GTD) is composed by non-tumour entities, such as hydatidiform mole (HM), which is the most common type of GTD and also malignant entities such as choriocarcinoma (CC) and placental site trophoblastic tumour (PSTT), being CC the most aggressive tumour. Although there is a growing understanding of GTD biology, the role of HA in the pathogenesis of this group of diseases remains largely unknown. The aim of this work was to study the role of HA in the pathogenesis of GTD by defining the expression pattern of HA and its receptors CD44 and RHAMM, as well as to determine if HA can modulate proliferation, differentiation and migration of CC cells. Receptors and signalling pathways involved were also analyzed. We demonstrated that HA and RHAMM are differently expressed among GTD entities and even among trophoblast subtypes. We also showed that HA is able to enhance the expression of extravillous trophoblast markers and also to induce migration of JEG-3 cells, the latter mediated by RHAMM as well as PI3K and MAPK pathways. These findings indicate a novel regulatory mechanism for CC cell biology and also contribute to the understanding of GTD pathophysiology.

Journal ArticleDOI
TL;DR: Taking all of the data into consideration, it is recommended that DNase I and citrate buffer may offer less harsh alternatives to hydrochloric acid for DNA denaturation in the BrdU staining protocol.
Abstract: all resulted in good nuclear immunostaining with the BrdU antibody and acceptable tissue morphology. However, when comparing the effect of the various denaturation agents on cell cycle parameters and phase durations of EGL cells they noted differences in the detection of BrdU-stained cells amongst the reagents, indicating that histological procedures may affect the reproducibility of quantitative analysis of proliferating cells. Taking all of their data into consideration, they recommend that DNase I and citrate buffer may offer less harsh alternatives to hydrochloric acid for DNA denaturation in the BrdU staining protocol.

Journal ArticleDOI
TL;DR: It is shown that rotenone treatment of COS-7 cells alters peroxisome morphology and distribution, but this effect is related to its microtubule-destabilising activity rather than to the generation of oxidative stress.
Abstract: Peroxisomes and mitochondria in mammalian cells are closely linked subcellular organelles, which maintain a redox-sensitive relationship. Their interplay and role in ROS signalling are supposed to impact on age-related and degenerative disorders. Whereas the generation of peroxisome-derived oxidative stress can affect mitochondrial morphology and function, little is known about the impact of mitochondria-derived oxidative stress on peroxisomes. Here, we investigated the effect of the mitochondrial complex I inhibitor rotenone on peroxisomal and mitochondrial membrane dynamics. We show that rotenone treatment of COS-7 cells alters peroxisome morphology and distribution. However, this effect is related to its microtubule-destabilising activity rather than to the generation of oxidative stress. Rotenone also induced alterations in mitochondrial morphology, which—in contrast to its effect on peroxisomes—were dependent on the generation of ROS but independent of its microtubule-active properties. The importance of our findings for the peroxisome-mitochondria redox relationship and the interpretation of in cellulo and in vivo studies with rotenone, which is widely used to study Parkinson’s disease, are discussed.

Journal ArticleDOI
TL;DR: Notch signaling plays a critical role in TGF-β1-induced EMT in vitro and mice PVR model, which provides a novel insight into the pathogenesis of PVR, and specific inhibition of Notch signaling by γ-secretase inhibitor may provide a new approach for the prevention of Pvr.
Abstract: Elevated Notch signaling has been verified in a large range of fibrotic diseases developed in the kidney, liver, and lung, inducing the development of the epithelial–mesenchymal transition (EMT). The aim of this study was to observe the involvement of Notch signaling in the EMT of retinal pigment epithelial (RPE) cells and the pathogenesis of proliferative vitreoretinopathy (PVR). In vitro cultivated human RPE cells (ARPE-19) were treated with 10 ng/mL transforming growth factor (TGF)-β1 for 24, 48, and 72 h. The expression levels of ZO-1, α-SMA, vimentin, Notch1 intracellular domain (NICD1), and Hes-1 were evaluated with quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence staining or Western blot. TGF-β1 induced EMT and the activation of Notch signaling in ARPE-19 cells. To examine the effect of Notch inhibition on TGF-β1-induced EMT and PVR formation, ARPE-19 cells were preincubated with γ-secretase inhibitor LY411575 before TGF-β1 treatment. Mouse PVR model was used for in vivo study. ARPE-19 cells were injected intravitreously with or without the LY411575 to examine the effect of Notch inhibition on PVR formation. LY411575 significantly attenuated EMT by inhibiting the Notch signaling activation in vitro. PVR was induced by intravitreal injections of ARPE-19 cells, while LY411575 inhibited mouse PVR formation in vivo. Notch signaling plays a critical role in TGF-β1-induced EMT in vitro and mice PVR model, which provides a novel insight into the pathogenesis of PVR. The specific inhibition of Notch signaling by γ-secretase inhibitor may provide a new approach for the prevention of PVR.

Journal ArticleDOI
H A Owida1, T De Las Heras Ruiz1, A Dhillon1, Ying Yang1, Nicola J. Kuiper1 
TL;DR: The co-culture of MSCs with chondrons appeared to decelerate the loss of the PCM as determined by collagen VI expression, whilst the expression of high-temperature requirement serine protease A1 (HtrA1) demonstrated an inverse relationship to that of the collagen VI.
Abstract: Adult articular chondrocytes are surrounded by a pericellular matrix (PCM) to form a chondron. The PCM is rich in hyaluronan, proteoglycans, and collagen II, and it is the exclusive location of collagen VI in articular cartilage. Collagen VI anchors the chondrocyte to the PCM. It has been suggested that co-culture of chondrons with mesenchymal stromal cells (MSCs) might enhance extracellular matrix (ECM) production. This co-culture study investigates whether MSCs help to preserve the PCM and increase ECM production. Primary bovine chondrons or chondrocytes or rat MSCs were cultured alone to establish a baseline level for ECM production. A xenogeneic co-culture monolayer model using rat MSCs (20, 50, and 80%) was established. PCM maintenance and ECM production were assessed by biochemical assays, immunofluorescence, and histological staining. Co-culture of MSCs with chondrons enhanced ECM matrix production, as compared to chondrocyte or chondron only cultures. The ratio 50:50 co-culture of MSCs and chondrons resulted in the highest increase in GAG production (18.5 ± 0.54 pg/cell at day 1 and 11 ± 0.38 pg/cell at day 7 in 50:50 co-culture versus 16.8 ± 0.61 pg/cell at day 1 and 10 ± 0.45 pg/cell at day 7 in chondron monoculture). The co-culture of MSCs with chondrons appeared to decelerate the loss of the PCM as determined by collagen VI expression, whilst the expression of high-temperature requirement serine protease A1 (HtrA1) demonstrated an inverse relationship to that of the collagen VI. Together, this implies that MSCs directly or indirectly inhibited HtrA1 activity and the co-culture of MSCs with chondrons enhanced ECM synthesis and the preservation of the PCM.

Journal ArticleDOI
TL;DR: CML accumulation in tumors was positively correlated with the presence of estrogen receptor alpha, the postmenopausal state, and age and is a potentially predictive marker for the treatment of breast cancer patients with tamoxifen or chemotherapy.
Abstract: Advanced glycation end products (AGEs) accumulate as a result of high concentrations of reactive aldehydes, oxidative stress, and insufficient degradation of glycated proteins. AGEs are therefore accepted biomarkers for aging, diabetes, and several degenerative diseases. Due to the Warburg effect and increased oxidative stress, cancer cells frequently accumulate significant amounts of AGEs. As the accumulation of AGEs may reflect the metabolic state and receptor signaling, we evaluated the potential prognostic and predictive value of this biomarker. We used immunohistochemistry to determine the AGE Ne-carboxymethyl lysine (CML) in 213 mammary carcinoma samples and Western blotting to detect AGEs in cell cultures. Whereas no significant correlation between hormone receptor status and CML was observed in cell lines, CML accumulation in tumors was positively correlated with the presence of estrogen receptor alpha, the postmenopausal state, and age. A negative correlation was found for grade III carcinomas and triple-negative cases. In a retrospective Kaplan–Meier survival analysis, there was a statistical trend that high CML accumulation correlated with a more favorable prognosis (relapse-free survival, RFS) under tamoxifen treatment (p = 0.1). In estrogen receptor-negative cases, the high CML content was significantly correlated with an unfavorable outcome (RFS) of chemotherapy (p = 0.046). CML is a therefore a potentially predictive marker for the treatment of breast cancer patients with tamoxifen or chemotherapy.