scispace - formally typeset
Search or ask a question
JournalISSN: 1059-7794

Human Mutation 

Wiley
About: Human Mutation is an academic journal published by Wiley. The journal publishes majorly in the area(s): Missense mutation & Mutation. It has an ISSN identifier of 1059-7794. Over the lifetime, 6185 publications have been published receiving 316094 citations.
Topics: Missense mutation, Mutation, Exon, Population, Gene


Papers
More filters
Journal ArticleDOI
TL;DR: Suggestions are presented for reporting complex mutations in a unified manner for efficient and accurate reporting, testing, and curation of the growing number of disease mutations and useful polymorphisms being discovered in the human genome.
Abstract: Consistent gene mutation nomenclature is essential for efficient and accurate reporting, testing, and curation of the growing number of disease mutations and useful polymorphisms being discovered in the human genome. While a codified mutation nomenclature system for simple DNA lesions has now been adopted broadly by the medical genetics community, it is inherently difficult to represent complex mutations in a unified manner. In this article, suggestions are presented for reporting just such complex mutations.

1,744 citations

Journal ArticleDOI
TL;DR: Since its inception, HGMD has been expanded to include cDNA reference sequences for more than 87% of listed genes, splice junction sequences, disease‐associated and functional polymorphisms, as well as links to data present in publicly available online locus‐specific mutation databases.
Abstract: The Human Gene Mutation Database (HGMD) constitutes a comprehensive core collection of data on germ-line mutations in nuclear genes underlying or associated with human inherited disease (www.hgmd.org). Data catalogued includes: single base-pair substitutions in coding, regulatory and splicing-relevant regions; micro-deletions and micro-insertions; indels; triplet repeat expansions as well as gross deletions; insertions; duplications; and complex rearrangements. Each mutation is entered into HGMD only once in order to avoid confusion between recurrent and identical-by-descent lesions. By March 2003, the database contained in excess of 39,415 different lesions detected in 1,516 different nuclear genes, with new entries currently accumulating at a rate exceeding 5,000 per annum. Since its inception, HGMD has been expanded to include cDNA reference sequences for more than 87% of listed genes, splice junction sequences, disease-associated and functional polymorphisms, as well as links to data present in publicly available online locus-specific mutation databases. Although HGMD has recently entered into a licensing agreement with Celera Genomics (Rockville, MD), mutation data will continue to be made freely available via the Internet.

1,644 citations

Journal ArticleDOI
TL;DR: This complete mtDNA tree includes previously published as well as newly identified haplogroups, is easily navigable, will be continuously and regularly updated in the future, and is online available at http://www.phylotree.org.
Abstract: Human mitochondrial DNA is widely used as tool in many fields including evolutionary anthropology and population history, medical genetics, genetic genealogy, and forensic science. Many applications require detailed knowledge about the phylogenetic relationship of mtDNA variants. Although the phylogenetic resolution of global human mtDNA diversity has greatly improved as a result of increasing sequencing efforts of complete mtDNA genomes, an updated overall mtDNA tree is currently not available. In order to facilitate a better use of known mtDNA variation, we have constructed an updated comprehensive phylogeny of global human mtDNA variation, based on both coding- and control region mutations. This complete mtDNA tree includes previously published as well as newly identified haplogroups, is easily navigable, will be continuously and regularly updated in the future, and is online available at http://www.phylotree.org. © 2008 Wiley-Liss, Inc.

1,628 citations

Journal ArticleDOI
TL;DR: It is shown that loss of transactivation capacity is a key factor for the selection of missense mutations, and that difference in mutation frequencies is closely related to nucleotide substitution rates along TP53 coding sequence, which provides new insights into the factors that shape mutation patterns and influence mutation phenotype.
Abstract: The tumor suppressor gene TP53 is frequently mutated in human cancers More than 75% of all mutations are missense substitutions that have been extensively analyzed in various yeast and human cell assays The International Agency for Research on Cancer (IARC) TP53 database (www-p53iarcfr) compiles all genetic variations that have been reported in TP53 Here, we present recent database developments that include new annotations on the functional properties of mutant proteins, and we perform a systematic analysis of the database to determine the functional properties that contribute to the occurrence of mutational "hotspots" in different cancer types and to the phenotype of tumors This analysis showed that loss of transactivation capacity is a key factor for the selection of missense mutations, and that difference in mutation frequencies is closely related to nucleotide substitution rates along TP53 coding sequence An interesting new finding is that in patients with an inherited missense mutation, the age at onset of tumors was related to the functional severity of the mutation, mutations with total loss of transactivation activity being associated with earlier cancer onset compared to mutations that retain partial transactivation capacity Furthermore, 80% of the most common mutants show a capacity to exert dominant-negative effect (DNE) over wild-type p53, compared to only 45% of the less frequent mutants studied, suggesting that DNE may play a role in shaping mutation patterns These results provide new insights into the factors that shape mutation patterns and influence mutation phenotype, which may have clinical interest

1,589 citations

Journal ArticleDOI
TL;DR: Online Mendelian Inheritance In Man is a public database of bibliographic information about human genes and genetic disorders that is increasingly becoming a major gateway for clinicians, students, and basic researchers to the ever‐growing literature and resources of human genetics.
Abstract: Online Mendelian Inheritance In Man (OMIM) is a public database of bibliographic information about human genes and genetic disorders. Begun by Dr. Victor McKusick as the authoritative reference Mendelian Inheritance in Man, it is now distributed electronically by the National Center for Biotechnology Information (NCBI). Material in OMIM is derived from the biomedical literature and is written by Dr. McKusick and his colleagues at Johns Hopkins University and elsewhere. Each OMIM entry has a full text summary of a genetic phenotype and/or gene and has copious links to other genetic resources such as DNA and protein sequence, PubMed references, mutation databases, approved gene nomenclature, and more. In addition, NCBI's neighboring feature allows users to identify related articles from PubMed selected on the basis of key words in the OMIM entry. Through its many features, OMIM is increasingly becoming a major gateway for clinicians, students, and basic researchers to the ever-growing literature and resources of human genetics.

1,396 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202315
2022177
2021143
2020191
2019203
2018195