scispace - formally typeset
Search or ask a question

Showing papers in "Hydrogeology Journal in 2016"


Journal ArticleDOI
TL;DR: In this paper, the authors used the Central Valley Hydrologic Model (CVM) to evaluate the effects of subsidence in the San Joaquin Valley and proposed a management strategy to mitigate adverse impacts due to subsidence.
Abstract: The Central Valley in California (USA) covers about 52,000 km2 and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007–2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.

199 citations


Journal ArticleDOI
TL;DR: A review of previous works that have focused on the estimation of equivalent permeability of two-dimensional (2D) discrete fracture networks (DFNs) considering the influences of geometric properties of fractured rock masses is provided in this article.
Abstract: Fracture networks play a more significant role in conducting fluid flow and solute transport in fractured rock masses, comparing with that of the rock matrix. Accurate estimation of the permeability of fracture networks would help researchers and engineers better assess the performance of projects associated with fluid flow in fractured rock masses. This study provides a review of previous works that have focused on the estimation of equivalent permeability of two-dimensional (2-D) discrete fracture networks (DFNs) considering the influences of geometric properties of fractured rock masses. Mathematical expressions for the effects of nine important parameters that significantly impact on the equivalent permeability of DFNs are summarized, including (1) fracture-length distribution, (2) aperture distribution, (3) fracture surface roughness, (4) fracture dead-end, (5) number of intersections, (6) hydraulic gradient, (7) boundary stress, (8) anisotropy, and (9) scale. Recent developments of 3-D fracture networks are briefly reviewed to underline the importance of utilizing 3-D models in future research.

116 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present the state of the art regarding the impact of disturbances caused by underground structures (tunnels, basements of buildings, deep foundations, etc.) on the groundwater flow in urban aquifers.
Abstract: Property economics favours the vertical development of cities but flow of groundwater can be affected by the use of underground space in them. This review article presents the state of the art regarding the impact of disturbances caused by underground structures (tunnels, basements of buildings, deep foundations, etc.) on the groundwater flow in urban aquifers. The structures built in the underground levels of urban areas are presented and organised in terms of their impact on flow: obstacle to the flow or disturbance of the groundwater budget of the flow system. These two types of disturbance are described in relation to the structure area and the urban area. The work reviewed shows, on one hand, the individual impacts of different urban underground structures, and on the other, their cumulative impacts on flow, using real case studies. Lastly, the works are placed in perspective regarding the integration of underground structures with the aim of operational management of an urban aquifer. The literature presents deterministic numerical modelling as a tool capable of contributing to this aim, in that it helps to quantify the effect of an underground infrastructure project on groundwater flow, which is crucial for decision-making processes. It can also be an operational decision-aid tool for choosing construction techniques or for formulating strategies to manage the water resource.

88 citations


Journal ArticleDOI
TL;DR: A review of knowledge with respect to delta surface-elevation loss can be found in this paper, where a variety of subsidence processes, including tectonics, isostatic adjustment, and the spatial and temporal variability of sediment compaction, are discussed.
Abstract: Most of the world’s major river deltas are sinking relative to local sea level. The effects of subsidence can include aquifer salinization, infrastructure damage, increased vulnerability to flooding and storm surges, and permanent inundation of low-lying land. Consequently, determining the relative importance of natural vs. anthropogenic pressures in driving delta subsidence is a topic of ongoing research. This article presents a review of knowledge with respect to delta surface-elevation loss. The field is rapidly advancing due to applications of space-based techniques: InSAR (interferometric synthetic aperture radar), GPS (global positioning system), and satellite ocean altimetry. These techniques have shed new light on a variety of subsidence processes, including tectonics, isostatic adjustment, and the spatial and temporal variability of sediment compaction. They also confirm that subsidence associated with fluid extraction can outpace sea-level rise by up to two orders of magnitude, resulting in effective sea-level rise that is one-hundred times faster than the global average rate. In coming years, space-based and airborne instruments will be critical in providing near-real-time monitoring to facilitate management decisions in sinking deltas. However, ground-based observations continue to be necessary for generating complete measurements of surface-elevation change. Numerical modeling should seek to simulate couplings between subsidence processes for greater predictive power.

83 citations


Journal ArticleDOI
TL;DR: In this paper, the authors quantified total land subsidence and associated CO2 respiration over the past millennium in the Dutch coastal peatlands, to gain insight into the consequences of cultivating coastal Peatlands over longer timescales.
Abstract: Coastal plains are amongst the most densely populated areas in the world. Many coastal peatlands are drained to create arable land. This is not without consequences; physical compaction of peat and its degradation by oxidation lead to subsidence, and oxidation also leads to emissions of carbon dioxide (CO2). This study complements existing studies by quantifying total land subsidence and associated CO2 respiration over the past millennium in the Dutch coastal peatlands, to gain insight into the consequences of cultivating coastal peatlands over longer timescales. Results show that the peat volume loss was 19.8 km3, which lowered the Dutch coastal plain by 1.9 m on average, bringing most of it below sea level. At least 66 % of the volume reduction is the result of drainage, and 34 % was caused by the excavation and subsequent combustion of peat. The associated CO2 respiration is equivalent to a global atmospheric CO2 concentration increase of ~0.39 ppmv. Cultivation of coastal peatlands can turn a carbon sink into a carbon source. If the path taken by the Dutch would be followed worldwide, there will be double trouble: globally significant carbon emissions and increased flood risk in a globally important human habitat. The effects would be larger than the historic ones because most of the cumulative Dutch subsidence and peat loss was accomplished with much less efficient techniques than those available now.

82 citations


Journal ArticleDOI
TL;DR: In this paper, the authors introduced the recent subsidence and associated earth fissures occurring since 2000 in three principal regions (the North China Plain, Fenwei Basin and Yangtze Delta) and summarized the historical subsidence in these areas.
Abstract: Land subsidence was first observed in Shanghai nearly a century ago, in 1921. Land subsidence attributed to groundwater extraction has been severe in China and is still occurring. Recent subsidence and associated earth fissures occurring since 2000 in three principal regions—the North China Plain, Fenwei Basin and Yangtze Delta—are introduced, and historical subsidence in these areas is briefly summarized. The subsidence-affected area in these regions with cumulative subsidence greater than or equal to 200 mm is more than 90,000 km2 and covers 22 provinces (cities), which include intensively developed and densely populated areas. Earth fissures accompanying the subsidence create significant geohazards; more than 1,000 earth fissures have been identified in the North China Plain, Fenwei Basin and Yangtze Delta. Effective land-subsidence-monitoring networks, that include continuous global positioning system (GPS) stations, repeat GPS and leveling surveys of geodetic benchmarks, InSAR, borehole extensometers, and groundwater observation wells, have been established in these three subsidence-affected areas. Mitigation measures and administrative means have been implemented in some areas, with good results in the Yangtze Delta area.

76 citations


Journal ArticleDOI
TL;DR: In this article, the authors use InSAR data in conjunction with groundwater-level datasets to monitor land subsidence areas as well as identify areas that may require additional monitoring, such as the Willcox groundwater basin in southeastern Arizona.
Abstract: Land subsidence due to groundwater overdraft has been an ongoing problem in south-central and southern Arizona (USA) since the 1940s. The first earth fissure attributed to excessive groundwater withdrawal was discovered in the early 1950s near Picacho. In some areas of the state, groundwater-level declines of more than 150 m have resulted in extensive land subsidence and earth fissuring. Land subsidence in excess of 5.7 m has been documented in both western metropolitan Phoenix and Eloy. The Arizona Department of Water Resources (ADWR) has been monitoring land subsidence since 2002 using interferometric synthetic aperture radar (InSAR) and since 1998 using a global navigation satellite system (GNSS). The ADWR InSAR program has identified more than 25 individual land subsidence features that cover an area of more than 7,300 km2. Using InSAR data in conjunction with groundwater-level datasets, ADWR is able to monitor land subsidence areas as well as identify areas that may require additional monitoring. One area of particular concern is the Willcox groundwater basin in southeastern Arizona, which is the focus of this paper. The area is experiencing rapid groundwater declines, as much as 32.1 m during 2005–2014 (the largest land subsidence rate in Arizona State—up to 12 cm/year), and a large number of earth fissures. The declining groundwater levels in Arizona are a challenge for both future groundwater availability and mitigating land subsidence associated with these declines. ADWR’s InSAR program will continue to be a critical tool for monitoring land subsidence due to excessive groundwater withdrawal.

68 citations


Journal ArticleDOI
TL;DR: In this paper, the impacts of underground pumped storage hydroelectricity (UPSH) plants using open-pit or deep mines on groundwater flow are assessed using a simplified numerical model.
Abstract: Underground pumped storage hydroelectricity (UPSH) plants using open-pit or deep mines can be used in flat regions to store the excess of electricity produced during low-demand energy periods. It is essential to consider the interaction between UPSH plants and the surrounding geological media. There has been little work on the assessment of associated groundwater flow impacts. The impacts on groundwater flow are determined numerically using a simplified numerical model which is assumed to be representative of open-pit and deep mines. The main impact consists of oscillation of the piezometric head, and its magnitude depends on the characteristics of the aquifer/geological medium, the mine and the pumping and injection intervals. If an average piezometric head is considered, it drops at early times after the start of the UPSH plant activity and then recovers progressively. The most favorable hydrogeological conditions to minimize impacts are evaluated by comparing several scenarios. The impact magnitude will be lower in geological media with low hydraulic diffusivity; however, the parameter that plays the more important role is the volume of water stored in the mine. Its variation modifies considerably the groundwater flow impacts. Finally, the problem is studied analytically and some solutions are proposed to approximate the impacts, allowing a quick screening of favorable locations for future UPSH plants.

63 citations


Journal ArticleDOI
TL;DR: In this article, the Schoneben Rock Glacier (Niedere Tauern Range, Austria) was investigated based on spring data (2006-2014) and seismic refraction survey.
Abstract: More than 2,600 relict rock glaciers are known in the Austrian Alps but the knowledge of their hydraulic properties is severely limited. The relict Schoneben Rock Glacier (Niedere Tauern Range, Austria), with an extension of 0.17 km2, was investigated based on spring data (2006–2014) and seismic refraction survey. Spring-discharge hydrographs and natural and artificial tracer data suggest a heterogeneous aquifer with a layered internal structure for the relict rock glacier. The discharge behavior exhibits a fast and a delayed flow component. The spring discharge responds to recharge events within a few hours but a mean residence time of several months can also be observed. The internal structure of the rock glacier (up to several tens of meters thick) consists of: an upper blocky layer with a few meters of thickness, which lacks fine-grained sediments; a main middle layer with coarse and finer-grained sediments, allowing for fast flow; and an approximately 10-m-thick basal till layer as the main aquifer body responsible for the base flow. The base-flow component is controlled by (fine) sandy to silty sediments with low hydraulic conductivity and high storage capacity, exhibiting a difference in hydraulic conductivity to the upper layer of about three orders of magnitude. The high storage capacity of relict rock glaciers has an impact on water resources management in alpine catchments and potentially regulates the risk of natural hazards such as floods and related debris flows. Thus, the results highlight the importance of such aquifer systems in alpine catchments.

60 citations


Journal ArticleDOI
TL;DR: In this article, the authors compared the effect of model structure on groundwater recharge and concluded that model simplification leads to different recharge rates under climate change, especially under extreme conditions, although the different models performed similarly under historical climate conditions.
Abstract: Numerous modeling approaches are available to provide insight into the relationship between climate change and groundwater recharge. However, several aspects of how hydrological model choice and structure affect recharge predictions have not been fully explored, unlike the well-established variability of climate model chains—combination of global climate models (GCM) and regional climate models (RCM). Furthermore, the influence on predictions related to subsoil parameterization and the variability of observation data employed during calibration remain unclear. This paper compares and quantifies these different sources of uncertainty in a systematic way. The described numerical experiment is based on a heterogeneous two-dimensional reference model. Four simpler models were calibrated against the output of the reference model, and recharge predictions of both reference and simpler models were compared to evaluate the effect of model structure on climate-change impact studies. The results highlight that model simplification leads to different recharge rates under climate change, especially under extreme conditions, although the different models performed similarly under historical climate conditions. Extreme weather conditions lead to model bias in the predictions and therefore must be considered. Consequently, the chosen calibration strategy is important and, if possible, the calibration data set should include climatic extremes in order to minimise model bias introduced by the calibration. The results strongly suggest that ensembles of climate projections should be coupled with ensembles of hydrogeological models to produce credible predictions of future recharge and with the associated uncertainties.

60 citations


Journal ArticleDOI
TL;DR: In this article, the main karst formations and the distribution of the most problematic sinkhole areas are identified, illustrated through several case studies covering the wide spectrum of subsidence mechanisms.
Abstract: Approximately 60 % of the 2,150,000 km2 area of Saudi Arabia is underlain by soluble sediments (carbonate and evaporite rock formations, salt diapirs, sabkha deposits). Despite its hyper-arid climate, a wide variety of recent sinkholes have been reported in numerous areas, involving significant property losses. Human activities, most notably groundwater extraction, have induced unstable conditions on pre-existing cavities. This work provides an overview of the sinkhole hazard in Saudi Arabia, a scarcely explored topic. It identifies the main karst formations and the distribution of the most problematic sinkhole areas, illustrated through several case studies covering the wide spectrum of subsidence mechanisms. Some of the main investigation methods are presented through selected examples, including remote sensing, trenching and geophysics. Based on the available data, the main causal factors are identified and further actions that should be undertaken to better assess and manage the risk are discussed.

Journal ArticleDOI
TL;DR: The previously developed SUBCALC model was refined and calibrated using recent data for CO2 emissions and land-surface elevation changes measured at extensometers to depict Delta-wide present-day rates of subsidence, preliminarily demonstrating that rice will stop or greatly reduce subsidence.
Abstract: Subsidence of organic soils in the Sacramento-San Joaquin Delta threatens sustainability of the California (USA) water supply system and agriculture. Land-surface elevation data were collected to assess present-day subsidence rates and evaluate rice as a land use for subsidence mitigation. To depict Delta-wide present-day rates of subsidence, the previously developed SUBCALC model was refined and calibrated using recent data for CO2 emissions and land-surface elevation changes measured at extensometers. Land-surface elevation change data were evaluated relative to indirect estimates of subsidence and accretion using carbon and nitrogen flux data for rice cultivation. Extensometer and leveling data demonstrate seasonal variations in land-surface elevations associated with groundwater-level fluctuations and inelastic subsidence rates of 0.5–0.8 cm yr–1. Calibration of the SUBCALC model indicated accuracy of ±0.10 cm yr–1 where depth to groundwater, soil organic matter content and temperature are known. Regional estimates of subsidence range from 1.8 cm yr–1. The primary uncertainty is the distribution of soil organic matter content which results in spatial averaging in the mapping of subsidence rates. Analysis of leveling and extensometer data in rice fields resulted in an estimated accretion rate of 0.02–0.8 cm yr–1. These values generally agreed with indirect estimates based on carbon fluxes and nitrogen mineralization, thus preliminarily demonstrating that rice will stop or greatly reduce subsidence. Areas below elevations of –2 m are candidate areas for implementation of mitigation measures such as rice because there is active subsidence occurring at rates greater than 0.4 cm yr–1.

Journal ArticleDOI
TL;DR: In this paper, a field-based characterization of exhumed, inactive fault zones in low-porosity Triassic dolostones and limestones of the Hochschwab massif, a carbonate unit of high economic importance supplying 60% of the drinking water of Austria's capital Vienna, is presented.
Abstract: This study presents a comparative, field-based hydrogeological characterization of exhumed, inactive fault zones in low-porosity Triassic dolostones and limestones of the Hochschwab massif, a carbonate unit of high economic importance supplying 60 % of the drinking water of Austria’s capital, Vienna. Cataclastic rocks and sheared, strongly cemented breccias form low-permeability ( 3 % and permeabilities >1,000 mD form high-permeability domains. With respect to fault-zone architecture and rock content, which is demonstrated to be different for dolostone and limestone, four types of faults are presented. Faults with single-stranded minor fault cores, faults with single-stranded permeable fault cores, and faults with multiple-stranded fault cores are seen as conduits. Faults with single-stranded impermeable fault cores are seen as conduit-barrier systems. Karstic carbonate dissolution occurs along fault cores in limestones and, to a lesser degree, dolostones and creates superposed high-permeability conduits. On a regional scale, faults of a particular deformation event have to be viewed as forming a network of flow conduits directing recharge more or less rapidly towards the water table and the springs. Sections of impermeable fault cores only very locally have the potential to create barriers.

Journal ArticleDOI
TL;DR: In this paper, a numerical model of land subsidence is developed to simulate explicitly coupled three-dimensional (3D) groundwater flow and 3D aquifer-system displacements in downtown Shanghai from 30 December 1979 to 30 December 1995.
Abstract: Shanghai, in China, has experienced two periods of rapid land subsidence mainly caused by groundwater exploitation related to economic and population growth. The first period occurred during 1956–1965 and was characterized by an average land subsidence rate of 83 mm/yr, and the second period occurred during 1990–1998 with an average subsidence rate of 16 mm/yr. Owing to the establishment of monitoring networks for groundwater levels and land subsidence, a valuable dataset has been collected since the 1960s and used to develop regional land subsidence models applied to manage groundwater resources and mitigate land subsidence. The previous geomechanical modeling approaches to simulate land subsidence were based on one-dimensional (1D) vertical stress and deformation. In this study, a numerical model of land subsidence is developed to simulate explicitly coupled three-dimensional (3D) groundwater flow and 3D aquifer-system displacements in downtown Shanghai from 30 December 1979 to 30 December 1995. The model is calibrated using piezometric, geodetic-leveling, and borehole extensometer measurements made during the 16-year simulation period. The 3D model satisfactorily reproduces the measured piezometric and deformation observations. For the first time, the capability exists to provide some preliminary estimations on the horizontal displacement field associated with the well-known land subsidence in Shanghai and for which no measurements are available. The simulated horizontal displacements peak at 11 mm, i.e. less than 10 % of the simulated maximum land subsidence, and seems too small to seriously damage infrastructure such as the subways (metro lines) in the center area of Shanghai.

Journal ArticleDOI
TL;DR: In this paper, the authors present a survey of the subsidence processes where human use of natural resources and climate variability have combined to create critical anthropogenic land subsidence problems: oxidation and consolidation of organic soils (three articles), dissolution and collapse of carbonate and evaporite rocks (karst), thawing permafrost (thermokarst), and aquifer-system compaction (seven articles).
Abstract: Both natural and anthropogenic land subsidence are global phenomena caused by a variety of factors, many of which are related to hydrogeologic processes. Common natural subsidence processes include consolidation related to sediment loading, tectonics, volcanism, and dissolution of relatively soluble carbonate and evaporite minerals. Some natural subsidence processes are directly influenced by human activities related to land and water use and by climatic variability. The development of water resources to support human habitation and cultivation for agriculture typically results in the use and diversion of available surface-water supplies and a reliance on groundwater supplies. These practices can alter the natural hydrologic system in ways that amplify natural subsidence processes or create new anthropogenic subsidence. For example, engineered diversion of runoff can focus recharge in areas susceptible to mineral dissolution which can lead to sinkholes or other collapse features in the karst landscape, or engineered drainage of wetlands or saturated organic soils can cause oxidation and consolidation of the soils. Anthropogenic groundwater abstraction from susceptible (generally, unconsolidated alluvial, fluvial and lacustrine sediments) aquifer systems to support water use principally for agriculture, municipal-industrial and energy development typically can lead to local and regional groundwater storage depletion and accompanying aquifersystem compaction and land subsidence related to increases in effective stresses caused by groundwater-level declines. Note that the terms ‘compaction’, commonly used by geologists, and ‘consolidation’, commonly used in soil mechanics, are used interchangeably in this preface and theme issue. Climate variation in terms of global warming, whether natural or anthropogenic, can indirectly cause glacial isostatic adjustments (uplift and subsidence) of the Earth’s crust related to melting of ice sheets, or can thaw permafrost with subsequent loss of ice volume and drainage of shallow groundwater leading to mechanical and even oxidation mediated subsidence. Climate variation may result in either reductions (droughts) or enhancements (wet periods) of precipitation, surface runoff and groundwater recharge. These reductions can cause subsidence owing to lowered groundwater levels contributing to aquifersystem compaction and to oxidation and consolidation of organic soils; enhancements can cause subsidence owing to increased dissolution of karst minerals and reduced mechanical support for pre-existing karst features. The 14 articles (13 papers and one essay) constituting this theme issue address several of the subsidence processes where human use of natural resources and climate variability have combined to create critical anthropogenic land subsidence problems: oxidation and consolidation of organic soils (three articles), dissolution and collapse of carbonate and evaporite rocks (karst) (three articles), thawing permafrost (thermokarst) (one article) and aquifer-system compaction (seven articles). Each of these subsidence processes is intricately related to the Published in the theme issue BLand Subsidence Processes^

Journal ArticleDOI
TL;DR: A review of cost reports from the last 15 years indicates that the cost of karst collapses in the United States averages more than $300 million per year as discussed by the authors, with sinkhole damage highest in Florida, Texas, Alabama, Missouri, Kentucky, Tennessee, and Pennsylvania.
Abstract: Subsidence from sinkhole collapse is a common occurrence in areas underlain by water-soluble rocks such as carbonate and evaporite rocks, typical of karst terrain. Almost all 50 States within the United States (excluding Delaware and Rhode Island) have karst areas, with sinkhole damage highest in Florida, Texas, Alabama, Missouri, Kentucky, Tennessee, and Pennsylvania. A conservative estimate of losses to all types of ground subsidence was $125 million per year in 1997. This estimate may now be low, as review of cost reports from the last 15 years indicates that the cost of karst collapses in the United States averages more than $300 million per year. Knowing when a catastrophic event will occur is not possible; however, understanding where such occurrences are likely is possible. The US Geological Survey has developed and maintains national-scale maps of karst areas and areas prone to sinkhole formation. Several States provide additional resources for their citizens; Alabama, Colorado, Florida, Indiana, Iowa, Kentucky, Minnesota, Missouri, Ohio, and Pennsylvania maintain databases of sinkholes or karst features, with Florida, Kentucky, Missouri, and Ohio providing sinkhole reporting mechanisms for the public.

Journal ArticleDOI
TL;DR: More than 4,000 sinkholes have formed since the 1980s within a 60 km-long and 1 km-wide strip along the western coast of the Dead Sea (DS) in Israel as mentioned in this paper.
Abstract: More than 4,000 sinkholes have formed since the 1980s within a 60-km-long and 1-km-wide strip along the western coast of the Dead Sea (DS) in Israel. Their formation rate accelerated in recent years to >400 sinkholes per year. They cluster mostly in specific sites up to 1,000 m long and 200 m wide, which align parallel to the general direction of the fault systems associated with the DS Rift. The abrupt appearance of the sinkholes reflects changes to the groundwater regime around the shrinking DS. The eastward retreat of the shoreline and the lake-level drop (1 m/year in recent years) cause an eastward and downward migration of the fresh/saline groundwater interface. Consequently, a subsurface salt layer, which was previously enveloped by saline groundwater, is gradually being invaded and submerged by relatively fresh groundwater, and cavities form due to the rapid dissolution of the salt. Collapse of the overlying sediments into these cavities results in sinkholes at the surface. An association between sinkhole sites and land subsidence is revealed by interferometric synthetic aperture radar (InSAR) measurements. On a broad scale (hundreds of meters), subsidence occurs due to compaction of fine-grained sediments as groundwater levels decline along the retreating DS shoreline. At smaller scales (tens of meters), subsidence appears above subsurface cavities in association with the sinkholes, serving in many cases as sinkhole precursors, a few weeks to more than a year before their actual appearance at the surface. This paper overviews the processes of sinkhole formation and their relation to land subsidence.

Journal ArticleDOI
TL;DR: In this article, a literature study is presented that brings together information useful to assess whether a sparse-channel network concept is an appropriate representation of the flow system in tight fractured rock of low transmissivity.
Abstract: Laboratory and field experiments done on fractured rock show that flow and solute transport often occur along flow channels. ‘Sparse channels’ refers to the case where these channels are characterised by flow in long flow paths separated from each other by large spacings relative to the size of flow domain. A literature study is presented that brings together information useful to assess whether a sparse-channel network concept is an appropriate representation of the flow system in tight fractured rock of low transmissivity, such as that around a nuclear waste repository in deep crystalline rocks. A number of observations are made in this review. First, conventional fracture network models may lead to inaccurate results for flow and solute transport in tight fractured rocks. Secondly, a flow dimension of 1, as determined by the analysis of pressure data in well testing, may be indicative of channelised flow, but such interpretation is not unique or definitive. Thirdly, in sparse channels, the percolation may be more influenced by the fracture shape than the fracture size and orientation but further studies are needed. Fourthly, the migration of radionuclides from a waste canister in a repository to the biosphere may be strongly influenced by the type of model used (e.g. discrete fracture network, channel model). Fifthly, the determination of appropriateness of representing an in situ flow system by a sparse-channel network model needs parameters usually neglected in site characterisation, such as the density of channels or fracture intersections.

Journal ArticleDOI
TL;DR: In this article, a local-scale study conducted in 2011 and 2012 above the Low Noise Underground Laboratory (LSBB - Laboratoire Souterrain a Bas Bruit) at Rustrel, southeastern France, revealed the geological structure and water-related features of the study site and illustrated the feasibility of specific hydrogeophysical measurements.
Abstract: Some portions of the porous rock matrix in the karst unsaturated zone (UZ) can contain large volumes of water and play a major role in water flow regulation. The essential results are presented of a local-scale study conducted in 2011 and 2012 above the Low Noise Underground Laboratory (LSBB – Laboratoire Souterrain a Bas Bruit) at Rustrel, southeastern France. Previous research revealed the geological structure and water-related features of the study site and illustrated the feasibility of specific hydrogeophysical measurements. In this study, the focus is on hydrodynamics at the seasonal and event timescales. Magnetic resonance sounding (MRS) measured a high water content (more than 10 %) in a large volume of rock. This large volume of water cannot be stored in fractures and conduits within the UZ. MRS was also used to measure the seasonal variation of water stored in the karst UZ. A process-based model was developed to simulate the effect of vegetation on groundwater recharge dynamics. In addition, electrical resistivity tomography (ERT) monitoring was used to assess preferential water pathways during a rain event. This study demonstrates the major influence of water flow within the porous rock matrix on the UZ hydrogeological functioning at both the local (LSBB) and regional (Fontaine de Vaucluse) scales. By taking into account the role of the porous matrix in water flow regulation, these findings may significantly improve karst groundwater hydrodynamic modelling, exploitation, and sustainable managementme portions of the porous rock matrix in the karst unsaturated zone (UZ) can contain large volumes of water and play a major role in water flow regulation. The essential results are presented of a local-scale study conducted in 2011 and 2012 above the Low Noise Underground Laboratory (LSBB – Laboratoire Souterrain a Bas Bruit) at Rustrel, southeastern France. Previous research revealed the geological structure and water-related features of the study site and illustrated the feasibility of specific hydrogeophysical measurements. In this study, the focus is on hydrodynamics at the seasonal and event timescales. Magnetic resonance sounding (MRS) measured a high water content (more than 10 %) in a large volume of rock. This large volume of water cannot be stored in fractures and conduits within the UZ. MRS was also used to measure the seasonal variation of water stored in the karst UZ. A process-based model was developed to simulate the effect of vegetation on groundwater recharge dynamics. In addition, electrical resistivity tomography (ERT) monitoring was used to assess preferential water pathways during a rain event. This study demonstrates the major influence of water flow within the porous rock matrix on the UZ hydrogeological functioning at both the local (LSBB) and regional (Fontaine de Vaucluse) scales. By taking into account the role of the porous matrix in water flow regulation, these findings may significantly improve karst groundwater hydrodynamic modelling, exploitation, and sustainable management.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the evolution of the groundwater system and its mechanisms in the middle reaches of the Heihe River Basin (HRB), the second largest arid inland river basin in northwestern China.
Abstract: Investigation of the evolution of the groundwater system and its mechanisms is critical to the sustainable management of water in river basins. Temporal and spatial distributions and characteristics of groundwater have undergone a tremendous change with the intensity of human activities in the middle reaches of the Heihe River Basin (HRB), the second largest arid inland river basin in northwestern China. Based on groundwater observation data, hydrogeological data, meteorological data and irrigation statistical data, combined with geostatistical analyses and groundwater storage estimation, the basin-scaled evolution of the groundwater levels and storage (from 1985 to 2013) were investigated. The results showed that the unbalanced allocation of water sources and expanded cropland by policy-based human activities resulted in the over-abstraction of groundwater, which induced a general decrease in the water table and groundwater storage. The groundwater level has generally fallen from 4.92 to 11.49 m from 1985 to 2013, especially in the upper and middle parts of the alluvial fan (zone I), and reached a maximum depth of 17.41 m. The total groundwater storage decreased by 177.52 × 108 m3; zone I accounted for about 94.7 % of the total decrease. The groundwater balance was disrupted and the groundwater system was in a severe negative balance; it was noted that the groundwater/surface-water interaction was also deeply affected. It is essential to develop a rational plan for integration and management of surface water and groundwater resources in the HRB.

Journal ArticleDOI
Abstract: Water availability and management issues related to the supply of drinking water in northern communities are problematic in Canada. While rivers and lakes are abundant, they are vulnerable to contamination and may become dry in winter due to freezing. Groundwater can often provide a more secure and sustainable water source, however its availability is limited in northern Canada due to the presence of permafrost. Moreover, the exploitation of northern aquifers poses a dual challenge of identifying not only permafrost-free areas, but also permeable areas which will allow groundwater recharge and exploitation. Suitable aquifers are not as common in northern Canada since the shallow subsurface is mostly composed of low-permeability crystalline rocks or unconsolidated sediments of glacial origin that are highly heterogeneous. In order to investigate groundwater occurrence and associated geological contexts in Nunavik (northern Quebec, Canada), along with exploring how these resources will evolve in response to climate change, field and compilation work were conducted in the surroundings of the four villages of Salluit, Kuujjuaq, Umiujaq and Whapmagoostui-Kuujjuarapik. These villages are located in different permafrost zones, ranging from continuous to discontinuous, as well as in different geological environments. It was found that despite the ubiquitous presence of permafrost, unfrozen aquifers could be identified, which suggests that groundwater may be available as a source of drinking water for small communities. Expected climate change, with predicted permafrost thawing and increases in temperature and precipitation, should enhance groundwater availability and may contribute to a more secure source of drinking water for northern communities.

Journal ArticleDOI
TL;DR: A comprehensive history of the Association since its establishment in 1956 is being prepared and it is intended that a summary article charting the course of IAH’s history over the past six decades will be drawn from this for publication in this journal during the anniversary year.
Abstract: Throughout 2016, the International Association of Hydrogeologists (IAH; https://iah.org/) will be recognising and celebrating its 60th anniversary in a number of ways. The main international focus of the anniversary celebrations will be the Association’s 43rd Congress in Montpellier (France) in September, details of which can be seen inside the back cover of the journal and via the IAH website. Many of the IAH national chapters will be holding technical meetings, field visits or social events to acknowledge the anniversary at national level. A comprehensive history of the Association since its establishment in 1956 is being prepared under the guidance of immediate past President Willi Struckmeier and has greatly facilitated the preparation of this message. It is intended that a summary article charting the course of IAH’s history over the past six decades will be drawn from this for publication in this journal during the anniversary year. The anniversary logo is displayed here (Fig. 1) and on the front cover of the journal and will be in widespread use on the website and on printed IAH reports, newsletters and other material during the year. A modest start to the Association

Journal ArticleDOI
TL;DR: The history and fate of the artesian springs of Egypt's Western Desert, from ancient times to the present, spanning the rise and fall of the great civilisations from the Pharoanic dynasties to Persian, Greek and Roman conquests, are recorded in this paper.
Abstract: Extraction of groundwater for agriculture has resulted in the loss of springs across arid regions of the globe. The history and fate are recorded of the artesian springs of Egypt’s Western Desert, from ancient times to the present, spanning the rise and fall of the great civilisations from the Pharoanic dynasties to Persian, Greek and Roman conquests. The study area includes oases Kharga, Dakhla, Bahriya, Farafra and Siwa, and several outer and small oases around Siwa and the edge of the Qattara Depression. The region is hyper-arid, receiving 10 mm or less average annual precipitation and evaporation rates are in the vicinity of 3,000 mm/a. Groundwater in the oases is largely derived from bores discharging from the Nubian Sandstone Aquifer. Based on an extensive survey, conducted for the first time, attention is drawn to the rapid demise of springs as a result of modern irrigation schemes which continue to deplete groundwater supplies.

Journal ArticleDOI
TL;DR: In this article, the daily groundwater level response in the Permo-Triassic Sandstone aquifers in the Eden Valley, England (UK) has been studied using the seasonal trend decomposition by LOESS (STL) technique.
Abstract: The daily groundwater level (GWL) response in the Permo-Triassic Sandstone aquifers in the Eden Valley, England (UK), has been studied using the seasonal trend decomposition by LOESS (STL) technique. The hydrographs from 18 boreholes in the Permo-Triassic Sandstone were decomposed into three components: seasonality, general trend and remainder. The decomposition was analysed first visually, then using tools involving a variance ratio, time-series hierarchical clustering and correlation analysis. Differences and similarities in decomposition pattern were explained using the physical and hydrogeological information associated with each borehole. The Penrith Sandstone exhibits vertical and horizontal heterogeneity, whereas the more homogeneous St Bees Sandstone groundwater hydrographs characterize a well-identified seasonality; however, exceptions can be identified. A stronger trend component is obtained in the silicified parts of the northern Penrith Sandstone, while the southern Penrith, containing Brockram (breccias) Formation, shows a greater relative variability of the seasonal component. Other boreholes drilled as shallow/deep pairs show differences in responses, revealing the potential vertical heterogeneities within the Penrith Sandstone. The differences in bedrock characteristics between and within the Penrith and St Bees Sandstone formations appear to influence the GWL response. The de-seasonalized and de-trended GWL time series were then used to characterize the response, for example in terms of memory effect (autocorrelation analysis). By applying the STL method, it is possible to analyse GWL hydrographs leading to better conceptual understanding of the groundwater flow. Thus, variation in groundwater response can be used to gain insight into the aquifer physical properties and understand differences in groundwater behaviour.

Journal ArticleDOI
TL;DR: In this paper, the authors quantified spatial and temporal variability in regional-scale groundwater flow paths at 20.5°S latitude by combining a two-dimensional model of groundwater and heat flow with field observations.
Abstract: Aquifers within the Pampa del Tamarugal Basin (Atacama Desert, northern Chile) are the sole source of water for the coastal city of Iquique and the economically important mining industry. Despite this, the regional groundwater system remains poorly understood. Although it is widely accepted that aquifer recharge originates as precipitation in the Altiplano and Andean Cordillera to the east, there remains debate on whether recharge is driven primarily by near-surface groundwater flow in response to periodic flood events or by basal groundwater flux through deep-seated basin fractures. In addressing this debate, the present study quantifies spatial and temporal variability in regional-scale groundwater flow paths at 20.5°S latitude by combining a two-dimensional model of groundwater and heat flow with field observations and δ18O isotope values in surface water and groundwater. Results suggest that both previously proposed aquifer recharge mechanisms are likely influencing aquifers within the Pampa del Tamarugal Basin; however, each mechanism is operating on different spatial and temporal scales. Storm-driven flood events in the Altiplano readily transmit groundwater to the eastern Pampa del Tamarugal Basin through near-surface groundwater flow on short time scales, e.g., 100–101 years, but these effects are likely isolated to aquifers in the eastern third of the basin. In addition, this study illustrates a physical mechanism for groundwater originating in the eastern highlands to recharge aquifers and salars in the western Pampa del Tamarugal Basin over timescales of 104–105 years.

Journal ArticleDOI
TL;DR: In this article, the applicability of the Gravity Recovery and Climate Experiment (GRACE) to adequately represent broad-scale patterns of groundwater storage (GWS) variations and observed trends in groundwater-monitoring well levels (GWWL) is examined in the Canadian province of Alberta.
Abstract: The applicability of the Gravity Recovery and Climate Experiment (GRACE) to adequately represent broad-scale patterns of groundwater storage (GWS) variations and observed trends in groundwater-monitoring well levels (GWWL) is examined in the Canadian province of Alberta. GWS variations are derived over Alberta for the period 2002–2014 using the Release 05 (RL05) monthly GRACE gravity models and the Global Land Data Assimilation System (GLDAS) land-surface models. Twelve mean monthly GWS variation maps are generated from the 139 monthly GWS variation grids to characterize the annual GWS variation pattern. These maps show that, overall, GWS increases from February to June, and decreases from July to October, and slightly increases from November to December. For 2002–2014, the GWS showed a positive trend which increases from west to east with a mean value of 12 mm/year over the province. The resulting GWS variations are validated using GWWLs in the province. For the purpose of validation, a GRACE total water storage (TWS)-based correlation criterion is introduced to identify groundwater wells which adequately represent the regional GWS variations. GWWLs at 36 wells were found to correlate with both the GRACE TWS and GWS variations. A factor f is defined to up-scale the GWWL variations at the identified wells to the GRACE-scale GWS variations. It is concluded that the GWS variations can be mapped by GRACE and the GLDAS models in some situations, thus demonstrating the conditions where GWS variations can be detected by GRACE in Alberta.

Journal ArticleDOI
Ziyong Sun1, Rui Ma1, Yanxin Wang1, Teng Ma1, Yunde Liu1 
TL;DR: In this paper, isotopic and hydrogeochemical analysis, combined with temperature investigation, was conducted to characterize the flow system in the carbonate aquifer at Taiyuan, northern China.
Abstract: Isotopic and hydrogeochemical analysis, combined with temperature investigation, was conducted to characterize the flow system in the carbonate aquifer at Taiyuan, northern China. The previous division of karst subsystems in Taiyuan, i.e. the Xishan (XMK), Dongshan (DMK) and Beishan (BMK) mountain systems, were also examined. The measured δD, δ 18O and 3He/4He in water indicate that both thermal and cold groundwaters have a meteoric origin rather than deep crustal origin. Age dating using 3H and 14C shows that groundwater samples from discharge zones along faults located at the margin of mountains in the XMK and DMK are a mixture of paleometeoric thermal waters and younger cold waters from local flow systems. 14C data suggest that the average age was about 10,000 years and 4,000 years for thermal and cold groundwater in discharge zones, respectively. Based on the data of temperature, water solute chemical properties, 14C, δ 34SSO4, 87Sr/86Sr and δ 18O, different flow paths in the XMK and DMK were distinguished. Shallow groundwater passes through the upper Ordovician formations, producing younger waters at the discharge zone (low temperature and ionic concentration and enriched D and 18O). Deep groundwater flows through the lower Ordovician and Cambrian formations, producing older waters at the discharge zone (high ionic concentration and temperature and depleted D and 18O). At the margin of mountains, groundwater in deep systems flows vertically up along faults and mixes with groundwater from shallow flow systems. By contrast, only a single flow system through the entire Cambrian to Ordovician formations occurs in the BMK.

Journal ArticleDOI
TL;DR: In this article, the authors used remote sensing data and a geographic information system (GIS) to prepare various hydromorphogeological thematic maps such as maps of slope, drainage density, lithology, landforms, structural lineaments, rainfall intensity and plan curvature.
Abstract: Identifying a good site for groundwater exploitation in hard-rock terrains is a challenging task. In Sinai, Egypt, groundwater is the only source of water for local inhabitants. Interpretation of satellite data for delineation of lithological units and weathered zones, and for mapping of lineament density and their trends, provides a valuable aid for the location of groundwater promising areas. Complex deformational histories of the wide range of lithological formations add to the difficulty. Groundwater prospect mapping is a systematic approach that considers the major controlling factors which influence the aquifer and quality of groundwater. The presented study aims to delineate, identify, model and map groundwater potential zones in arid South Sinai using remote sensing data and a geographic information system (GIS) to prepare various hydromorphogeological thematic maps such as maps of slope, drainage density, lithology, landforms, structural lineaments, rainfall intensity and plan curvature. The controlling-factor thematic maps are each allocated a fixed score and weight, computed by using a linear equation approach. Furthermore, each weighted thematic map is statistically computed to yield a groundwater potential zone map of the study area. The groundwater potential zones thus obtained were divided into five categories (very poor, poor, moderate, good and very good) and were validated using the relation between the zone and the spatial distribution of productive wells and of previous geophysical investigations from a literature review. The results show the groundwater potential zones in the study area, and create awareness for better planning and management of groundwater resources.

Journal ArticleDOI
TL;DR: In this paper, a quantitative approach for hydrological drought characterization, based on non-seasonal water storage deficit data from NASA's Gravity Recovery and Climate Experiment (GRACE) satellite mission, is assessed.
Abstract: A quantitative approach for hydrological drought characterization, based on non-seasonal water storage deficit data from NASA’s Gravity Recovery and Climate Experiment (GRACE) satellite mission, is assessed. Non-seasonal storage deficit is the negative terrestrial water storage after deducting trend, acceleration and seasonal signals, and it is designated as a drought event when it persists for three or more continuous months. The non-seasonal water storage deficit is used for measuring the hydrological drought in southwestern China. It is found that this storage-deficit method clearly identifies hydrological drought onset, end and duration, and quantifies instantaneous severity, peak drought magnitude, and time to recovery. Moreover, it is found that severe droughts have frequently struck southwestern China in the past several decades, among which, the drought of 2011–2012 was the most severe; the duration was 10 months, the severity was −208.92 km3/month, and the time to recovery was 17 months. These results compare well with the National Climate Center of China drought databases, which signifies that the GRACE-based non-seasonal water storage deficit has a quantitative effect on hydrological drought characterization and provides an effective tool for researching droughts.

Journal ArticleDOI
TL;DR: In this article, a multivariate statistical modeling approach was applied to explain the anthropogenic pressure of nitrate pollution on the Kinshasa groundwater body (Democratic Republic of Congo).
Abstract: A multivariate statistical modelling approach was applied to explain the anthropogenic pressure of nitrate pollution on the Kinshasa groundwater body (Democratic Republic of Congo). Multiple regression and regression tree models were compared and used to identify major environmental factors that control the groundwater nitrate concentration in this region. The analyses were made in terms of physical attributes related to the topography, land use, geology and hydrogeology in the capture zone of different groundwater sampling stations. For the nitrate data, groundwater datasets from two different surveys were used. The statistical models identified the topography, the residential area, the service land (cemetery), and the surface-water land-use classes as major factors explaining nitrate occurrence in the groundwater. Also, groundwater nitrate pollution depends not on one single factor but on the combined influence of factors representing nitrogen loading sources and aquifer susceptibility characteristics. The groundwater nitrate pressure was better predicted with the regression tree model than with the multiple regression model. Furthermore, the results elucidated the sensitivity of the model performance towards the method of delineation of the capture zones. For pollution modelling at the monitoring points, therefore, it is better to identify capture-zone shapes based on a conceptual hydrogeological model rather than to adopt arbitrary circular capture zones.