scispace - formally typeset
Search or ask a question
JournalISSN: 0740-7467

IEEE Assp Magazine 

Institute of Electrical and Electronics Engineers
About: IEEE Assp Magazine is an academic journal. The journal publishes majorly in the area(s): Signal processing & Digital signal processing. Over the lifetime, 44 publications have been published receiving 24927 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This paper provides an introduction to the field of artificial neural nets by reviewing six important neural net models that can be used for pattern classification and exploring how some existing classification and clustering algorithms can be performed using simple neuron-like components.
Abstract: Artificial neural net models have been studied for many years in the hope of achieving human-like performance in the fields of speech and image recognition. These models are composed of many nonlinear computational elements operating in parallel and arranged in patterns reminiscent of biological neural nets. Computational elements or nodes are connected via weights that are typically adapted during use to improve performance. There has been a recent resurgence in the field of artificial neural nets caused by new net topologies and algorithms, analog VLSI implementation techniques, and the belief that massive parallelism is essential for high performance speech and image recognition. This paper provides an introduction to the field of artificial neural nets by reviewing six important neural net models that can be used for pattern classification. These nets are highly parallel building blocks that illustrate neural net components and design principles and can be used to construct more complex systems. In addition to describing these nets, a major emphasis is placed on exploring how some existing classification and clustering algorithms can be performed using simple neuron-like components. Single-layer nets can implement algorithms required by Gaussian maximum-likelihood classifiers and optimum minimum-error classifiers for binary patterns corrupted by noise. More generally, the decision regions required by any classification algorithm can be generated in a straightforward manner by three-layer feed-forward nets.

7,798 citations

Journal ArticleDOI
TL;DR: The purpose of this tutorial paper is to give an introduction to the theory of Markov models, and to illustrate how they have been applied to problems in speech recognition.
Abstract: The basic theory of Markov chains has been known to mathematicians and engineers for close to 80 years, but it is only in the past decade that it has been applied explicitly to problems in speech processing. One of the major reasons why speech models, based on Markov chains, have not been developed until recently was the lack of a method for optimizing the parameters of the Markov model to match observed signal patterns. Such a method was proposed in the late 1960's and was immediately applied to speech processing in several research institutions. Continued refinements in the theory and implementation of Markov modelling techniques have greatly enhanced the method, leading to a wide range of applications of these models. It is the purpose of this tutorial paper to give an introduction to the theory of Markov models, and to illustrate how they have been applied to problems in speech recognition.

4,546 citations

Journal ArticleDOI
TL;DR: An overview of beamforming from a signal-processing perspective is provided, with an emphasis on recent research.
Abstract: An overview of beamforming from a signal-processing perspective is provided, with an emphasis on recent research. Data-independent, statistically optimum, adaptive, and partially adaptive beamforming are discussed. Basic notation, terminology, and concepts are included. Several beamformer implementations are briefly described. >

4,122 citations

Journal Article
TL;DR: During the past few years several design algorithms have been developed for a variety of vector quantizers and the performance of these codes has been studied for speech waveforms, speech linear predictive parameter vectors, images, and several simulated random processes.
Abstract: A vector quantizer is a system for mapping a sequence of continuous or discrete vectors into a digital sequence suitable for communication over or storage in a digital channel. The goal of such a system is data compression: to reduce the bit rate so as to minimize communication channel capacity or digital storage memory requirements while maintaining the necessary fidelity of the data. The mapping for each vector may or may not have memory in the sense of depending on past actions of the coder, just as in well established scalar techniques such as PCM, which has no memory, and predictive quantization, which does. Even though information theory implies that one can always obtain better performance by coding vectors instead of scalars, scalar quantizers have remained by far the most common data compression system because of their simplicity and good performance when the communication rate is sufficiently large. In addition, relatively few design techniques have existed for vector quantizers. During the past few years several design algorithms have been developed for a variety of vector quantizers and the performance of these codes has been studied for speech waveforms, speech linear predictive parameter vectors, images, and several simulated random processes. It is the purpose of this article to survey some of these design techniques and their applications.

2,743 citations

Journal ArticleDOI
TL;DR: A general overview of VLSI array processors and a unified treatment from algorithm, architecture, and application perspectives is provided in this article, where a broad range of application domains including digital filtering, spectrum estimation, adaptive array processing, image/vision processing, and seismic and tomographic signal processing.
Abstract: High speed signal processing depends critically on parallel processor technology. In most applications, general-purpose parallel computers cannot offer satisfactory real-time processing speed due to severe system overhead. Therefore, for real-time digital signal processing (DSP) systems, special-purpose array processors have become the only appealing alternative. In designing or using such array Processors, most signal processing algorithms share the critical attributes of regularity, recursiveness, and local communication. These properties are effectively exploited in innovative systolic and wavefront array processors. These arrays maximize the strength of very large scale integration (VLSI) in terms of intensive and pipelined computing, and yet circumvent its main limitation on communication. The application domain of such array processors covers a very broad range, including digital filtering, spectrum estimation, adaptive array processing, image/vision processing, and seismic and tomographic signal processing, This article provides a general overview of VLSI array processors and a unified treatment from algorithm, architecture, and application perspectives.

1,633 citations

Network Information
Related Journals (5)
IEEE Signal Processing Magazine
2.1K papers, 288.9K citations
73% related
Bell System Technical Journal
3.5K papers, 282.3K citations
72% related
IEEE Transactions on Communications
16.9K papers, 806.6K citations
70% related
IEEE Transactions on Signal Processing
14K papers, 921.3K citations
69% related
IEEE Transactions on Image Processing
9.2K papers, 868.5K citations
67% related
Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
19911
19907
19893
19885
19876
19866