scispace - formally typeset
Search or ask a question
JournalISSN: 1545-598X

IEEE Geoscience and Remote Sensing Letters 

Institute of Electrical and Electronics Engineers
About: IEEE Geoscience and Remote Sensing Letters is an academic journal published by Institute of Electrical and Electronics Engineers. The journal publishes majorly in the area(s): Computer science & Synthetic aperture radar. It has an ISSN identifier of 1545-598X. Over the lifetime, 6894 publications have been published receiving 184121 citations. The journal is also known as: Geoscience and remote sensing letters, IEEE & GRSL.


Papers
More filters
Journal ArticleDOI
TL;DR: A semantic segmentation neural network, which combines the strengths of residual learning and U-Net, is proposed for road area extraction, which outperforms all the comparing methods and demonstrates its superiority over recently developed state of the arts methods.
Abstract: Road extraction from aerial images has been a hot research topic in the field of remote sensing image analysis. In this letter, a semantic segmentation neural network, which combines the strengths of residual learning and U-Net, is proposed for road area extraction. The network is built with residual units and has similar architecture to that of U-Net. The benefits of this model are twofold: first, residual units ease training of deep networks. Second, the rich skip connections within the network could facilitate information propagation, allowing us to design networks with fewer parameters, however, better performance. We test our network on a public road data set and compare it with U-Net and other two state-of-the-art deep-learning-based road extraction methods. The proposed approach outperforms all the comparing methods, which demonstrates its superiority over recently developed state of the arts.

1,564 citations

Journal ArticleDOI
TL;DR: Initial comparisons with ground-based optical thickness measurements and simultaneously acquired MODIS imagery indicate comparable uncertainty in Landsat surface reflectance compared to the standard MODIS reflectance product.
Abstract: The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center has processed and released 2100 Landsat Thematic Mapper and Enhanced Thematic Mapper Plus surface reflectance scenes, providing 30-m resolution wall-to-wall reflectance coverage for North America for epochs centered on 1990 and 2000. This dataset can support decadal assessments of environmental and land-cover change, production of reflectance-based biophysical products, and applications that merge reflectance data from multiple sensors [e.g., the Advanced Spaceborne Thermal Emission and Reflection Radiometer, Multiangle Imaging Spectroradiometer, Moderate Resolution Imaging Spectroradiometer (MODIS)]. The raw imagery was obtained from the orthorectified Landsat GeoCover dataset, purchased by NASA from the Earth Satellite Corporation. Through the LEDAPS project, these data were calibrated, converted to top-of-atmosphere reflectance, and then atmospherically corrected using the MODIS/6S methodology. Initial comparisons with ground-based optical thickness measurements and simultaneously acquired MODIS imagery indicate comparable uncertainty in Landsat surface reflectance compared to the standard MODIS reflectance product (the greater of 0.5% absolute reflectance or 5% of the recorded reflectance value). The rapid automated nature of the processing stream also paves the way for routine high-level products from future Landsat sensors.

1,389 citations

Journal ArticleDOI
TL;DR: A multilevel DL architecture that targets land cover and crop type classification from multitemporal multisource satellite imagery outperforms the one with MLPs allowing us to better discriminate certain summer crop types.
Abstract: Deep learning (DL) is a powerful state-of-the-art technique for image processing including remote sensing (RS) images. This letter describes a multilevel DL architecture that targets land cover and crop type classification from multitemporal multisource satellite imagery. The pillars of the architecture are unsupervised neural network (NN) that is used for optical imagery segmentation and missing data restoration due to clouds and shadows, and an ensemble of supervised NNs. As basic supervised NN architecture, we use a traditional fully connected multilayer perceptron (MLP) and the most commonly used approach in RS community random forest, and compare them with convolutional NNs (CNNs). Experiments are carried out for the joint experiment of crop assessment and monitoring test site in Ukraine for classification of crops in a heterogeneous environment using nineteen multitemporal scenes acquired by Landsat-8 and Sentinel-1A RS satellites. The architecture with an ensemble of CNNs outperforms the one with MLPs allowing us to better discriminate certain summer crop types, in particular maize and soybeans, and yielding the target accuracies more than 85% for all major crops (wheat, maize, sunflower, soybeans, and sugar beet).

1,155 citations

Journal ArticleDOI
TL;DR: This framework of composite kernels demonstrates enhanced classification accuracy as compared to traditional approaches that take into account the spectral information only, flexibility to balance between the spatial and spectral information in the classifier, and computational efficiency.
Abstract: This letter presents a framework of composite kernel machines for enhanced classification of hyperspectral images. This novel method exploits the properties of Mercer's kernels to construct a family of composite kernels that easily combine spatial and spectral information. This framework of composite kernels demonstrates: 1) enhanced classification accuracy as compared to traditional approaches that take into account the spectral information only: 2) flexibility to balance between the spatial and spectral information in the classifier; and 3) computational efficiency. In addition, the proposed family of kernel classifiers opens a wide field for future developments in which spatial and spectral information can be easily integrated.

1,069 citations

Journal ArticleDOI
TL;DR: A novel technique for unsupervised change detection in multitemporal satellite images using principal component analysis (PCA) and k-means clustering and Experimental results confirm the effectiveness of the proposed approach.
Abstract: In this letter, we propose a novel technique for unsupervised change detection in multitemporal satellite images using principal component analysis (PCA) and k-means clustering. The difference image is partitioned into h times h nonoverlapping blocks. S, S les h2, orthonormal eigenvectors are extracted through PCA of h times h nonoverlapping block set to create an eigenvector space. Each pixel in the difference image is represented with an S-dimensional feature vector which is the projection of h times h difference image data onto the generated eigenvector space. The change detection is achieved by partitioning the feature vector space into two clusters using k-means clustering with k = 2 and then assigning each pixel to the one of the two clusters by using the minimum Euclidean distance between the pixel's feature vector and mean feature vector of clusters. Experimental results confirm the effectiveness of the proposed approach.

817 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023943
20222,021
2021649
2020549
2019389
2018386