scispace - formally typeset
Search or ask a question
JournalISSN: 2168-6831

IEEE Geoscience and Remote Sensing Magazine 

Institute of Electrical and Electronics Engineers
About: IEEE Geoscience and Remote Sensing Magazine is an academic journal published by Institute of Electrical and Electronics Engineers. The journal publishes majorly in the area(s): Computer science & Synthetic aperture radar. It has an ISSN identifier of 2168-6831. Over the lifetime, 303 publications have been published receiving 18893 citations. The journal is also known as: GRSM & Institute of Electrical and Electronics Engineers geoscience and remote sensing magazine.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: The challenges of using deep learning for remote-sensing data analysis are analyzed, recent advances are reviewed, and resources are provided that hope will make deep learning in remote sensing seem ridiculously simple.
Abstract: Central to the looming paradigm shift toward data-intensive science, machine-learning techniques are becoming increasingly important. In particular, deep learning has proven to be both a major breakthrough and an extremely powerful tool in many fields. Shall we embrace deep learning as the key to everything? Or should we resist a black-box solution? These are controversial issues within the remote-sensing community. In this article, we analyze the challenges of using deep learning for remote-sensing data analysis, review recent advances, and provide resources we hope will make deep learning in remote sensing seem ridiculously simple. More importantly, we encourage remote-sensing scientists to bring their expertise into deep learning and use it as an implicit general model to tackle unprecedented, large-scale, influential challenges, such as climate change and urbanization.

2,095 citations

Journal ArticleDOI
TL;DR: A general framework of DL for RS data is provided, and the state-of-the-art DL methods in RS are regarded as special cases of input-output data combined with various deep networks and tuning tricks.
Abstract: Deep-learning (DL) algorithms, which learn the representative and discriminative features in a hierarchical manner from the data, have recently become a hotspot in the machine-learning area and have been introduced into the geoscience and remote sensing (RS) community for RS big data analysis. Considering the low-level features (e.g., spectral and texture) as the bottom level, the output feature representation from the top level of the network can be directly fed into a subsequent classifier for pixel-based classification. As a matter of fact, by carefully addressing the practical demands in RS applications and designing the input?output levels of the whole network, we have found that DL is actually everywhere in RS data analysis: from the traditional topics of image preprocessing, pixel-based classification, and target recognition, to the recent challenging tasks of high-level semantic feature extraction and RS scene understanding.

1,625 citations

Journal ArticleDOI
TL;DR: This paper provides first a tutorial about the SAR principles and theory, followed by an overview of established techniques like polarimetry, interferometry and differential interferometric as well as of emerging techniques (e.g., polarimetric SARinterferometry, tomography and holographic tomography).
Abstract: Synthetic Aperture Radar (SAR) has been widely used for Earth remote sensing for more than 30 years. It provides high-resolution, day-and-night and weather-independent images for a multitude of applications ranging from geoscience and climate change research, environmental and Earth system monitoring, 2-D and 3-D mapping, change detection, 4-D mapping (space and time), security-related applications up to planetary exploration. With the advances in radar technology and geo/bio-physical parameter inversion modeling in the 90s, using data from several airborne and spaceborne systems, a paradigm shift occurred from the development driven by the technology push to the user demand pull. Today, more than 15 spaceborne SAR systems are being operated for innumerous applications. This paper provides first a tutorial about the SAR principles and theory, followed by an overview of established techniques like polarimetry, interferometry and differential interferometry as well as of emerging techniques (e.g., polarimetric SAR interferometry, tomography and holographic tomography). Several application examples including the associated parameter inversion modeling are provided for each case. The paper also describes innovative technologies and concepts like digital beamforming, Multiple-Input Multiple-Output (MIMO) and bi- and multi-static configurations which are suitable means to fulfill the increasing user requirements. The paper concludes with a vision for SAR remote sensing.

1,614 citations

Journal ArticleDOI
TL;DR: A tutorial/overview cross section of some relevant hyperspectral data analysis methods and algorithms, organized in six main topics: data fusion, unmixing, classification, target detection, physical parameter retrieval, and fast computing.
Abstract: Hyperspectral remote sensing technology has advanced significantly in the past two decades. Current sensors onboard airborne and spaceborne platforms cover large areas of the Earth surface with unprecedented spectral, spatial, and temporal resolutions. These characteristics enable a myriad of applications requiring fine identification of materials or estimation of physical parameters. Very often, these applications rely on sophisticated and complex data analysis methods. The sources of difficulties are, namely, the high dimensionality and size of the hyperspectral data, the spectral mixing (linear and nonlinear), and the degradation mechanisms associated to the measurement process such as noise and atmospheric effects. This paper presents a tutorial/overview cross section of some relevant hyperspectral data analysis methods and algorithms, organized in six main topics: data fusion, unmixing, classification, target detection, physical parameter retrieval, and fast computing. In all topics, we describe the state-of-the-art, provide illustrative examples, and point to future challenges and research directions.

1,604 citations

Journal ArticleDOI
TL;DR: In this article, the state-of-the-art multispectral pansharpening techniques for hyperspectral data were compared with some of the state of the art methods for multi-spectral panchambering.
Abstract: Pansharpening aims at fusing a panchromatic image with a multispectral one, to generate an image with the high spatial resolution of the former and the high spectral resolution of the latter. In the last decade, many algorithms have been presented in the literatures for pansharpening using multispectral data. With the increasing availability of hyperspectral systems, these methods are now being adapted to hyperspectral images. In this work, we compare new pansharpening techniques designed for hyperspectral data with some of the state-of-the-art methods for multispectral pansharpening, which have been adapted for hyperspectral data. Eleven methods from different classes (component substitution, multiresolution analysis, hybrid, Bayesian and matrix factorization) are analyzed. These methods are applied to three datasets and their effectiveness and robustness are evaluated with widely used performance indicators. In addition, all the pansharpening techniques considered in this paper have been implemented in a MATLAB toolbox that is made available to the community.

620 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202337
2022116
202141
202034
201931
201821