scispace - formally typeset
Search or ask a question
JournalISSN: 1932-4553

IEEE Journal of Selected Topics in Signal Processing 

Institute of Electrical and Electronics Engineers
About: IEEE Journal of Selected Topics in Signal Processing is an academic journal published by Institute of Electrical and Electronics Engineers. The journal publishes majorly in the area(s): Computer science & MIMO. It has an ISSN identifier of 1932-4553. Over the lifetime, 1689 publications have been published receiving 113677 citations. The journal is also known as: Selected topics in signal processing.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper proposes gradient projection algorithms for the bound-constrained quadratic programming (BCQP) formulation of these problems and test variants of this approach that select the line search parameters in different ways, including techniques based on the Barzilai-Borwein method.
Abstract: Many problems in signal processing and statistical inference involve finding sparse solutions to under-determined, or ill-conditioned, linear systems of equations. A standard approach consists in minimizing an objective function which includes a quadratic (squared ) error term combined with a sparseness-inducing regularization term. Basis pursuit, the least absolute shrinkage and selection operator (LASSO), wavelet-based deconvolution, and compressed sensing are a few well-known examples of this approach. This paper proposes gradient projection (GP) algorithms for the bound-constrained quadratic programming (BCQP) formulation of these problems. We test variants of this approach that select the line search parameters in different ways, including techniques based on the Barzilai-Borwein method. Computational experiments show that these GP approaches perform well in a wide range of applications, often being significantly faster (in terms of computation time) than competing methods. Although the performance of GP methods tends to degrade as the regularization term is de-emphasized, we show how they can be embedded in a continuation scheme to recover their efficient practical performance.

3,488 citations

Journal ArticleDOI
TL;DR: An adaptive algorithm to estimate the mmWave channel parameters that exploits the poor scattering nature of the channel is developed and a new hybrid analog/digital precoding algorithm is proposed that overcomes the hardware constraints on the analog-only beamforming, and approaches the performance of digital solutions.
Abstract: Millimeter wave (mmWave) cellular systems will enable gigabit-per-second data rates thanks to the large bandwidth available at mmWave frequencies. To realize sufficient link margin, mmWave systems will employ directional beamforming with large antenna arrays at both the transmitter and receiver. Due to the high cost and power consumption of gigasample mixed-signal devices, mmWave precoding will likely be divided among the analog and digital domains. The large number of antennas and the presence of analog beamforming requires the development of mmWave-specific channel estimation and precoding algorithms. This paper develops an adaptive algorithm to estimate the mmWave channel parameters that exploits the poor scattering nature of the channel. To enable the efficient operation of this algorithm, a novel hierarchical multi-resolution codebook is designed to construct training beamforming vectors with different beamwidths. For single-path channels, an upper bound on the estimation error probability using the proposed algorithm is derived, and some insights into the efficient allocation of the training power among the adaptive stages of the algorithm are obtained. The adaptive channel estimation algorithm is then extended to the multi-path case relying on the sparse nature of the channel. Using the estimated channel, this paper proposes a new hybrid analog/digital precoding algorithm that overcomes the hardware constraints on the analog-only beamforming, and approaches the performance of digital solutions. Simulation results show that the proposed low-complexity channel estimation algorithm achieves comparable precoding gains compared to exhaustive channel training algorithms. The results illustrate that the proposed channel estimation and precoding algorithms can approach the coverage probability achieved by perfect channel knowledge even in the presence of interference.

2,424 citations

Journal ArticleDOI
TL;DR: This article provides an overview of signal processing challenges in mmWave wireless systems, with an emphasis on those faced by using MIMO communication at higher carrier frequencies.
Abstract: Communication at millimeter wave (mmWave) frequencies is defining a new era of wireless communication. The mmWave band offers higher bandwidth communication channels versus those presently used in commercial wireless systems. The applications of mmWave are immense: wireless local and personal area networks in the unlicensed band, 5G cellular systems, not to mention vehicular area networks, ad hoc networks, and wearables. Signal processing is critical for enabling the next generation of mmWave communication. Due to the use of large antenna arrays at the transmitter and receiver, combined with radio frequency and mixed signal power constraints, new multiple-input multiple-output (MIMO) communication signal processing techniques are needed. Because of the wide bandwidths, low complexity transceiver algorithms become important. There are opportunities to exploit techniques like compressed sensing for channel estimation and beamforming. This article provides an overview of signal processing challenges in mmWave wireless systems, with an emphasis on those faced by using MIMO communication at higher carrier frequencies.

2,380 citations

Journal ArticleDOI
TL;DR: In this paper, the preconditioned conjugate gradients (PCG) algorithm is used to compute the search direction for sparse least-squares programs (LSPs), which can be reformulated as convex quadratic programs, and then solved by several standard methods such as interior-point methods.
Abstract: Recently, a lot of attention has been paid to regularization based methods for sparse signal reconstruction (e.g., basis pursuit denoising and compressed sensing) and feature selection (e.g., the Lasso algorithm) in signal processing, statistics, and related fields. These problems can be cast as -regularized least-squares programs (LSPs), which can be reformulated as convex quadratic programs, and then solved by several standard methods such as interior-point methods, at least for small and medium size problems. In this paper, we describe a specialized interior-point method for solving large-scale -regularized LSPs that uses the preconditioned conjugate gradients algorithm to compute the search direction. The interior-point method can solve large sparse problems, with a million variables and observations, in a few tens of minutes on a PC. It can efficiently solve large dense problems, that arise in sparse signal recovery with orthogonal transforms, by exploiting fast algorithms for these transforms. The method is illustrated on a magnetic resonance imaging data set.

2,047 citations

Journal ArticleDOI
TL;DR: This paper addresses the potential impact of pilot contamination caused by the use of non-orthogonal pilot sequences by users in adjacent cells, and analyzes the energy efficiency and degrees of freedom provided by massive MIMO systems to enable efficient single-carrier transmission.
Abstract: Massive multiple-input multiple-output (MIMO) wireless communications refers to the idea equipping cellular base stations (BSs) with a very large number of antennas, and has been shown to potentially allow for orders of magnitude improvement in spectral and energy efficiency using relatively simple (linear) processing. In this paper, we present a comprehensive overview of state-of-the-art research on the topic, which has recently attracted considerable attention. We begin with an information theoretic analysis to illustrate the conjectured advantages of massive MIMO, and then we address implementation issues related to channel estimation, detection and precoding schemes. We particularly focus on the potential impact of pilot contamination caused by the use of non-orthogonal pilot sequences by users in adjacent cells. We also analyze the energy efficiency achieved by massive MIMO systems, and demonstrate how the degrees of freedom provided by massive MIMO systems enable efficient single-carrier transmission. Finally, the challenges and opportunities associated with implementing massive MIMO in future wireless communications systems are discussed.

2,046 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023104
2022200
2021103
2020103
2019107
2018118