scispace - formally typeset
Search or ask a question
JournalISSN: 1540-7977

IEEE Power & Energy Magazine 

Institute of Electrical and Electronics Engineers
About: IEEE Power & Energy Magazine is an academic journal published by Institute of Electrical and Electronics Engineers. The journal publishes majorly in the area(s): Electric power system & Electric power transmission. It has an ISSN identifier of 1540-7977. Over the lifetime, 7210 publications have been published receiving 212117 citations. The journal is also known as: Power & energy magazine & Institute of Electrical and Electronics Engineers power & energy magazine.


Papers
More filters
Journal ArticleDOI
TL;DR: Accuracy analysis and the test results show that estimation methods can be used in searches to reconfigure a given system even if the system is not well compensated and reconfiguring involves load transfer between different substations.
Abstract: A general formulation of the feeder reconfiguration problem for loss reduction and load balancing is given, and a novel solution method is presented. The solution uses a search over different radial configurations created by considering switchings of the branch exchange type. To guide the search, two different power flow approximation methods with varying degrees of accuracy have been developed and tested. The methods are used to calculate the new power flow in the system after a branch exchange and they make use of the power flow equations developed for radial distribution systems. Both accuracy analysis and the test results show that estimation methods can be used in searches to reconfigure a given system even if the system is not well compensated and reconfiguring involves load transfer between different substations. For load balancing, a load balance index is defined and it is shown that the search and power flow estimation methods developed for power loss reduction can also be used for load balancing since the two problems are similar. >

3,985 citations

Journal ArticleDOI
TL;DR: The electrical power industry is undergoing rapid change as discussed by the authors, and the major drivers that will determine the speed at which such transformations will occur will be the rising cost of energy, the mass electrification of everyday life, and climate change.
Abstract: Exciting yet challenging times lie ahead. The electrical power industry is undergoing rapid change. The rising cost of energy, the mass electrification of everyday life, and climate change are the major drivers that will determine the speed at which such transformations will occur. Regardless of how quickly various utilities embrace smart grid concepts, technologies, and systems, they all agree onthe inevitability of this massive transformation. It is a move that will not only affect their business processes but also their organization and technologies.

2,906 citations

Journal ArticleDOI
TL;DR: In this article, the authors argue that the transition to a smart grid has to be evolutionary to keep the lights on; on the other hand, the issues surrounding the smart grid are signifi cant enough to demand major changes in power systems operating philosophy.
Abstract: Many believe the electric power system is undergoing a profound change driven by a number of needs. There's the need for environmental compliance and energy conservation. We need better grid reliability while dealing with an aging infrastructure. And we need improved operational effi ciencies and customer service. The changes that are happening are particularly signifi cant for the electricity distribution grid, where "blind" and manual operations, along with the electromechanical components, will need to be transformed into a "smart grid." This transformation will be necessary to meet environmental targets, to accommodate a greater emphasis on demand response (DR), and to support plug-in hybrid electric vehicles (PHEVs) as well as distributed generation and storage capabilities. It is safe to say that these needs and changes present the power industry with the biggest challenge it has ever faced. On one hand, the transition to a smart grid has to be evolutionary to keep the lights on; on the other hand, the issues surrounding the smart grid are signifi cant enough to demand major changes in power systems operating philosophy.

1,661 citations

Journal ArticleDOI
TL;DR: The security, agility, and robustness/survivability of a large-scale power delivery infrastructure that faces new threats and unanticipated conditions is presented.
Abstract: In this article, we present the security, agility, and robustness/survivability of a large-scale power delivery infrastructure that faces new threats and unanticipated conditions. By way of background, we present a brief overview of the past work on the challenges faced in online parameter estimation and real-time adaptive control of a damaged F-15 aircraft. This work, in part, provided the inspiration and laid the foundation in the 1990s for the flight testing of a fast parameter estimation/modeling and reconfigurable aircraft control system that allowed the F-15 to become self-healing in the face of damaged equipment.

1,625 citations

Journal Article
TL;DR: Depending on the type and depth of penetration of distributed energy resource units, load characteristics and power quality constraints, and market participation strategies, the required control and operational strategies of a microgrid can be significantly, and even conceptually, different than those of the conventional power systems.
Abstract: The environmental and economical benefits of the microgrid and consequently its acceptability and degree of proliferation in the utility power industry, are primarily determined by the envisioned controller capabilities and the operational features. Depending on the type and depth of penetration of distributed energy resource (DER) units, load characteristics and power quality constraints, and market participation strategies, the required control and operational strategies of a microgrid can be significantly, and even conceptually, different than those of the conventional power systems.

1,335 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023111
2022128
202122
202040
201950
201852