scispace - formally typeset
Search or ask a question

Showing papers in "IEEE Transactions on Communications in 2011"


Journal ArticleDOI
TL;DR: The proposed model is pessimistic (a lower bound on coverage) whereas the grid model is optimistic, and that both are about equally accurate, and the proposed model may better capture the increasingly opportunistic and dense placement of base stations in future networks.
Abstract: Cellular networks are usually modeled by placing the base stations on a grid, with mobile users either randomly scattered or placed deterministically. These models have been used extensively but suffer from being both highly idealized and not very tractable, so complex system-level simulations are used to evaluate coverage/outage probability and rate. More tractable models have long been desirable. We develop new general models for the multi-cell signal-to-interference-plus-noise ratio (SINR) using stochastic geometry. Under very general assumptions, the resulting expressions for the downlink SINR CCDF (equivalent to the coverage probability) involve quickly computable integrals, and in some practical special cases can be simplified to common integrals (e.g., the Q-function) or even to simple closed-form expressions. We also derive the mean rate, and then the coverage gain (and mean rate loss) from static frequency reuse. We compare our coverage predictions to the grid model and an actual base station deployment, and observe that the proposed model is pessimistic (a lower bound on coverage) whereas the grid model is optimistic, and that both are about equally accurate. In addition to being more tractable, the proposed model may better capture the increasingly opportunistic and dense placement of base stations in future networks.

3,309 citations


Journal ArticleDOI
TL;DR: The IC process of CRDSA can be conveniently described by a bipartite graph, establishing a bridge between the IC process and the iterative erasure decoding of graph-based codes and proposing a novel scheme, named irregular repetition slotted ALOHA, that can achieve a throughput of 0.97 for large frames and near to T ≅ 0.8 in practical implementations.
Abstract: Contention resolution diversity slotted ALOHA (CRDSA) is a simple but effective improvement of slotted ALOHA. CRDSA relies on MAC bursts repetition and on interference cancellation (IC), achieving a peak throughput T ≅ 0.55, whereas for slotted ALOHA T ≅ 0.37. In this paper we show that the IC process of CRDSA can be conveniently described by a bipartite graph, establishing a bridge between the IC process and the iterative erasure decoding of graph-based codes. Exploiting this analogy, we show how a high throughput can be achieved by selecting variable burst repetition rates according to given probability distributions, leading to irregular graphs. A framework for the probability distribution optimization is provided. Based on that, we propose a novel scheme, named irregular repetition slotted ALOHA, that can achieve a throughput T ≅ 0.97 for large frames and near to T ≅ 0.8 in practical implementations, resulting in a gain of ~ 45% w.r.t. CRDSA. An analysis of the normalized efficiency is introduced, allowing performance comparisons under the constraint of equal average transmission power. Simulation results, including an IC mechanism described in the paper, substantiate the validity of the analysis and confirm the high efficiency of the proposed approach down to a signal-to-noise ratio as a low as Eb/N0=2 dB.

683 citations


Journal ArticleDOI
TL;DR: A unified closed-form expression, applicable to different binary modulation schemes, for the bit error rate of dual-branch selection diversity based systems undergoing independent but not necessarily identically distributed generalized-K fading is derived in terms of the extended generalized bivariate Meijer G-function.
Abstract: Error performance is one of the main performance measures and the derivation of its closed-form expression has proved to be quite involved for certain communication systems operating over composite fading channels. In this letter, a unified closed-form expression, applicable to different binary modulation schemes, for the bit error rate of dual-branch selection diversity based systems undergoing independent but not necessarily identically distributed generalized-K fading is derived in terms of the extended generalized bivariate Meijer G-function.

376 citations


Journal ArticleDOI
TL;DR: In this paper, an interference alignment (IA) technique for a downlink cellular system is proposed, which requires feedback only within a cell, which can provide substantial gain especially when interference from a dominant interferer is significantly stronger than the remaining interference.
Abstract: We develop an interference alignment (IA) technique for a downlink cellular system. In the uplink, IA schemes need channel-state-information exchange across base-stations of different cells, but our downlink IA technique requires feedback only within a cell. As a result, the proposed scheme can be implemented with a few changes to an existing cellular system where the feedback mechanism (within a cell) is already being considered for supporting multi-user MIMO. Not only is our proposed scheme implementable with little effort, it can in fact provide substantial gain especially when interference from a dominant interferer is significantly stronger than the remaining interference: it is shown that in the two-isolated cell layout, our scheme provides four-fold gain in throughput performance over a standard multi-user MIMO technique. We also show through simulations that our technique provides respectable gain under a more realistic scenario: it gives approximately 28% gain for a 19 hexagonal wrap-around-cell layout. Furthermore, we show that our scheme has the potential to provide substantial gain for macro-pico cellular networks where pico-users can be significantly interfered with by the nearby macro-BS.

368 citations


Journal ArticleDOI
TL;DR: A novel multiple-input multiple-output (MIMO) transmission scheme which combines spatial modulation (SM) and space-time block coding (STBC) to take advantage of the benefits of both while avoiding their drawbacks is proposed.
Abstract: A novel multiple-input multiple-output (MIMO) transmission scheme, called space-time block coded spatial modulation (STBC-SM), is proposed. It combines spatial modulation (SM) and space-time block coding (STBC) to take advantage of the benefits of both while avoiding their drawbacks. In the STBC-SM scheme, the transmitted information symbols are expanded not only to the space and time domains but also to the spatial (antenna) domain which corresponds to the on/off status of the transmit antennas available at the space domain, and therefore both core STBC and antenna indices carry information. A general technique is presented for the design of the STBC-SM scheme for any number of transmit antennas. Besides the high spectral efficiency advantage provided by the antenna domain, the proposed scheme is also optimized by deriving its diversity and coding gains to exploit the diversity advantage of STBC. A low-complexity maximum likelihood (ML) decoder is given for the new scheme which profits from the orthogonality of the core STBC. The performance advantages of the STBC-SM over simple SM and over V-BLAST are shown by simulation results for various spectral efficiencies and are supported by the derivation of a closed form expression for the union bound on the bit error probability.

325 citations


Journal ArticleDOI
TL;DR: The present paper exploits fruitfully a priori information to improve performance of multiuser detectors based on a sparse symbol vector with entries drawn from a finite alphabet that is augmented by the zero symbol to capture user inactivity.
Abstract: The number of active users in code-division multiple access (CDMA) systems is often much lower than the spreading gain. The present paper exploits fruitfully this a priori information to improve performance of multiuser detectors. A low-activity factor manifests itself in a sparse symbol vector with entries drawn from a finite alphabet that is augmented by the zero symbol to capture user inactivity. The non-equiprobable symbols of the augmented alphabet motivate a sparsity-exploiting maximum a posteriori probability (S-MAP) criterion, which is shown to yield a cost comprising the l2 least-squares error penalized by the p-th norm of the wanted symbol vector (p = 0, 1, 2). Related optimization problems appear in variable selection (shrinkage) schemes developed for linear regression, as well as in the emerging field of compressive sampling (CS). The contribution of this work to such sparse CDMA systems is a gamut of sparsity-exploiting multiuser detectors trading off performance for complexity requirements. From the vantage point of CS and the least-absolute shrinkage selection operator (Lasso) spectrum of applications, the contribution amounts to sparsity-exploiting algorithms when the entries of the wanted signal vector adhere to finite-alphabet constraints.

280 citations


Journal ArticleDOI
TL;DR: An optimized ICF method which determines an optimal frequency response filter for each ICF iteration using convex optimization techniques is developed and the clipped OFDM symbols obtained have less distortion and lower out-of-band radiation than the existing method.
Abstract: Iterative clipping and filtering (ICF) is a widely used technique to reduce the peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signals. However, the ICF technique, when implemented with a fixed rectangular window in the frequency-domain, requires many iterations to approach specified PAPR threshold in the complementary cumulative distribution function (CCDF). In this paper, we develop an optimized ICF method which determines an optimal frequency response filter for each ICF iteration using convex optimization techniques. The design of optimal filter is to minimize signal distortion such that the OFDM symbol's PAPR is below a specified value. Simulation results show that our proposed method can achieve a sharp drop of CCDF curve and reduce PAPR to an acceptable level after only 1 or 2 iterations, whereas the classical ICF method would require 8 to 16 iterations to achieve a similar PAPR reduction. Moreover, the clipped OFDM symbols obtained by our optimized ICF method have less distortion and lower out-of-band radiation than the existing method.

270 citations


Journal ArticleDOI
TL;DR: The performance of the ED with estimated noise power (ENP), addressing the threshold design and giving the conditions for the existence of the SNR wall is analyzed, and analytical expressions for the design curves (SNR vs. observation time for a target performance) for the ENP-ED are derived.
Abstract: An uncertain knowledge of the noise power level can severely limit the energy detector (ED) spectrum sensing capability. In some situations this uncertainty can cause signal-to-noise ratio (SNR) penalties or even the rise of the SNR wall phenomenon. In this paper we analyze the performance of the ED with estimated noise power (ENP), addressing the threshold design and giving the conditions for the existence of the SNR wall. We derive analytical expressions for the design curves (SNR vs. observation time for a target performance) for the ENP-ED. Then we apply our analysis to cognitive radio (CR) systems where energy detection is used for fast sensing. For example it is shown that the SNR penalty with respect to ideal ED is of 5 log10(1+λ/λ) dB, when the time dedicated to noise power estimation is a multiple λ of the ED observation interval.

224 citations


Journal ArticleDOI
TL;DR: The benefit of multi-antenna receivers is investigated in wireless ad hoc networks, and the main finding is that network throughput can be made to scale linearly with the number of receive antennas N_r even if each transmitting node uses only a single antenna.
Abstract: The benefit of multi-antenna receivers is investigated in wireless ad hoc networks, and the main finding is that network throughput can be made to scale linearly with the number of receive antennas N_r even if each transmitting node uses only a single antenna. This is in contrast to a large body of prior work in single-user, multiuser, and ad hoc wireless networks that have shown linear scaling is achievable when multiple receive and transmit antennas (i.e., MIMO transmission) are employed, but that throughput increases logarithmically or sublinearly with N_r when only a single transmit antenna (i.e., SIMO transmission) is used. The linear gain is achieved by using the receive degrees of freedom to simultaneously suppress interference and increase the power of the desired signal, and exploiting the subsequent performance benefit to increase the density of simultaneous transmissions instead of the transmission rate. This result is proven in the transmission capacity framework, which presumes single-hop transmissions in the presence of randomly located interferers, but it is also illustrated that the result holds under several relaxations of the model, including imperfect channel knowledge, multihop transmission, and regular networks (i.e., interferers are deterministically located on a grid).

218 citations


Journal ArticleDOI
TL;DR: A comprehensive performance analysis of the energy detector over fading channels with single antenna reception or with antenna diversity reception is developed and several series truncation error bounds that allow series termination with a finite number of terms for a given figure of accuracy are derived.
Abstract: A comprehensive performance analysis of the energy detector over fading channels with single antenna reception or with antenna diversity reception is developed. For the no-diversity case and for the maximal ratio combining (MRC) diversity case, with either Nakagami-m or Rician fading, expressions for the probability of detection are derived by using the moment generating function (MGF) method and probability density function (PDF) method. The former, which avoids some difficulties of the latter, uses a contour integral representation of the Marcum-Q function. For the equal gain combining (EGC) diversity case, with Nakagami-m fading, expressions for the probability of detection are derived for the cases L =2,3,4 and L >; 4, where L is the number of diversity branches. For the selection combining (SC) diversity, with Nakagami-m fading, expressions for the probability of detection are derived for the cases L =2 and L >; 2. A discussion on the comparison between MGF and PDF methods is presented. We also derive several series truncation error bounds that allow series termination with a finite number of terms for a given figure of accuracy. These results help quantify and understand the achievable improvement in the energy detector's performance with diversity reception. Numerical and simulation results are also provided.

216 citations


Journal ArticleDOI
TL;DR: In this article, the authors considered a MIMO fading broadcast channel where the fading channel coefficients are constant over time-frequency blocks that span a coherent time x a coherence bandwidth.
Abstract: We consider a MIMO fading broadcast channel where the fading channel coefficients are constant over time-frequency blocks that span a coherent time x a coherence bandwidth. In closed-loop systems, channel state information at transmitter (CSIT) is acquired by the downlink training sent by the base station and an explicit feedback from each user terminal. In open-loop systems, CSIT is obtained by exploiting uplink training and channel reciprocity. We use closed-form lower bounds and tight approximations of the ergodic achievable rate in the presence of CSIT errors in order to optimize the overall system throughput, by taking explicitly into account the overhead due to channel estimation and channel state feedback. Based on three time-frequency block models inspired by actual systems, we provide useful guidelines for the overall system optimization. In particular, digital (quantized) feedback is found to offer a substantial advantage over analog (unquantized) feedback.

Journal ArticleDOI
TL;DR: A lower bound on the maximum-likelihood (ML) bit error performance using the local neighborhood search is obtained using the proposed low-complexity algorithm for large-MIMO detection based on a layered low- complexity localNeighborhood search.
Abstract: In this letter, we are concerned with low-complexity detection in large multiple-input multiple-output (MIMO) systems with tens of transmit/receive antennas. Our new contributions in this letter are two-fold. First, we propose a low-complexity algorithm for large-MIMO detection based on a layered low-complexity local neighborhood search. Second, we obtain a lower bound on the maximum-likelihood (ML) bit error performance using the local neighborhood search. The advantages of the proposed ML lower bound are i) it is easily obtained for MIMO systems with large number of antennas because of the inherent low complexity of the search algorithm, ii) it is tight at moderate-to-high SNRs, and iii) it can be tightened at low SNRs by increasing the number of symbols in the neighborhood definition. The proposed detection algorithm based on the layered local neighborhood search achieves bit error performances which are quite close to this lower bound for large number of antennas and higher-order QAM.

Journal ArticleDOI
TL;DR: This paper considers average transmit and interference power constraints for both schemes, proposes two algorithms that acquire the optimal sensing time and power allocation under imperfect spectrum sensing for the two schemes, and discusses the effect of the average transmitand interference power constraint on the optimal Sensing time.
Abstract: Cognitive radio is an emerging technology that aims for efficient spectrum usage by allowing unlicensed (secondary) users to access licensed frequency bands under the condition of protecting the licensed (primary) users from harmful interference. The latter condition constraints the achievable throughput of a cognitive radio network, which should therefore access a wideband spectrum in order to provide reliable and efficient services to its users. In this paper, we study the problem of designing the optimal sensing time and power allocation strategy, in order to maximize the ergodic throughput of a cognitive radio that employs simultaneous multiband detection and operates under two different schemes, namely the wideband sensing-based spectrum sharing (WSSS) and the wideband opportunistic spectrum access (WOSA) scheme. We consider average transmit and interference power constraints for both schemes, in order to effectively protect the primary users from harmful interference, propose two algorithms that acquire the optimal sensing time and power allocation under imperfect spectrum sensing for the two schemes and discuss the effect of the average transmit and interference power constraint on the optimal sensing time. Finally, we provide simulation results to compare the two schemes and validate our theoretical analysis.

Journal ArticleDOI
Mai Vu1
TL;DR: In closed-form, the capacity and the optimal signaling scheme for a MISO channel with per-antenna power constraint are established and two cases of channel state information are considered: constant channel known at both the transmitter and receiver, and Rayleigh fading channel known only at the receiver.
Abstract: We establish in closed-form the capacity and the optimal signaling scheme for a MISO channel with per-antenna power constraint. Two cases of channel state information are considered: constant channel known at both the transmitter and receiver, and Rayleigh fading channel known only at the receiver. For the first case, the optimal signaling scheme is beamforming with the phases of the beam weights matched to the phases of the channel coefficients, but the amplitudes independent of the channel coefficients and dependent only on the constrained powers. For the second case, the optimal scheme is to send independent signals from the antennas with the constrained powers. In both cases, the capacity with per-antenna power constraint is usually less than that with sum power constraint.

Journal ArticleDOI
TL;DR: The proposed adaptive multi-mode transmission strategy to improve the spectral efficiency achieved in the multiple-input multiple-output (MIMO) broadcast channel with delayed and quantized channel state information provides performance close to that achieved by opportunistic scheduling with instantaneous feedback from a large number of users.
Abstract: This paper proposes an adaptive multi-mode transmission strategy to improve the spectral efficiency achieved in the multiple-input multiple-output (MIMO) broadcast channel with delayed and quantized channel state information. The adaptive strategy adjusts the number of active users, denoted as the transmission mode, to balance transmit array gain, spatial division multiplexing gain, and residual inter-user interference. Accurate closed-form approximations are derived for the achievable rates for different modes, which help identify the active mode that maximizes the average sum throughput for given feedback delay and channel quantization error. The proposed transmission strategy can be easily combined with round-robin scheduling to serve a large number of users. As instantaneous channel information is not exploited, the proposed algorithm cannot provide multiuser diversity gain, but it is still able to provide throughput gain over single-user MIMO at moderate signal-to-noise ratio. In addition, it has a light feedback overhead and only requires feedback of instantaneous channel state information from a small number of users. In the system with a feedback load constraint, it is shown that the proposed algorithm provides performance close to that achieved by opportunistic scheduling with instantaneous feedback from a large number of users.

Journal ArticleDOI
TL;DR: In this article, the probability density function (PDF) of the Γ Γ sum can be efficiently approximated either by the PDF of a single Γ − Γ distribution, or by a finite weighted sum of PDFs of Γ - Γ distributions.
Abstract: The Gamma-Gamma (Γ Γ ) distribution has recently attracted the interest of the research community due to its involvement in various communication systems. In the context of RF wireless communications, Γ Γ distribution accurately models the power statistics in composite shadowing/fading channels as well as in cascade multipath fading channels, while in optical wireless (OW) systems, it describes the fluctuations of the irradiance of optical signals distorted by atmospheric turbulence. Although Γ Γ channel model offers analytical tractability in the analysis of single input single output (SISO) wireless systems, difficulties arise when studying multiple input multiple output (MIMO) systems, where the distribution of the sum of independent Γ Γ variates is required. In this paper, we present a novel and simple closed-form approximation for the distribution of the sum of independent, but not necessarily identically distributed Γ Γ variates. It is shown that the probability density function (PDF) of the Γ Γ sum can be efficiently approximated either by the PDF of a single Γ Γ distribution, or by a finite weighted sum of PDFs of Γ Γ distributions. To reveal the importance of the proposed approximation, the performance of RF wireless systems in the presence of composite fading, as well as MIMO OW systems impaired by atmospheric turbulence, are investigated. Numerical results and simulations illustrate the accuracy of the proposed approach.

Journal ArticleDOI
Stefano Galli1
TL;DR: It is reported here that channel power gain and Root-Mean-Square Delay Spread in Low/Medium Voltage power line channels are negatively correlated lognormal random variables and a statistical wireline channel model is proposed where tap amplitudes and delays are generated in order to reflect these physical properties.
Abstract: We report here that channel power gain and Root-Mean-Square Delay Spread (RMS-DS) in Low/Medium Voltage power line channels are negatively correlated lognormal random variables. Further analysis of other wireline channels allows us to report a strong similarity between some properties observed in power line channels and the ones observed in other wireline channels, e.g. coaxial cables and phone lines. For example, it is here reported that channel power gain and logarithm of the RMS-DS in DSL links are linearly correlated random variables. Exploiting these results, we here propose a statistical wireline channel model where tap amplitudes and delays are generated in order to reflect these physical properties. Although wireline channels are considered deterministic as their impulse response can be readily calculated once the link topology is known, a statistical wireline channel model is useful because the variability of link topologies and wiring practices give rise to a stochastic aspect of wireline communications that has not been well characterized in the literature. Finally, we also point out that alternative channel models that normalize impulse responses to a common (often unitary) power gain may be misleading when assessing the performance of equalization schemes since this normalization artificially removes the correlation between channel power gain and RMS-DS and, thus, Inter-Symbol Interference (ISI).

Journal ArticleDOI
TL;DR: This paper considers downlink spectrum allocation in a long term evolution (LTE) system macrocell which contains multiple femtocells using a game-theoretic framework and proposes a distributed RB access algorithm to compute the correlated equilibrium RB allocation policy.
Abstract: This paper considers downlink spectrum allocation in a long term evolution (LTE) system macrocell which contains multiple femtocells. By incorporating cognitive capabilities into femtocell base stations, the Home evolved Node Bs (HeNBs) can be formulated as secondary base stations seeking to maximize the spectrum utility while minimizing interference to primary base stations (evolved Node-Bs). The competition amongst cognitive HeNBs for spectrum resources is formulated as a non-cooperative game-theoretic learning problem where each agent (HeNB) seeks to adapt its strategy in real time. We formulate the resource block (RB) allocation among HeNBs in the downlink of a LTE system using a game-theoretic framework, where the correlated equilibrium solutions of the formulated game are being investigated. A distributed RB access algorithm is proposed to compute the correlated equilibrium RB allocation policy..

Journal ArticleDOI
TL;DR: It is proved that there exists no tighter single-term exponential upper bound beyond the Chernoff bound employing a factor of one-half and the tightness of the lower bound is comparable to that of previous work employing eight exponential terms.
Abstract: We study single-term exponential-type bounds (also known as Chernoff-type bounds) on the Gaussian error function. This type of bound is analytically the simplest such that the performance metrics in most fading channel models can be expressed in a concise closed form. We derive the conditions for a general single-term exponential function to be an upper or lower bound on the Gaussian error function. We prove that there exists no tighter single-term exponential upper bound beyond the Chernoff bound employing a factor of one-half. Regarding the lower bound, we prove that the single-term exponential lower bound of this letter outperforms previous work. Numerical results show that the tightness of our lower bound is comparable to that of previous work employing eight exponential terms.

Journal ArticleDOI
TL;DR: The tradeoff between channel coding and ARQ (automatic repeat request) in Rayleigh block-fading channels is studied and the optimum packet error probability is derived and is shown to be a decreasing function of the average signal-to-noise ratio and of the channel diversity order.
Abstract: This paper studies the tradeoff between channel coding and ARQ (automatic repeat request) in Rayleigh block-fading channels. A heavily coded system corresponds to a low transmission rate with few ARQ re-transmissions, whereas lighter coding corresponds to a higher transmitted rate but more retransmissions. The optimum packet error probability, where optimum refers to the maximization of the average successful throughput, is derived and is shown to be a decreasing function of the average signal-to-noise ratio and of the channel diversity order. A general conclusion of the work is that the optimum error probability is quite large (e.g., 10% or larger) for reasonable channel parameters, and that operating at a very small error probability can lead to a significantly reduced throughput. This conclusion holds even when a number of practical ARQ considerations, such as delay constraints and acknowledgement feedback errors, are taken into account.

Journal ArticleDOI
TL;DR: A very general framework for computing the Average Bit Error Probability (ABEP) of SSK-MIMO systems over a generic Rician fading channel with arbitrary correlation and channel parameters is proposed and can increase twofold the diversity order for arbitrary transmit- and receive-antenna.
Abstract: In this paper, we study the performance of Space Shift Keying (SSK) modulation for a generic Multiple-Input-Multiple-Output (MIMO) wireless system over correlated Rician fading channels. In particular, our contribution is twofold, i) First, we propose a very general framework for computing the Average Bit Error Probability (ABEP) of SSK-MIMO systems over a generic Rician fading channel with arbitrary correlation and channel parameters. The framework relies upon the Moschopoulos method. We show that it is exact for MIMO systems with two transmit-antenna and arbitrary receive-antenna, while an asymptotically-tight upper-bound is proposed to handle the system setup with an arbitrary number of transmit-antenna. ii) Second, moving from the consideration that conventional SSK-MIMO schemes can offer only receive-diversity gains, we propose a novel SSK-MIMO scheme that can exploit the transmit-antenna to increase the diversity order. The new method has its basic foundation on the transmission of signals with good time-correlation properties, and is called Time-Orthogonal-Signal-Design (TOSD-) assisted SSK modulation (TOSD-SSK). It is shown that the proposed method can increase twofold the diversity order for arbitrary transmit- and receive-antenna. In particular, for MIMO systems with two transmit-antenna and Nr receive-antenna full-diversity equal to 2Nr can be achieved. Analytical frameworks and theoretical findings are substantiated via Monte Carlo simulations for various system setups.

Journal ArticleDOI
TL;DR: Simulation results show that both the multi- carrier and the single-carrier precoding schemes achieve significant power leakage suppression, and have similar peak-to-average power ratio (PAPR) and bit-error-rate (BER) to those of OFDM and SC-FDMA systems, respectively.
Abstract: A solution to the power leakage minimization problem in discrete Fourier transform (DFT) based communication systems is presented. In a conventional DFT based system, modulated subcarriers exhibit high sidelobe levels, which leads to significant out-of-band power leakage. Existing techniques found in the literature either do not achieve sufficient sidelobe suppression or suffer from significant spectral efficiency loss. Precoding can be seen as a general linear processing method for power leakage reduction, however, how to design the optimal linear precoder is still an open problem. In this paper, the power leakage suppression is first treated as a matrix Frobenius norm minimization problem, and then the optimal orthogonal precoding matrix design for the power leakage suppression is proposed based on singular value decomposition (SVD). By further exploiting the extra degrees of freedom in the precoding matrix, two kinds of optimized precoding matrices, one with multi-carrier property and the other with single-carrier property, are developed to take the advantages of orthogonal frequency division multiplexing (OFDM) and single carrier frequency division multiple access (SC-FDMA), respectively. Simulation results show that both the multi-carrier and the single-carrier precoding schemes achieve significant power leakage suppression, and have similar peak-to-average power ratio (PAPR) and bit-error-rate (BER) to those of OFDM and SC-FDMA systems, respectively.

Journal ArticleDOI
TL;DR: A one-relay cooperative diversity scheme is proposed and analyzed for non-coherent FSO communications with intensity modulation and direct detection, showing the enhanced diversity orders that can be achieved over both Rayleigh and lognormal fading models.
Abstract: In this paper, we investigate the cooperative diversity technique as a candidate solution for combating turbulence-induced fading over Free-Space Optical (FSO) links. In particular, a one-relay cooperative diversity scheme is proposed and analyzed for non-coherent FSO communications with intensity modulation and direct detection (IM/DD). The error performance is derived in semi-analytical and closed-form expressions in the presence and absence of background radiation, respectively. Results show the enhanced diversity orders that can be achieved over both Rayleigh and lognormal fading models.

Journal ArticleDOI
TL;DR: Simulation results demonstrate that even for a moderate number of antennas at each link, the new approach provides indistinguishable results as those obtained by the complex stochastic programming approach.
Abstract: In this paper, we study the capacity-achieving input covariance matrices for the multiuser multiple-input multiple-output (MIMO) uplink channel under jointly-correlated Rician fading when perfect channel state information (CSI) is known at the receiver, or CSIR while only statistical CSI at the transmitter, or CSIT, is available. The jointly-correlated MIMO channel (or the Weichselberger model) accounts for the correlation at two link ends and is shown to be highly accurate to model real channels. Classically, numerical techniques together with Monte-Carlo methods (named stochastic programming) are used to resolve the problem concerned but at a high computational cost. To tackle this, we derive the asymptotic sum-rate of the multiuser (MU) MIMO uplink channel in the large-system regime where the numbers of antennas at the transmitters and the receiver go to infinity with constant ratios. Several insights are gained from the analytic asymptotic sum-rate expression, based on which an efficient optimization algorithm is further proposed to obtain the capacity-achieving input covariance matrices. Simulation results demonstrate that even for a moderate number of antennas at each link, the new approach provides indistinguishable results as those obtained by the complex stochastic programming approach.

Journal ArticleDOI
TL;DR: A novel reduced-complexity near-optimal detection algorithm is proposed for enhancing the recent Coherently-detected Space-Time Shift Keying (CSTSK) scheme employing arbitrary constellations, and it is revealed that the proposed detector is capable of approaching the optimal Maximum Likelihood (ML) detector's performance, while avoiding the exhaustive ML search.
Abstract: A novel reduced-complexity near-optimal detection algorithm is proposed for enhancing the recent Coherently-detected Space-Time Shift Keying (CSTSK) scheme employing arbitrary constellations, such as {\cal L}-point Phase-Shift Keying (PSK) and Quadrature Amplitude Modulation (QAM). The proposed detector relies on a modified Matched Filter (MF) concept. More specifically, we exploit both the constellation diagram of the modulation scheme employed as well as the Inter-Element-Interference (IEI)-free STSK architecture. Furthermore, we generalize the Pulse Amplitude Modulation (PAM)- or PSK-aided Differentially-encoded STSK (DSTSK) concept and conceive its more bandwidth-efficient QAM-aided counterpart. Then, the proposed reduced-complexity CSTSK detector is applied to the QAM-aided DSTSK scheme, which enables us to carry out low-complexity non-coherent detection, while dispensing with channel estimation. It is revealed that the proposed detector is capable of approaching the optimal Maximum Likelihood (ML) detector's performance, while avoiding the exhaustive ML search. Interestingly, our simulation results also demonstrate that the reduced-complexity detector advocated may achieve the same performance as that of the optimal ML detector for the specific STSK scheme's parameters. Another novelty of this paper is that the star-QAM STSK scheme tends to outperform its square-QAM counterpart, especially for high number of dispersion matrices. Furthermore, we provided both the theoretical analysis and the simulations, in order to support this unexpected fact.

Journal ArticleDOI
TL;DR: In this paper, the performance of product codes for optical networks has been analyzed and it has been shown that the performance exhibits a threshold that can be estimated from a result about random graphs.
Abstract: Several modifications of product codes have been suggested as standards for optical networks. We show that the performance exhibits a threshold that can be estimated from a result about random graphs. For moderate input bit error probabilities, the output error rates for codes of finite length can be found by easy simulations. The analysis indicates that the performance curve can be extrapolated until the error floor is reached. The analysis allows us to calculate the error floors and avoid time-consuming simulations.

Journal ArticleDOI
TL;DR: Results show that the incremental-best-relay cooperative diversity can achieve the maximum possible diversity order, compared with the regular cooperative-diversity networks, with higher channel utilization and considerable virtual array gain at high SNR.
Abstract: In this paper, we introduce a comprehensive analysis of the incremental-best-relay cooperative diversity, in which we exploit limited feedback from the destination terminal, e.g., a single bit indicating the success or failure of the direct transmission. If the destination provides a negative acknowledgment via feedback; in this case only, the best relay among M available relays retransmits the source signal in an attempt to exploit spatial diversity by combining the signals received at the destination from the source and the best relay. Furthermore, we study the end-to-end performance of the incremental-best-relay cooperative-diversity networks using decode-and-forward and amplify-and-forward relaying over independent non-identical Rayleigh fading channels. Closed-form expressions for the bit error rate, the outage probability and average channel capacity are determined. Results show that the incremental-best-relay cooperative diversity can achieve the maximum possible diversity order, compared with the regular cooperative-diversity networks, with higher channel utilization. In particular, the incremental-best-relay technique can achieve M+1 diversity order at low signal-to noise ratio (SNR) and considerable virtual array gain at high SNR.

Journal ArticleDOI
TL;DR: Numerical results indicate that significant spectral efficiency gains are offered without increasing the transmitted average optical power or sacrificing BER requirements, especially in moderate-to-strong turbulence conditions.
Abstract: We propose an adaptive transmission technique for free space optical (FSO) systems, operating in atmospheric turbulence and employing subcarrier phase shift keying (S-PSK) intensity modulation. Exploiting the constant envelope characteristics of S-PSK, the proposed technique offers efficient utilization of the FSO channel capacity by adapting the modulation order of S-PSK, according to the instantaneous state of turbulence induced fading and a pre-defined bit error rate (BER) requirement. Novel expressions for the spectral efficiency and average BER of the proposed adaptive FSO system are presented and performance investigations under various turbulence conditions, turbulence models, and target BER requirements are carried out. Numerical results indicate that significant spectral efficiency gains are offered without increasing the transmitted average optical power or sacrificing BER requirements, especially in moderate-to-strong turbulence conditions. Furthermore, the proposed variable rate transmission technique is applied to multiple input multiple output (MIMO) FSO systems, providing additional improvement in the achieved spectral efficiency as the number of the transmit and/or receive apertures increases.

Journal ArticleDOI
TL;DR: An adaptive limited feedback linear precoding technique for temporally correlated multiple-input multiple-output (MIMO) channels is proposed, where the receiver has perfect channel knowledge but the transmitter only receives a quantized channel direction.
Abstract: In this paper, an adaptive limited feedback linear precoding technique for temporally correlated multiple-input multiple-output (MIMO) channels is proposed, where the receiver has perfect channel knowledge but the transmitter only receives a quantized channel direction. To perform adaptation to the time correlation structure, we employ a differential feedback, where the "amount" of the perturbation added to the previous precoder is determined by the statistics of the directional variation. Based on random matrix quantization analysis, we develop a spherical cap codebook approach, where the cap is centered at the previous precoder and the radius of the cap is determined proportional to the identified directional variation. If the channel is highly correlated in time, it is shown that the proposed differential feedback scheme achieves significant throughput improvement in the large codebook size regime. The rest of the paper is devoted to developing a systematic spherical cap codebook generation method. The developed approach employs a feedback scheme that uses a differential rotation of the previously used precoder. Our codebook adaptation is based on generating a perturbation in Euclidean space and projecting the perturbation onto the unitary space. Simulation results show that the proposed adaptation scheme accurately tracks the channel using only a small rate of feedback.

Journal ArticleDOI
TL;DR: In this paper, the authors provide a comprehensive probabilistic analysis of the capacity (maximum mean packet throughput) and packet delay of subnetworks that can be used to form NG-PONs.
Abstract: Building on the Ethernet Passive Optical Network (EPON) and Gigabit PON (GPON) standards, Next-Generation (NG) PONs (i) provide increased data rates, split ratios, wavelengths counts, and fiber lengths, as well as (ii) allow for all-optical integration of access and metro networks. In this paper we provide a comprehensive probabilistic analysis of the capacity (maximum mean packet throughput) and packet delay of subnetworks that can be used to form NG-PONs. Our analysis can cover a wide range of NG-PONs through taking the minimum capacity of the subnetworks forming the NG-PON and weighing the packet delays of the subnetworks. Our numerical and simulation results indicate that our analysis quite accurately characterizes the throughput-delay performance of EPON/GPON tree networks, including networks upgraded with higher data rates and wavelength counts. Our analysis also characterizes the trade-offs and bottlenecks when integrating EPON/GPON tree networks across a metro area with a ring, a Passive Star Coupler (PSC), or an Arrayed Waveguide Grating (AWG) for uniform and non-uniform traffic. To the best of our knowledge, the presented analysis is the first to consider multiple PONs interconnected via a metro network.