scispace - formally typeset
Search or ask a question

Showing papers in "IEEE Transactions on Communications in 2013"


Journal ArticleDOI
TL;DR: In this paper, the tradeoff between the energy efficiency and spectral efficiency of a single-antenna system is quantified for a channel model that includes small-scale fading but not large scale fading, and it is shown that the use of moderately large antenna arrays can improve the spectral and energy efficiency with orders of magnitude compared to a single antenna system.
Abstract: A multiplicity of autonomous terminals simultaneously transmits data streams to a compact array of antennas. The array uses imperfect channel-state information derived from transmitted pilots to extract the individual data streams. The power radiated by the terminals can be made inversely proportional to the square-root of the number of base station antennas with no reduction in performance. In contrast if perfect channel-state information were available the power could be made inversely proportional to the number of antennas. Lower capacity bounds for maximum-ratio combining (MRC), zero-forcing (ZF) and minimum mean-square error (MMSE) detection are derived. An MRC receiver normally performs worse than ZF and MMSE. However as power levels are reduced, the cross-talk introduced by the inferior maximum-ratio receiver eventually falls below the noise level and this simple receiver becomes a viable option. The tradeoff between the energy efficiency (as measured in bits/J) and spectral efficiency (as measured in bits/channel use/terminal) is quantified for a channel model that includes small-scale fading but not large-scale fading. It is shown that the use of moderately large antenna arrays can improve the spectral and energy efficiency with orders of magnitude compared to a single-antenna system.

2,770 citations


Journal ArticleDOI
TL;DR: A general receiver operation, namely, dynamic power splitting (DPS), which splits the received signal with adjustable power ratio for energy harvesting and information decoding, separately is proposed and the optimal transmission strategy is derived to achieve different rate-energy tradeoffs.
Abstract: Simultaneous information and power transfer over the wireless channels potentially offers great convenience to mobile users. Yet practical receiver designs impose technical constraints on its hardware realization, as practical circuits for harvesting energy from radio signals are not yet able to decode the carried information directly. To make theoretical progress, we propose a general receiver operation, namely, dynamic power splitting (DPS), which splits the received signal with adjustable power ratio for energy harvesting and information decoding, separately. Three special cases of DPS, namely, time switching (TS), static power splitting (SPS) and on-off power splitting (OPS) are investigated. The TS and SPS schemes can be treated as special cases of OPS. Moreover, we propose two types of practical receiver architectures, namely, separated versus integrated information and energy receivers. The integrated receiver integrates the front-end components of the separated receiver, thus achieving a smaller form factor. The rate-energy tradeoff for the two architectures are characterized by a so-called rate-energy (R-E) region. The optimal transmission strategy is derived to achieve different rate-energy tradeoffs. With receiver circuit power consumption taken into account, it is shown that the OPS scheme is optimal for both receivers. For the ideal case when the receiver circuit does not consume power, the SPS scheme is optimal for both receivers. In addition, we study the performance for the two types of receivers under a realistic system setup that employs practical modulation. Our results provide useful insights to the optimal practical receiver design for simultaneous wireless information and power transfer (SWIPT).

1,610 citations


Journal ArticleDOI
TL;DR: This paper proposes the use of outdoor millimeter wave communications for backhaul networking between cells and mobile access within a cell, and proposes an efficient beam alignment technique using adaptive subspace sampling and hierarchical beam codebooks.
Abstract: Recently, there has been considerable interest in new tiered network cellular architectures, which would likely use many more cell sites than found today. Two major challenges will be i) providing backhaul to all of these cells and ii) finding efficient techniques to leverage higher frequency bands for mobile access and backhaul. This paper proposes the use of outdoor millimeter wave communications for backhaul networking between cells and mobile access within a cell. To overcome the outdoor impairments found in millimeter wave propagation, this paper studies beamforming using large arrays. However, such systems will require narrow beams, increasing sensitivity to movement caused by pole sway and other environmental concerns. To overcome this, we propose an efficient beam alignment technique using adaptive subspace sampling and hierarchical beam codebooks. A wind sway analysis is presented to establish a notion of beam coherence time. This highlights a previously unexplored tradeoff between array size and wind-induced movement. Generally, it is not possible to use larger arrays without risking a corresponding performance loss from wind-induced beam misalignment. The performance of the proposed alignment technique is analyzed and compared with other search and alignment methods. The results show significant performance improvement with reduced search time.

975 citations


Journal ArticleDOI
TL;DR: Numerical results show that the proposed scheme can significantly improve the performance of the hybrid system in terms of D2D access rate and the overall network throughput.
Abstract: In cellular networks, proximity users may communicate directly without going through the base station, which is called Device-to-device (D2D) communications and it can improve spectral efficiency. However, D2D communications may generate interference to the existing cellular networks if not designed properly. In this paper, we study a resource allocation problem to maximize the overall network throughput while guaranteeing the quality-of-service (QoS) requirements for both D2D users and regular cellular users (CUs). A three-step scheme is proposed. It first performs admission control and then allocates powers for each admissible D2D pair and its potential CU partners. Next, a maximum weight bipartite matching based scheme is developed to select a suitable CU partner for each admissible D2D pair to maximize the overall network throughput. Numerical results show that the proposed scheme can significantly improve the performance of the hybrid system in terms of D2D access rate and the overall network throughput. The performance of D2D communications depends on D2D user locations, cell radius, the numbers of active CUs and D2D pairs, and the maximum power constraint for the D2D pairs.

833 citations


Journal ArticleDOI
TL;DR: This paper considers a point-to-point wireless link over the flat-fading channel, where the receiver has no fixed power supplies and thus needs to replenish energy via WEH from the signals sent by the transmitter.
Abstract: Energy harvesting is a promising solution to prolong the operation time of energy-constrained wireless networks. In particular, scavenging energy from ambient radio signals, namely wireless energy harvesting (WEH), has recently drawn significant attention. In this paper, we consider a point-to-point wireless link over the flat-fading channel, where the receiver has no fixed power supplies and thus needs to replenish energy via WEH from the signals sent by the transmitter. We first consider a SISO (single-input single-output) system where the single-antenna receiver cannot decode information and harvest energy independently from the same signal received. Under this practical constraint, we propose a dynamic power splitting (DPS) scheme, where the received signal is split into two streams with adjustable power levels for information decoding and energy harvesting separately based on the instantaneous channel condition that is assumed to be known at the receiver. We derive the optimal power splitting rule at the receiver to achieve various trade-offs between the maximum ergodic capacity for information transfer and the maximum average harvested energy for power transfer, which are characterized by the boundary of a so-called "rate-energy (R-E)" region. Moreover, for the case when the channel state information is also known at the transmitter, we investigate the joint optimization of transmitter power control and receiver power splitting. The achievable R-E region by the proposed DPS scheme is also compared against that by the existing time switching scheme as well as a performance upper bound by ignoring the practical receiver constraint. Finally, we extend the result for optimal DPS to the SIMO (single-input multiple-output) system where the receiver is equipped with multiple antennas. In particular, we investigate a low-complexity power splitting scheme, namely antenna switching, which achieves the near-optimal rate-energy trade-offs as compared to the optimal DPS.

615 citations


Journal ArticleDOI
TL;DR: It is found that power imbalance can substantially improve the performance of both SMP and SM as it reduces channel correlation, and a framework to analytically approximate the bit error ratios of these schemes is developed.
Abstract: In this paper, we compare the performance of multiple-input-multiple-output (MIMO) techniques applied to indoor optical wireless communications (OWC) assuming line-ofsight (LOS) channel conditions Specifically, several 4 × 4 setups with different transmitter spacings and different positions of the receiver array are considered The following MIMO algorithms are considered: Repetition Coding (RC), Spatial Multiplexing (SMP) and Spatial Modulation (SM) Particularly, we develop a framework to analytically approximate the bit error ratios (BERs) of these schemes and verify the theoretical bounds by simulations The results show that due to diversity gains, RC is robust to various transmitter-receiver alignments However, as RC does not provide spatial multiplexing gains, it requires large signal constellation sizes to enable high spectral efficiencies In contrast, SMP enables high data rates by exploiting multiplexing gains In order to provide these gains, SMP needs sufficiently low channel correlation SM is a combined MIMO and digital modulation technique We show that SM is more robust to high channel correlation compared to SMP, while enabling larger spectral efficiency compared to RC Moreover, we investigate the effect of induced power imbalance between the multiple transmitters It is found that power imbalance can substantially improve the performance of both SMP and SM as it reduces channel correlation In this context, we also show that blocking some of the links is an acceptable method to reduce channel correlation Even though the blocking diminishes the received energy, it outweighs this degradation by providing improved channel conditions for SMP and SM For example, blocking 4 of the 16 links of the 4 × 4 setup improves the BER performance of SMP by more than 20 dB, while the effective signal to noise ratio (SNR) is reduced by about 2 dB due to the blocking Therefore, MIMO techniques can provide gains even under LOS conditions which provide only little channel differences

554 citations


Journal ArticleDOI
TL;DR: It is proved that under the proposed protocols, the secrecy outage probability and the ε-outage secrecy capacity improve with increasing NA, as well as the secrecy diversity order and the secrecy array gain.
Abstract: We propose and analyze transmit antenna selection (TAS) to enhance physical layer security in a wiretap channel with NA antennas at the transmitter, NB antennas at the receiver, and NE antennas at the eavesdropper. We focus on the practical scenario where the transmitter does not have any channel state information (CSI) of the eavesdropper's channel. The transmitter selects a single antenna that maximizes the instantaneous signal-to-noise ratio (SNR) at the receiver. The receiver and the eavesdropper employ either maximal-ratio combining (MRC) or selection combining (SC) to combine the received signals. For the proposed protocols, we derive new closed-form expressions for the probability of non-zero secrecy capacity. We consider Nakagami-m fading with non-identical fading parameters of the main channel, mB, and of the eavesdropper's channel, mE. Next, we derive new closed-form expressions for the exact secrecy outage probability, based on which the e-outage secrecy capacity is characterized. Based on the exact expressions, we derive the asymptotic secrecy outage probability which accurately reveals the secrecy diversity order and the secrecy array gain. We confirm that the proposed protocols achieve identical secrecy diversity orders of NANBmB. An interesting conclusion is reached that this diversity order is independent of NE and mE. Furthermore, we prove that under the proposed protocols, the secrecy outage probability and the e-outage secrecy capacity improve with increasing NA.

424 citations


Journal ArticleDOI
TL;DR: Analytical and numerical results show that, under certain mild conditions on the channel gains, for a fixed M, an array gain is achievable even under the stringent per-antenna CE constraint, and the proposed CE precoding scheme performs close to the sum-capacity achieving scheme for an average-only total transmit power constrained channel.
Abstract: We consider the multi-user MIMO broadcast channel with M single-antenna users and N transmit antennas under the constraint that each antenna emits signals having constant envelope (CE). The motivation for this is that CE signals facilitate the use of power-efficient RF power amplifiers. Analytical and numerical results show that, under certain mild conditions on the channel gains, for a fixed M, an array gain is achievable even under the stringent per-antenna CE constraint. Essentially, for a fixed M, at sufficiently large N the total transmitted power can be reduced with increasing N while maintaining a fixed information rate to each user. Simulations for the i.i.d. Rayleigh fading channel show that the total transmit power can be reduced linearly with increasing N (i.e., an O(N) array gain). We also propose a precoding scheme which finds near-optimal CE signals to be transmitted, and has O(MN) complexity. Also, in terms of the total transmit power required to achieve a fixed desired information sum-rate, despite the stringent per-antenna CE constraint, the proposed CE precoding scheme performs close to the sum-capacity achieving scheme for an average-only total transmit power constrained channel.

370 citations


Journal ArticleDOI
TL;DR: This paper derives new closed-form expressions for the exact and asymptotic OPs, accounting for hardware impairments at the source, relay, and destination, and proves that for high signal-to-noise ratio (SNR), the end- to-end SNDR converges to a deterministic constant, coined the SNDR ceiling, which is inversely proportional to the level of impairments.
Abstract: Physical transceivers have hardware impairments that create distortions which degrade the performance of communication systems. The vast majority of technical contributions in the area of relaying neglect hardware impairments and, thus, assume ideal hardware. Such approximations make sense in low-rate systems, but can lead to very misleading results when analyzing future high-rate systems. This paper quantifies the impact of hardware impairments on dual-hop relaying, for both amplify-and-forward and decode-and-forward protocols. The outage probability (OP) in these practical scenarios is a function of the effective end-to-end signal-to-noise-and-distortion ratio (SNDR). This paper derives new closed-form expressions for the exact and asymptotic OPs, accounting for hardware impairments at the source, relay, and destination. A similar analysis for the ergodic capacity is also pursued, resulting in new upper bounds. We assume that both hops are subject to independent but non-identically distributed Nakagami-m fading. This paper validates that the performance loss is small at low rates, but otherwise can be very substantial. In particular, it is proved that for high signal-to-noise ratio (SNR), the end-to-end SNDR converges to a deterministic constant, coined the SNDR ceiling, which is inversely proportional to the level of impairments. This stands in contrast to the ideal hardware case in which the end-to-end SNDR grows without bound in the high-SNR regime. Finally, we provide fundamental design guidelines for selecting hardware that satisfies the requirements of a practical relaying system.

370 citations


Journal ArticleDOI
TL;DR: This work considers multicell multiuser MIMO systems with a very large number of antennas at the base station (BS) and shows that when the number of BS antennas goes to infinity, the system performance under a finite-dimensional channel model with P angular bins is the same as the performance under an uncorrelated channel models with P antennas.
Abstract: We consider multicell multiuser MIMO systems with a very large number of antennas at the base station (BS). We assume that the channel is estimated by using uplink training. We further consider a physical channel model where the angular domain is separated into a finite number of distinct directions. We analyze the so-called pilot contamination effect discovered in previous work, and show that this effect persists under the finite-dimensional channel model that we consider. In particular, we consider a uniform array at the BS. For this scenario, we show that when the number of BS antennas goes to infinity, the system performance under a finite-dimensional channel model with P angular bins is the same as the performance under an uncorrelated channel model with P antennas. We further derive a lower bound on the achievable rate of uplink data transmission with a linear detector at the BS. We then specialize this lower bound to the cases of maximum-ratio combining (MRC) and zero-forcing (ZF) receivers, for a finite and an infinite number of BS antennas. Numerical results corroborate our analysis and show a comparison between the performances of MRC and ZF in terms of sum-rate.

337 citations


Journal ArticleDOI
TL;DR: An analytical framework to compute the average rate of downlink heterogeneous cellular networks is introduced, which avoids the computation of the Coverage Probability (Pcov) and needs only the Moment Generating Function (MGF) of the aggregate interference at the probe mobile terminal.
Abstract: In this paper, we introduce an analytical framework to compute the average rate of downlink heterogeneous cellular networks. The framework leverages recent application of stochastic geometry to other-cell interference modeling and analysis. The heterogeneous cellular network is modeled as the superposition of many tiers of Base Stations (BSs) having different transmit power, density, path-loss exponent, fading parameters and distribution, and unequal biasing for flexible tier association. A long-term averaged maximum biased-received-power tier association is considered. The positions of the BSs in each tier are modeled as points of an independent Poisson Point Process (PPP). Under these assumptions, we introduce a new analytical methodology to evaluate the average rate, which avoids the computation of the Coverage Probability (Pcov) and needs only the Moment Generating Function (MGF) of the aggregate interference at the probe mobile terminal. The distinguishable characteristic of our analytical methodology consists in providing a tractable and numerically efficient framework that is applicable to general fading distributions, including composite fading channels with small- and mid-scale fluctuations. In addition, our method can efficiently handle correlated Log-Normal shadowing with little increase of the computational complexity. The proposed MGF-based approach needs the computation of either a single or a two-fold numerical integral, thus reducing the complexity of Pcov-based frameworks, which require, for general fading distributions, the computation of a four-fold integral.

Journal ArticleDOI
TL;DR: The concept of energy cooperation is introduced, where a user wirelessly transmits a portion of its energy to another energy harvesting user, which enables shaping and optimization of the energy arrivals at the energy-receiving node, and improves the overall system performance, despite the loss incurred in energy transfer.
Abstract: In energy harvesting communications, users transmit messages using energy harvested from nature during the course of communication. With an optimum transmit policy, the performance of the system depends only on the energy arrival profiles. In this paper, we introduce the concept of energy cooperation, where a user wirelessly transmits a portion of its energy to another energy harvesting user. This enables shaping and optimization of the energy arrivals at the energy-receiving node, and improves the overall system performance, despite the loss incurred in energy transfer. We consider several basic multi-user network structures with energy harvesting and wireless energy transfer capabilities: relay channel, two-way channel and multiple access channel. We determine energy management policies that maximize the system throughput within a given duration using a Lagrangian formulation and the resulting KKT optimality conditions. We develop a two-dimensional directional water-filling algorithm which optimally controls the flow of harvested energy in two dimensions: in time (from past to future) and among users (from energy-transferring to energy-receiving) and show that a generalized version of this algorithm achieves the boundary of the capacity region of the two-way channel.

Journal ArticleDOI
TL;DR: This paper exploits the potential of large antenna arrays at millimeter-wave (mm-Wave) frequencies to develop a low-complexity directional modulation technique, Antenna Subset Modulation (ASM), for point-to-point secure wireless communication.
Abstract: The small carrier wavelength at millimeter-wave (mm-Wave) frequencies enables featuring a large number of co-located antennas. This paper exploits the potential of large antenna arrays to develop a low-complexity directional modulation technique, Antenna Subset Modulation (ASM), for point-to-point secure wireless communication. The main idea in ASM is to modulate the radiation pattern at the symbol rate by driving only a subset of antennas in the array. This results in a directional radiation pattern that projects a sharply defined constellation in the desired direction and expanded further randomized constellation in other directions. Two techniques for implementing ASM are proposed. The first technique selects an antenna subset randomly for every symbol. While randomly switching antenna subsets does not affect the symbol modulation for a desired receiver along the main direction, it effectively randomizes the amplitude and phase of the received symbol for an eavesdropper along a sidelobe. Using a simplified statistical model, an expression for the average uncoded symbol error rate (SER) is derived as a function of the observation angle. To overcome the problem of large sidelobes in random antenna subset switching, the second technique uses an optimized antenna subset selection procedure based on simulated annealing to achieve superior performance compared with random selection. Numerical comparisons of the SER performance and secrecy capacity of the proposed techniques against those of conventional array transmission are presented to highlight the potential of ASM.

Journal ArticleDOI
TL;DR: A new Multi-Carrier Differential Chaos Shift Keying modulation is presented in this paper to provide a good trade-off between robustness, energy efficiency and high data rate, while still being simple compared to conventional multi-carrier spread spectrum systems.
Abstract: A new Multi-Carrier Differential Chaos Shift Keying (MC-DCSK) modulation is presented in this paper. The system endeavors to provide a good trade-off between robustness, energy efficiency and high data rate, while still being simple compared to conventional multi-carrier spread spectrum systems. This system can be seen as a parallel extension of the DCSK modulation where one chaotic reference sequence is transmitted over a predefined subcarrier frequency. Multiple modulated data streams are transmitted over the remaining subcarriers. This transmitter structure increases the spectral efficiency of the conventional DCSK system and uses less energy. The receiver design makes this system easy to implement where no radio frequency (RF) delay circuit is needed to demodulate received data. Various system design parameters are discussed throughout the paper, including the number of subcarriers, the spreading factor, and the transmitted energy. Once the design is explained, the bit error rate performance of the MC-DCSK system is computed and compared to the conventional DCSK system under multipath Rayleigh fading and an additive white Gaussian noise (AWGN) channels. Simulation results confirm the advantages of this new hybrid design.

Journal ArticleDOI
TL;DR: Unified descriptions of the SC, SCL, and SCS decoding algorithms are given as path search procedures on the code tree of polar codes and a new decoding algorithm called the successive cancellation hybrid (SCH) is proposed to provide a flexible configuration when the time and space complexities are limited.
Abstract: As improved versions of the successive cancellation (SC) decoding algorithm, the successive cancellation list (SCL) decoding and the successive cancellation stack (SCS) decoding are used to improve the finite-length performance of polar codes. In this paper, unified descriptions of the SC, SCL, and SCS decoding algorithms are given as path search procedures on the code tree of polar codes. Combining the principles of SCL and SCS, a new decoding algorithm called the successive cancellation hybrid (SCH) is proposed. This proposed algorithm can provide a flexible configuration when the time and space complexities are limited. Furthermore, a pruning technique is also proposed to lower the complexity by reducing unnecessary path searching operations. Performance and complexity analysis based on simulations shows that under proper configurations, all the three improved successive cancellation (ISC) decoding algorithms can approach the performance of the maximum likelihood (ML) decoding but with acceptable complexity. With the help of the proposed pruning technique, the time and space complexities of ISC decoders can be significantly reduced and be made very close to those of the SC decoder in the high signal-to-noise ratio regime.

Journal ArticleDOI
TL;DR: The theoretical analysis and simulations show the somewhat surprising result that for a given number of receivers the improved transmit diversity dominates the performance of practical linear precoders.
Abstract: We explore the performance of multiple input multiple output (MIMO) transmitters in correlated channels where increasing numbers of antenna elements are fitted in a fixed physical space. As well investigated in the literature, two main effects emerge in such a design: transmit spatial correlation and mutual antenna coupling. In contrast to the literature however, here we investigate the combined effect of reducing the distance between the antenna elements with increasing the number of elements in a fixed transmitter space. In other words, towards the implementation of large-scale MIMO transmitters in limited physical spaces, we investigate the joint effect of two contradicting phenomena: the reduction of spatial diversity due to reducing the separation between antennas and the increase in transmit diversity by increasing the number of elements. Within this context, we analytically approximate the performance of two distinct linear precoding designs. The theoretical analysis and simulations show the somewhat surprising result that for a given number of receivers the improved transmit diversity dominates the performance of practical linear precoders. Consequently, important benefits in the system sum rate can be gleaned by fitting more antenna elements in a fixed space by employing separations smaller than the wavelength of the transmit frequency.

Journal ArticleDOI
TL;DR: The physical-layer security against eavesdropping attacks in the cognitive radio network is investigated, the user scheduling scheme to achieve multiuser diversity for improving the security level of cognitive transmissions with a primary QoS constraint is proposed and it is proved that the full diversity is obtained by using the proposedMultiuser scheduling.
Abstract: In this paper, we consider a cognitive radio network that consists of one cognitive base station (CBS) and multiple cognitive users (CUs) in the presence of multiple eavesdroppers, where CUs transmit their data packets to CBS under a primary user's quality of service (QoS) constraint while the eavesdroppers attempt to intercept the cognitive transmissions from CUs to CBS. We investigate the physical-layer security against eavesdropping attacks in the cognitive radio network and propose the user scheduling scheme to achieve multiuser diversity for improving the security level of cognitive transmissions with a primary QoS constraint. Specifically, a cognitive user (CU) that satisfies the primary QoS requirement and maximizes the achievable secrecy rate of cognitive transmissions is scheduled to transmit its data packet. For the comparison purpose, we also examine the traditional multiuser scheduling and the artificial noise schemes. We analyze the achievable secrecy rate and intercept probability of the traditional and proposed multiuser scheduling schemes as well as the artificial noise scheme in Rayleigh fading environments. Numerical results show that given a primary QoS constraint, the proposed multiuser scheduling scheme generally outperforms the traditional multiuser scheduling and the artificial noise schemes in terms of the achievable secrecy rate and intercept probability. In addition, we derive the diversity order of the proposed multiuser scheduling scheme through an asymptotic intercept probability analysis and prove that the full diversity is obtained by using the proposed multiuser scheduling.

Journal ArticleDOI
TL;DR: This paper proposes an analog computation scheme that allows for an efficient estimate of linear and nonlinear functions over the wireless multiple-access channel and analyses the estimation error for two function examples to show the potential for huge performance gains over time- and code-division multiple- access based computation schemes.
Abstract: Wireless sensor network applications often involve the computation of pre-defined functions of the measurements such as for example the arithmetic mean or maximum value. Standard approaches to this problem separate communication from computation: digitized sensor readings are transmitted interference-free to a fusion center that reconstructs each sensor reading and subsequently computes the sought function value. Such separation-based computation schemes are generally highly inefficient as a complete reconstruction of individual sensor readings at the fusion center is not necessary to compute a function of them. In particular, if the mathematical structure of the channel is suitably matched (in some sense) to the function of interest, then channel collisions induced by concurrent transmissions of different nodes can be beneficially exploited for computation purposes. This paper proposes an analog computation scheme that allows for an efficient estimate of linear and nonlinear functions over the wireless multiple-access channel. A match between the channel and the function being evaluated is thereby achieved via some pre-processing on the sensor readings and post-processing on the superimposed signals observed by the fusion center. After analyzing the estimation error for two function examples, simulations are presented to show the potential for huge performance gains over time- and code-division multiple-access based computation schemes.

Journal ArticleDOI
TL;DR: This paper proposes to first transform the original problem into an equivalent optimization problem in a parametric subtractive form, by which the solution is reached through a two-layer optimization scheme, and develops an iterative algorithm to solve it.
Abstract: In this paper we study energy efficient joint power allocation and beamforming for coordinated multicell multiuser downlink systems. The considered optimization problem is in a non-convex fractional form and hard to tackle. We propose to first transform the original problem into an equivalent optimization problem in a parametric subtractive form, by which we reach its solution through a two-layer optimization scheme. The outer layer only involves one-dimension search for the energy efficiency parameter which can be addressed using the bi-section search, the key issue lies in the inner layer where a non-fractional sub-problem needs to tackle. By exploiting the relationship between the user rate and the mean square error, we then develop an iterative algorithm to solve it. The convergence of this algorithm is proved and the solution is further derived in closed-form. Our analysis also shows that the proposed algorithm can be implemented in parallel with reasonable complexity. Numerical results illustrate that our algorithm has a fast convergence and achieves near-optimal energy efficiency. It is also observed that at the low transmit power region, our solution almost achieves the optimal sum rate and the optimal energy efficiency simultaneously; while at the middle-high transmit power region, a certain sum rate loss is suffered in order to guarantee the energy efficiency.

Journal ArticleDOI
TL;DR: In this paper, Sphere Decoding algorithms for Spatial Modulation (SM) are developed to reduce the computational complexity of Maximum-Likelihood (ML) detectors, and two SDs specifically designed for SM are proposed and analysed in terms of Bit Error Ratio (BER) and computational complexity.
Abstract: In this paper, Sphere Decoding (SD) algorithms for Spatial Modulation (SM) are developed to reduce the computational complexity of Maximum-Likelihood (ML) detectors. Two SDs specifically designed for SM are proposed and analysed in terms of Bit Error Ratio (BER) and computational complexity. Using Monte Carlo simulations and mathematical analysis, it is shown that by carefully choosing the initial radius the proposed sphere decoder algorithms offer the same BER as ML detection, with a significant reduction in the computational complexity. A tight closed form expression for the BER performance of SM-SD is derived in the paper, along with an algorithm for choosing the initial radius which provides near to optimum performance. Also, it is shown that none of the proposed SDs are always superior to the others, but the best SD to use depends on the target spectral efficiency. The computational complexity trade-off offered by the proposed solutions is studied via analysis and simulation, and is shown to validate our findings. Finally, the performance of SM-SDs are compared to Spatial Multiplexing (SMX) applying ML decoder and applying SD. It is shown that for the same spectral efficiency, SM-SD offers up to 84% reduction in complexity compared to SMX-SD, with up to 1 dB better BER performance than SMX-ML decoder.

Journal ArticleDOI
TL;DR: Noncoherent trellis-coded quantization (NTCQ), whose encoding complexity scales linearly with the number of antennas, is proposed, which exploits the duality between source encoding in a Grassmannian manifold and noncoherent sequence detection for maximum likelihood decoding subject to uncertainty in the channel gain.
Abstract: Accurate channel state information (CSI) is essential for attaining beamforming gains in single-user (SU) multiple-input multiple-output (MIMO) and multiplexing gains in multi-user (MU) MIMO wireless communication systems. State-of-the-art limited feedback schemes, which rely on pre-defined codebooks for channel quantization, are only appropriate for a small number of transmit antennas and low feedback overhead. In order to scale informed transmitter schemes to emerging massive MIMO systems with a large number of transmit antennas at the base station, one common approach is to employ time division duplexing (TDD) and to exploit the implicit feedback obtained from channel reciprocity. However, most existing cellular deployments are based on frequency division duplexing (FDD), hence it is of great interest to explore backwards compatible massive MIMO upgrades of such systems. For a fixed feedback rate per antenna, the number of codewords for quantizing the channel grows exponentially with the number of antennas, hence generating feedback based on look-up from a standard vector quantized codebook does not scale. In this paper, we propose noncoherent trellis-coded quantization (NTCQ), whose encoding complexity scales linearly with the number of antennas. The approach exploits the duality between source encoding in a Grassmannian manifold (for finding a vector in the codebook which maximizes beamforming gain) and noncoherent sequence detection (for maximum likelihood decoding subject to uncertainty in the channel gain). Furthermore, since noncoherent detection can be realized near-optimally using a bank of coherent detectors, we obtain a low-complexity implementation of NTCQ encoding using an off-the-shelf Viterbi algorithm applied to standard trellis coded quantization. We also develop advanced NTCQ schemes which utilize various channel properties such as temporal/spatial correlations. Monte Carlo simulation results show the proposed NTCQ and its extensions can achieve near-optimal performance with moderate complexity and feedback overhead.

Journal ArticleDOI
TL;DR: The joint power and subcarrier allocation problem is solved in the context of maximizing the energy-efficiency of a multi-user, multi-relay orthogonal frequency division multiple access (OFDMA) cellular network, where the objective function is formulated as the ratio of the spectral-efficiency over the total power dissipation.
Abstract: In this paper, the joint power and subcarrier allocation problem is solved in the context of maximizing the energy-efficiency (EE) of a multi-user, multi-relay orthogonal frequency division multiple access (OFDMA) cellular network, where the objective function is formulated as the ratio of the spectral-efficiency (SE) over the total power dissipation. It is proven that the fractional programming problem considered is quasi-concave so that Dinkelbach's method may be employed for finding the optimal solution at a low complexity. This method solves the above-mentioned master problem by solving a series of parameterized concave secondary problems. These secondary problems are solved using a dual decomposition approach, where each secondary problem is further decomposed into a number of similar subproblems. The impact of various system parameters on the attainable EE and SE of the system employing both EE maximization (EEM) and SE maximization (SEM) algorithms is characterized. In particular, it is observed that increasing the number of relays for a range of cell sizes, although marginally increases the attainable SE, reduces the EE significantly. It is noted that the highest SE and EE are achieved, when the relays are placed closer to the BS to take advantage of the resultant line-of-sight link. Furthermore, increasing both the number of available subcarriers and the number of active user equipment (UE) increases both the EE and the total SE of the system as a benefit of the increased frequency and multi-user diversity, respectively. Finally, it is demonstrated that as expected, increasing the available power tends to improve the SE, when using the SEM algorithm. By contrast, given a sufficiently high available power, the EEM algorithm attains the maximum achievable EE and a suboptimal SE.

Journal ArticleDOI
TL;DR: A framework is proposed that allows for a joint description and optimization of both binary polar coding and 2m-ary digital pulse-amplitude modulation (PAM) schemes and rules for the optimum choice of the labeling in coded modulation schemes employing polar codes are developed.
Abstract: A framework is proposed that allows for a joint description and optimization of both binary polar coding and 2m-ary digital pulse-amplitude modulation (PAM) schemes. For the latter, the multilevel coding (MLC) approach as well as bit-interleaved coded modulation (BICM) are considered. The conceptual equivalence of polar coding and multilevel coding is covered in detail. Based on an alternative characterization of the channel polarization phenomenon, rules for the optimum choice of the labeling in coded modulation schemes employing polar codes are developed. Simulation results regarding the error performance of the proposed schemes on the AWGN channel are included.

Journal ArticleDOI
TL;DR: Analytical and simulation results show that the proposed precoding algorithms can achieve a comparable sum-rate performance as BD-type precode algorithms, substantial bit error rate (BER) performance gains, and a simplified receiver structure, while requiring a much lower complexity.
Abstract: Block diagonalization (BD) based precoding techniques are well-known linear transmit strategies for multiuser MIMO (MU-MIMO) systems. By employing BD-type precoding algorithms at the transmit side, the MU-MIMO broadcast channel is decomposed into multiple independent parallel single user MIMO (SU-MIMO) channels and achieves the maximum diversity order at high data rates. The main computational complexity of BD-type precoding algorithms comes from two singular value decomposition (SVD) operations, which depend on the number of users and the dimensions of each user's channel matrix. In this work, low-complexity precoding algorithms are proposed to reduce the computational complexity and improve the performance of BD-type precoding algorithms. We devise a strategy based on a common channel inversion technique, QR decompositions, and lattice reductions to decouple the MU-MIMO channel into equivalent SU-MIMO channels. Analytical and simulation results show that the proposed precoding algorithms can achieve a comparable sum-rate performance as BD-type precoding algorithms, substantial bit error rate (BER) performance gains, and a simplified receiver structure, while requiring a much lower complexity.

Journal ArticleDOI
TL;DR: A frameless approach for distributed random access in the slotted ALOHA framework is described, providing heuristic criteria for terminating the contention period and showing that very high throughputs can be achieved, even for a low number for contending users.
Abstract: Various applications of wireless Machine-to-Machine (M2M) communications have rekindled the research interest in random access protocols, suitable to support a large number of connected devices. Slotted ALOHA and its derivatives represent a simple solution for distributed random access in wireless networks. Recently, a framed version of slotted ALOHA gained renewed interest due to the incorporation of successive interference cancellation (SIC) in the scheme, which resulted in substantially higher throughputs. Based on similar principles and inspired by the rateless coding paradigm, a frameless approach for distributed random access in the slotted ALOHA framework is described in this paper. The proposed approach shares an operational analogy with rateless coding, expressed both through the user access strategy and the adaptive length of the contention period, with the objective to end the contention when the instantaneous throughput is maximized. The paper presents the related analysis, providing heuristic criteria for terminating the contention period and showing that very high throughputs can be achieved, even for a low number for contending users. The demonstrated results potentially have more direct practical implications compared to the approaches for coded random access that lead to high throughputs only asymptotically.

Journal ArticleDOI
TL;DR: Simulation results show that after three iterations, the original OICF algorithm can achieve the desired PAPR while the simplified one exhibits almost the same performance.
Abstract: Iterative clipping and filtering (ICF) is a well-known technique to reduce the peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signals. Recently, Wang and Luo investigated the clipped signal and proposed a modified algorithm called optimized ICF (OICF). This is an optimal algorithm since it can achieve the required PAPR reduction with minimum in-band distortion and far fewer iterations. However, OICF needs to solve a convex optimization problem with O(N3) complexity, where N represents the number of subcarriers. In this paper, instead of analyzing the clipped signal, we study the clipping noise and propose a simplified OICF algorithm. In the new algorithm, solving the convex optimization problem is approximated by some simple algebraic operations and the computational complexity reduces to O(N). Simulation results show that after three iterations, the original OICF algorithm can achieve the desired PAPR while the simplified one exhibits almost the same performance: for a 128-subcarrier and quadrature phase shift keying (QPSK) modulated OFDM system, the PAPR-reduction performance difference between the two algorithms are 5×10-3dB at a 10-4 clipping probability and the bit-error-rate performance difference is 6×10-3 dB at a 10-7 error probability.

Journal ArticleDOI
TL;DR: This paper considers a wireless sensor powered by an energy harvesting device, which reports data of varying importance to its receiver, and derives the performance of the Balanced Policy (BP), which adapts the transmission probability to the harvesting state, such that energy harvesting and consumption are balanced.
Abstract: This paper considers a wireless sensor powered by an energy harvesting device, which reports data of varying importance to its receiver. Modeling the ambient energy supply by a two-state Markov chain ("GOOD" and "BAD"), assuming a finite battery capacity constraint, and associating data transmission with a given energy cost, we propose low-complexity transmission policies, that achieve near-optimal performance in terms of the average long-term importance of the reported data. In particular, we derive the performance of the Balanced Policy (BP), which adapts the transmission probability to the harvesting state, such that energy harvesting and consumption are balanced. Our analysis demonstrates that the performance of the BP largely depends on the power-to-depletion, defined as the power that a fully charged battery can supply on average over a BAD period. Numerical results show that the optimal BP achieves near-optimal performance and that a BP which avoids energy overflow further reduces the gap with respect to the globally optimal policy. A heuristic BP, based on the analysis of a system with a deterministic and periodic energy supply, is also proposed, and the parallels between the deterministic system and its stochastic counterpart are discussed.

Journal ArticleDOI
TL;DR: A baseline two-way communication system is considered in which two nodes communicate in an interactive fashion and inner and outer bounds on the achievable rates are derived.
Abstract: In some communication networks, such as passive RFID systems, the energy used to transfer information between a sender and a recipient can be reused for successive communication tasks. In fact, from known results in physics, any system that exchanges information via the transfer of given physical resources, such as radio waves, particles and qubits, can conceivably reuse, at least part, of the received resources. This paper aims at illustrating some of the new challenges that arise in the design of communication networks in which the signals exchanged by the nodes carry both information and energy. To this end, a baseline two-way communication system is considered in which two nodes communicate in an interactive fashion. In the system, a node can either send an "onquotedblright symbol (or "1quotedblright), which costs one unit of energy, or an "offquotedblright signal (or "0quotedblright), which does not require any energy expenditure. Upon reception of a "1quotedblright signal, the recipient node "harvestsquotedblright, with some probability, the energy contained in the signal and stores it for future communication tasks. Inner and outer bounds on the achievable rates are derived. Numerical results demonstrate the effectiveness of the proposed strategies and illustrate some key design insights.

Journal ArticleDOI
TL;DR: This work evaluates a distributed sleep-mode strategy for cognitive SAPs and analyzes the trade-off between traffic offloading from the macrocell and the energy consumption of the small cells, proposing a framework that yields design guidelines for energy efficient small cell networks.
Abstract: Heterogeneous networks using a mix of macrocells and small cells are foreseen as one of the solutions to meet the ever increasing mobile traffic demand. Nevertheless, a massive deployment of small cell access points (SAPs) leads also to a considerable increase in energy consumption. Spurred by growing environmental awareness and the high price of energy, it is crucial to design energy efficient wireless systems for both macrocells and small cells. In this work, we evaluate a distributed sleep-mode strategy for cognitive SAPs and we analyze the trade-off between traffic offloading from the macrocell and the energy consumption of the small cells. Using tools from stochastic geometry, we define the user discovery performance of the SAP and derive the uplink capacity of the small cells located in the Voronoi cell of a macrocell base station, accounting for the uncertainties associated with random position, density, user activity, propagation channel, network interference generated by uncoordinated activity, and the sensing scheme. In addition, we define a fundamental limit on the interference density that allows robust detection and we elucidate the relation between energy efficiency and sensing time using large deviations theory. Through the formulation of several optimization problems, we propose a framework that yields design guidelines for energy efficient small cell networks.

Journal ArticleDOI
TL;DR: By exploiting the structure of the problem extensively, an efficient barrier method is developed to work out the (near) optimal solution with a reasonable complexity, significantly better than the standard technique.
Abstract: In this paper, we investigate the energy-efficient resource allocation in orthogonal frequency division multiplexing (OFDM)-based cognitive radio (CR) networks, where we try to maximize the system energy-efficiency under the consideration of many practical limitations, such as transmission power budget of the CR system, interference threshold of primary users and traffic demands of secondary users. Our general objective formulation leads to a challenging mixed integer programming problem that is hard to solve. To make it computationally tractable, we employ a time-sharing method to transform it into a non-linear fractional programming problem, which can be further converted into an equivalent convex optimization problem by using its hypogragh form. Based on these transformations, it is possible to obtain (near) optimal solution by standard optimization technique. However, the complexity of the standard technique is too high for this real-time optimization task. By exploiting the structure of the problem extensively, we develop an efficient barrier method to work out the (near) optimal solution with a reasonable complexity, significantly better than the standard technique. Numerical results show that our proposal can maximize the energy efficiency of the CR system, whilst the proposed algorithm performs quickly and stably.